Abstract

Silver (Ag) nanostructures with different sizes and densities were deposited onto the luminescence matrixes to improve the photoluminescence (PL) intensity of silicon nitride (SiNx) films via localized surface plasmon resonance (LSPR) coupling. The shape of PL spectra from the SiNx matrixes is mainly determined by their stoichiometric ratio. Moreover, both the surface coverage and the size of Ag nanostructures should be considered for the improvement of PL intensity. The optimal PL intensity of SiNx films might be achieved by the addition of Ag nanostructures with proper surface coverage and size due to the enhanced photo-excitation by LSPR. The dipolar resonance absorption of Ag nanostructures has an insignificant contribution on this improvement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett.83(17), 3474–3476 (2003).
    [CrossRef]
  2. M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
    [CrossRef]
  3. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
    [CrossRef]
  4. M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
    [CrossRef]
  5. M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
    [CrossRef]
  6. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
    [CrossRef]
  7. Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
    [CrossRef]
  8. Y. Berencén, O. Jambois, J. M. Ramírez, J. M. Rebled, S. Estradé, F. Peiró, C. Domínguez, J. A. Rodríguez, and B. Garrido, “Blue-green to near-IR switching electroluminescence from Si-rich silicon oxide/nitride bilayer structures,” Opt. Lett.36(14), 2617–2619 (2011).
    [CrossRef] [PubMed]
  9. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
    [CrossRef] [PubMed]
  10. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  11. G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010).
    [CrossRef]
  12. C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
    [CrossRef] [PubMed]
  13. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
    [CrossRef]
  14. C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
    [CrossRef]
  15. B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006).
    [CrossRef]
  16. D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E41(6), 920–922 (2009).
    [CrossRef]
  17. R. Huang, D. Q. Wang, H. L. Ding, X. Wang, K. J. Chen, J. Xu, Y. Q. Guo, J. Song, and Z. Y. Ma, “Enhanced electroluminescence from SiN-based multilayer structure by laser crystallization of ultrathin amorphous Si-rich SiN layers,” Opt. Express18(2), 1144–1150 (2010).
    [CrossRef] [PubMed]
  18. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
    [CrossRef]
  19. K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
    [CrossRef]
  20. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  21. B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
    [CrossRef]
  22. D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express2(6), 872–877 (2012).
    [CrossRef]
  23. N. Gaillard, L. Pinzelli, M. Gros-Jean, and A. Bsiesy, “In situ electric field simulation in metal/insulator/metal capacitors,” Appl. Phys. Lett.89(13), 133506 (2006).
    [CrossRef]
  24. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
    [CrossRef]
  25. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
    [CrossRef] [PubMed]
  26. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  27. D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
    [CrossRef]
  28. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
    [CrossRef]
  29. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
    [CrossRef]
  30. P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
    [CrossRef]
  31. Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
    [CrossRef]
  32. P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
    [CrossRef] [PubMed]
  33. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
    [CrossRef]
  34. M.-A. Tsai, H.-W. Han, Y.-L. Tsai, P.-C. Tseng, P. Yu, H.-C. Kuo, C.-H. Shen, J.-M. Shieh, and S.-H. Lin, “Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells,” Opt. Express19(S4Suppl 4), A757–A762 (2011).
    [CrossRef] [PubMed]
  35. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
    [CrossRef] [PubMed]
  36. T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
    [CrossRef]
  37. J. Tauc, Amorphous and Liquid Semiconductors (Springer, London, New York, Plenum, 1974).
  38. D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
    [CrossRef]
  39. J. M. Gérardy and M. Ausloos, “Statistically correlated polarization fields and optical properties of a composite medium,” Phys. Rev. B26(8), 4703–4706 (1982).
    [CrossRef]
  40. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
    [CrossRef]
  41. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3–4), 131–314 (2005).
    [CrossRef]
  42. S. Pillai and M. A. Green, “Plasmonics for photovoltaic application,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010).
    [CrossRef]
  43. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
    [CrossRef]

2012 (4)

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express2(6), 872–877 (2012).
[CrossRef]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
[CrossRef]

2011 (9)

