Abstract

A device that significantly enhances the absorption of incident radiation at visible wavelengths is studied. The device consists of an optical diode based on cholesteric and nematic liquid crystals, as well as a mirror. The diode allows non-symmetric one-way propagation of circularly polarized light around a predetermined region of the spectrum. Via full-wave simulations in both planar and cylindrical geometries, it is shown that combining the proposed device with ordinary absorbing materials results in the doubling of their overall absorption efficiency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Capolino, Theory and Phenomena of Metamaterials (CRC Press/Taylor & Francis, 2009).
  2. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010).
    [CrossRef] [PubMed]
  3. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
    [CrossRef] [PubMed]
  4. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011).
    [CrossRef] [PubMed]
  5. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).
  6. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
    [CrossRef] [PubMed]
  7. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  8. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  9. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  10. T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
    [CrossRef]
  11. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
    [CrossRef]
  12. P. C. W. Davies, “Thermodynamics of black holes,” Rep. Prog. Phys.41(8), 1313–1355 (1978).
    [CrossRef]
  13. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
    [CrossRef]
  14. U. Leonhardt and P. Piwnicki, “Relativistic effects of light in moving media with extremely low group velocity,” Phys. Rev. Lett.84(5), 822–825 (2000).
    [CrossRef] [PubMed]
  15. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
    [CrossRef]
  16. C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B27(10), 2020–2025 (2010).
    [CrossRef]
  17. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
    [CrossRef]
  18. A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys. Usp.54(1), 53–63 (2011).
    [CrossRef]
  19. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  20. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  21. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011).
    [CrossRef] [PubMed]
  22. V. Yannopapas and A. G. Vanakaras, “Layer-multiple-scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B84(8), 085119 (2011).
    [CrossRef]
  23. V. Yannopapas, “Thermal emission from three-dimensional arrays of gold nanoparticles,” Phys. Rev. B73(11), 113108 (2006).
    [CrossRef]
  24. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  25. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
    [CrossRef]
  26. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley-Interscience, 2007).
  27. I. C. Khoo, Liquid Crystals (Wiley-Interscience, 2007).
  28. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
    [CrossRef] [PubMed]
  29. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys.76(4), 2023–2026 (1994).
    [CrossRef]
  30. S. Mujumdar and H. Ramachandran, “Use of a graded gain random amplifier as an optical diode,” Opt. Lett.26(12), 929–931 (2001).
    [CrossRef] [PubMed]
  31. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009).
    [CrossRef]
  32. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, 1992).
  33. N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011).
    [CrossRef]
  34. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater.14(10), 746–749 (2002).
    [CrossRef]
  35. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23(21), 1707–1709 (1998).
    [CrossRef] [PubMed]
  36. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
    [CrossRef]
  37. M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
    [CrossRef]
  38. J. X. Guo and D. G. Gray, “Chiroptical behavior of (acetyl)(ethyl)cellulose liquid-crystalline solutions in chloroform,” Macromolecules22(5), 2086–2090 (1989).
    [CrossRef]
  39. M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004).
    [CrossRef]

2011 (6)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011).
[CrossRef] [PubMed]

V. Yannopapas and A. G. Vanakaras, “Layer-multiple-scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B84(8), 085119 (2011).
[CrossRef]

A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys. Usp.54(1), 53–63 (2011).
[CrossRef]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011).
[CrossRef]

2010 (5)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B27(10), 2020–2025 (2010).
[CrossRef]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

2009 (3)

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009).
[CrossRef]

2007 (2)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

2006 (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

V. Yannopapas, “Thermal emission from three-dimensional arrays of gold nanoparticles,” Phys. Rev. B73(11), 113108 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

2004 (2)

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004).
[CrossRef]

2003 (2)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

2001 (1)

2000 (1)

U. Leonhardt and P. Piwnicki, “Relativistic effects of light in moving media with extremely low group velocity,” Phys. Rev. Lett.84(5), 822–825 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

1996 (1)

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

1994 (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys.76(4), 2023–2026 (1994).
[CrossRef]

1989 (1)

J. X. Guo and D. G. Gray, “Chiroptical behavior of (acetyl)(ethyl)cellulose liquid-crystalline solutions in chloroform,” Macromolecules22(5), 2086–2090 (1989).
[CrossRef]

1978 (1)

P. C. W. Davies, “Thermodynamics of black holes,” Rep. Prog. Phys.41(8), 1313–1355 (1978).
[CrossRef]

Argyropoulos, C.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011).
[CrossRef] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011).
[CrossRef] [PubMed]

Bailey, C.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys.76(4), 2023–2026 (1994).
[CrossRef]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys.76(4), 2023–2026 (1994).
[CrossRef]

Brand, S.