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

M.-A. Tsai, H.-W. Han, Y.-L. Tsai, P.-C. Tseng, P. Yu, H.-C. Kuo, C.-H. Shen, J.-M. Shieh, and S.-H. Lin, “Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells,” Opt. Express19(S4Suppl 4), A757–A762 (2011).
[CrossRef] [PubMed]

Y. Berencén, O. Jambois, J. M. Ramírez, J. M. Rebled, S. Estradé, F. Peiró, C. Domínguez, J. A. Rodríguez, and B. Garrido, “Blue-green to near-IR switching electroluminescence from Si-rich silicon oxide/nitride bilayer structures,” Opt. Lett.36(14), 2617–2619 (2011).
[CrossRef] [PubMed]

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

2010 (5)

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010).
[CrossRef]

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
[CrossRef] [PubMed]

S. Pillai and M. A. Green, “Plasmonics for photovoltaic application,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010).
[CrossRef]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

R. Huang, D. Q. Wang, H. L. Ding, X. Wang, K. J. Chen, J. Xu, Y. Q. Guo, J. Song, and Z. Y. Ma, “Enhanced electroluminescence from SiN-based multilayer structure by laser crystallization of ultrathin amorphous Si-rich SiN layers,” Opt. Express18(2), 1144–1150 (2010).
[CrossRef] [PubMed]

2009 (4)

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E41(6), 920–922 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

2008 (6)

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

2007 (3)

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

2006 (3)

N. Gaillard, L. Pinzelli, M. Gros-Jean, and A. Bsiesy, “In situ electric field simulation in metal/insulator/metal capacitors,” Appl. Phys. Lett.89(13), 133506 (2006).
[CrossRef]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006).
[CrossRef]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

2005 (2)

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3–4), 131–314 (2005).
[CrossRef]

2004 (2)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett.83(17), 3474–3476 (2003).
[CrossRef]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1982 (1)

J. M. Gérardy and M. Ausloos, “Statistically correlated polarization fields and optical properties of a composite medium,” Phys. Rev. B26(8), 4703–4706 (1982).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Anopchenko, A.

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

Arif, R. A.

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Ausloos, M.

J. M. Gérardy and M. Ausloos, “Statistically correlated polarization fields and optical properties of a composite medium,” Phys. Rev. B26(8), 4703–4706 (1982).
[CrossRef]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Bao, J.

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

Berencén, Y.

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

Bsiesy, A.

N. Gaillard, L. Pinzelli, M. Gros-Jean, and A. Bsiesy, “In situ electric field simulation in metal/insulator/metal capacitors,” Appl. Phys. Lett.89(13), 133506 (2006).
[CrossRef]

Byeon, C. C.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Byeon, C.-C.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

Cao, L.

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett.83(17), 3474–3476 (2003).
[CrossRef]

Cao, Z. X.

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett.83(17), 3474–3476 (2003).
[CrossRef]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Cen, Z. H.

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

Chen, C.-C.

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010).
[CrossRef]

Chen, C.-Y.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

Chen, K. J.

Chen, T. P.

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

Cheng, C.-H.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Cheng, P.

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

Cho, C.-H.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006).
[CrossRef]

Cho, C.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Cho, K.-S.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

Choi, C.-J.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
[CrossRef] [PubMed]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Ding, H. L.

Ding, L.

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

Domínguez, C.

Ee, Y.-K.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Estradé, S.

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

Ferraioli, L.

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
[CrossRef]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Fung, S.

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

Gaillard, N.

N. Gaillard, L. Pinzelli, M. Gros-Jean, and A. Bsiesy, “In situ electric field simulation in metal/insulator/metal capacitors,” Appl. Phys. Lett.89(13), 133506 (2006).
[CrossRef]

Garrido, B.

Gérardy, J. M.

J. M. Gérardy and M. Ausloos, “Statistically correlated polarization fields and optical properties of a composite medium,” Phys. Rev. B26(8), 4703–4706 (1982).
[CrossRef]

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Gilchrist, J. F.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Goh, W. P.

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Green, M. A.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic application,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010).
[CrossRef]

Gros-Jean, M.

N. Gaillard, L. Pinzelli, M. Gros-Jean, and A. Bsiesy, “In situ electric field simulation in metal/insulator/metal capacitors,” Appl. Phys. Lett.89(13), 133506 (2006).
[CrossRef]

Guo, Y. Q.

Han, H.-W.