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009).
[CrossRef]

Bunning, T. J.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011).
[CrossRef]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cao, W.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004).
[CrossRef]

Carvalho, I. C. S.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004).
[CrossRef]

Cheng, Q.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Cui, T. J.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Davies, P. C. W.

P. C. W. Davies, “Thermodynamics of black holes,” Rep. Prog. Phys.41(8), 1313–1355 (1978).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys.76(4), 2023–2026 (1994).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Fan, B.

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011).
[CrossRef] [PubMed]

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Genack, A. Z.

Genov, D. A.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

Gray, D. G.

J. X. Guo and D. G. Gray, “Chiroptical behavior of (acetyl)(ethyl)cellulose liquid-crystalline solutions in chloroform,” Macromolecules22(5), 2086–2090 (1989).
[CrossRef]

Guo, J. X.

J. X. Guo and D. G. Gray, “Chiroptical behavior of (acetyl)(ethyl)cellulose liquid-crystalline solutions in chloroform,” Macromolecules22(5), 2086–2090 (1989).
[CrossRef]

Hao, Y.

Hoshi, H.

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Hwang, J.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

Ishikawa, K.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kallos, E.

Kildishev, A. V.

A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys. Usp.54(1), 53–63 (2011).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

Kimball, B. R.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011).
[CrossRef]

Kopp, V. I.

Krauss, T. F.

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

Leonhardt, U.

U. Leonhardt and P. Piwnicki, “Relativistic effects of light in moving media with extremely low group velocity,” Phys. Rev. Lett.84(5), 822–825 (2000).
[CrossRef] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009).
[CrossRef]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Moreira, M. F.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004).
[CrossRef]

Mujumdar, S.

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

Nersisyan, S. R.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011).
[CrossRef]

Nishimura, S.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Ohta, T.

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009).
[CrossRef]

Palffy-Muhoray, P.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004).
[CrossRef]

Park, B.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Piwnicki, P.

U. Leonhardt and P. Piwnicki, “Relativistic effects of light in moving media with extremely low group velocity,” Phys. Rev. Lett.84(5), 822–825 (2000).
[CrossRef] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Ramachandran, H.

Rue, R. M. D. L.

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys.76(4), 2023–2026 (1994).
[CrossRef]

Schmidtke, J.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys. Usp.54(1), 53–63 (2011).
[CrossRef]

Shin, K. C.

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Song, M. H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Steeves, D. M.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011).
[CrossRef]

Stille, W.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

Swager, T. M.

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Tabiryan, N. V.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011).
[CrossRef]

Taheri, B.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004).
[CrossRef]

Takanishi, Y.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Takezoe, H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Toyooka, T.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Tsunoda, Y.

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Vanakaras, A. G.

V. Yannopapas and A. G. Vanakaras, “Layer-multiple-scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B84(8), 085119 (2011).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Vithana, H. K. M.

Watanabe, J.

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

White, T. J.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011).
[CrossRef]

Wu, J. W.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

Yannopapas, V.

V. Yannopapas and A. G. Vanakaras, “Layer-multiple-scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B84(8), 085119 (2011).
[CrossRef]

V. Yannopapas, “Thermal emission from three-dimensional arrays of gold nanoparticles,” Phys. Rev. B73(11), 113108 (2006).
[CrossRef]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Zhang, S.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010).
[CrossRef] [PubMed]

Zhu, Z.

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

Adv. Mater. (3)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004).
[CrossRef]

AIP Adv. (1)

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004).
[CrossRef]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys.76(4), 2023–2026 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Macromolecules (1)

J. X. Guo and D. G. Gray, “Chiroptical behavior of (acetyl)(ethyl)cellulose liquid-crystalline solutions in chloroform,” Macromolecules22(5), 2086–2090 (1989).
[CrossRef]

Nat Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011).
[CrossRef] [PubMed]

Nat. Mater. (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Phys. (1)

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

Nature (3)

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

V. Yannopapas and A. G. Vanakaras, “Layer-multiple-scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B84(8), 085119 (2011).
[CrossRef]

V. Yannopapas, “Thermal emission from three-dimensional arrays of gold nanoparticles,” Phys. Rev. B73(11), 113108 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

U. Leonhardt and P. Piwnicki, “Relativistic effects of light in moving media with extremely low group velocity,” Phys. Rev. Lett.84(5), 822–825 (2000).
[CrossRef] [PubMed]

Phys. Usp. (1)

A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys. Usp.54(1), 53–63 (2011).
[CrossRef]

Rep. Prog. Phys. (2)

P. C. W. Davies, “Thermodynamics of black holes,” Rep. Prog. Phys.41(8), 1313–1355 (1978).
[CrossRef]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Science (5)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010).
[CrossRef] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Other (6)

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).

J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

F. Capolino, Theory and Phenomena of Metamaterials (CRC Press/Taylor & Francis, 2009).

T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley-Interscience, 2007).

I. C. Khoo, Liquid Crystals (Wiley-Interscience, 2007).

S. Chandrasekhar, Liquid Crystals (Cambridge University Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulated electric field amplitude distribution in V/m (y-component, perpendicular to the page) along a 5.7 μm long optical diode (CLC1, HWP, CLC2), surrounded by air regions and absorbing PML sections. For left-handed circularly polarized (LCP) incident plane waves, the diode blocks transmission around 500 nm (600 nm) along the backward z ^ (forward + z ^ ) direction, while allowing transmission of waves propagating in the opposite direction. The diode consists of left-handed cholesteric liquid crystals, with the pitches tuned such that they reflect RCP light around 500 nm for CLC1 and around 600 nm for CLC2. The HWP inverts the polarization sense of the waves.

Fig. 2
Fig. 2

Electric field amplitude distribution (y-component) when a forward propagating ( + z ^ ) RCP plane wave is incident on a 2.1 μm long left-handed CLC from free space. The CLC extends from 1.8 μm to 3.9 μm and is tuned to attenuate incident light around 800 nm. Approximately 88% of the incident field energy is reflected at 800 nm. The total amplitude of the incident field is 2 V/m.

Fig. 3
Fig. 3

Transmission curves for forward and backward propagation through an optical diode consisting of left-handed cholesteric liquid crystals, normalized to the incident power. A left-handed circularly polarized plane wave is incident upon the structure.

Fig. 4
Fig. 4

Schematic of utilizing the optical diode as an absorber enhancement mechanism. Circularly polarized light is transmitted through the diode and is trapped in the absorbing region because it cannot immediately exit the device in the opposite direction.

Fig. 5
Fig. 5

(a) Comparison of the absorption efficiency per unit volume (as a fraction of the total incoming power) as a function of the loss tangent for the absorbing device of Fig. 4. When the diode is placed in front of the absorbing region, improved absorption compared to free space is established. (b) Percentage of the improvement in absorption using the optical absorption enhancement mechanism compared to air.

Fig. 6
Fig. 6

(a) Schematic of a possible cylindrical optical absorption enhancement geometry where light is collected in an absorbing region, placed at the focus of a parabolic reflector. The rectangular face of the half-cylinder can be coated with a reflective material to ensure the trapping of the focused waves inside the structure. Alternatively, a small half-cylindrical mirror can be placed at its origin. (b) A schematic of the simulated structure which has azimuthal symmetry, with impinging circularly polarized cylindrical waves. A small cylindrical mirror is placed at the center to aid the absorption effect in the absorbing region.

Fig. 7
Fig. 7

Electric field amplitude distribution (in V/m) in the cylindrical optical diode device at (a) 500 nm and (b) 600 nm. Inward propagating left-handed circularly polarized cylindrical waves (described by Eq. (3)) illuminate the device. The axes have units of 10 μm. The five cylindrical ring regions moving inwards from the outer surface are: Air, CLC2, HWP, CLC1, absorber. No mirror is present in this case as only the diode effect is observed.

Fig. 8
Fig. 8

Comparison of the absorption efficiency (fraction of the total incoming power) as a function of the loss tangent for the cylindrical absorbing device of Fig. 6(b), at a wavelength of 600 nm. When the optical diode is placed around the cylindrical absorbing ring (solid red line), the absorption efficiency doubles for loss tangents smaller than 0.02 compared to the case where no diode is present (dashed green line). When a plain cylindrical absorber is placed at the core (instead of the mirror and the diode), the absorption is comparable to the latter case (dotted blue line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε( z )=( ε ¯ +Δεcos2φ Δεsin2φ 0 Δεsin2φ ε ¯ Δεcos2φ 0 0 0 n o 2 ).
E =( x ^ ±j y ^ ) e jkz ,
E =( θ ^ ±j z ^ ) e +jkr .
ε( r,θ )=( n o 2 +Δε sin 2 φ sin 2 θ Δεcosθsinθ cos 2 φ Δεcosθsinφsinθ Δεcosθsinθ cos 2 φ n o 2 +Δε cos 2 θ sin 2 φ Δεcosθsinφcosφ Δεcosθsinφsinθ Δεcosθsinφcosφ n o 2 +Δε cos 2 φ ).

Metrics