Hong, J. C.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

Huang, C.-F.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

Huang, J.

D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E41(6), 920–922 (2009).
[CrossRef]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

Huang, R.

Huh, C.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
[CrossRef] [PubMed]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

Jambois, O.

Kim, B. K.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
[CrossRef] [PubMed]

Kim, B.-H.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006).
[CrossRef]

Kim, J.-S.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

Kim, J.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Kim, K.-H.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
[CrossRef] [PubMed]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

Kim, T.-Y.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

Kim, W.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
[CrossRef] [PubMed]

Ko, H.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
[CrossRef] [PubMed]

Kuech, T. F.

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

Kumnorkaew, P.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Kuo, H.-C.

Kwon, M.-K.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Lee, J.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

Li, D.

D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express2(6), 872–877 (2012).
[CrossRef]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
[CrossRef]

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E41(6), 920–922 (2009).
[CrossRef]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
[CrossRef]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

Li, X.-H.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Lin, C.-D.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Lin, C.-T.

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010).
[CrossRef]

Lin, G.-R.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010).
[CrossRef]

Lin, S.-H.

Lin, Y.-H.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Liu, G.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Liu, Y.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

Liu, Y. C.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

Liu, Z.

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

Lu, Y.-C.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Ma, Z. Y.

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3–4), 131–314 (2005).
[CrossRef]

Mawst, L. J.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Mun, J.-S.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Pai, Y.-H.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010).
[CrossRef]

Park, I.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Park, J. H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Park, N.-M.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006).
[CrossRef]

Park, S.-J.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006).
[CrossRef]

Park, T.-Y.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Peiró, F.

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Pillai, S.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic application,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010).
[CrossRef]

Pinzelli, L.

N. Gaillard, L. Pinzelli, M. Gros-Jean, and A. Bsiesy, “In situ electric field simulation in metal/insulator/metal capacitors,” Appl. Phys. Lett.89(13), 133506 (2006).
[CrossRef]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Que, D.

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
[CrossRef]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

Ramírez, J. M.

Rebled, J. M.

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Ren, C.

Rodríguez, J. A.

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Shen, C.-H.

Shieh, J.-M.

Shin, J.-H.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3–4), 131–314 (2005).
[CrossRef]

Song, J.

Song, R.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Sung, G. Y.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
[CrossRef] [PubMed]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006).
[CrossRef]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Tansu, N.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Tsai, M.-A.

Tsai, Y.-L.

Tseng, P.-C.

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Wang, D. Q.

Wang, F.

Wang, M.

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
[CrossRef]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

Wang, X.

Wang, Y. G.

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett.83(17), 3474–3476 (2003).
[CrossRef]

Wang, Y. Q.

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett.83(17), 3474–3476 (2003).
[CrossRef]

Wong, J. I.

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

Wu, C.-L.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Xie, M.

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
[CrossRef]

Xu, J.

Yang, C. C.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

Yang, D.

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
[CrossRef]

D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express2(6), 872–877 (2012).
[CrossRef]

D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E41(6), 920–922 (2009).
[CrossRef]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
[CrossRef]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

Yang, M.

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

Yeh, D.-M.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

Yu, P.

Yuan, Z.

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3–4), 131–314 (2005).
[CrossRef]

Zhang, J.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

Zhao, H.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Zhu, F. R.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

Adv. Mater. (2)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (2)

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008).
[CrossRef]

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (13)

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009).
[CrossRef]

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006).
[CrossRef]

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010).
[CrossRef]

N. Gaillard, L. Pinzelli, M. Gros-Jean, and A. Bsiesy, “In situ electric field simulation in metal/insulator/metal capacitors,” Appl. Phys. Lett.89(13), 133506 (2006).
[CrossRef]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett.83(17), 3474–3476 (2003).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008).
[CrossRef]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011).
[CrossRef]

IEEE Photon. J. (1)

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

J. Appl. Phys. (3)

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008).
[CrossRef]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

Langmuir (1)

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Nat. Mater. (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3–4), 131–314 (2005).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. B (2)

J. M. Gérardy and M. Ausloos, “Statistically correlated polarization fields and optical properties of a composite medium,” Phys. Rev. B26(8), 4703–4706 (1982).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

Physica E (1)

D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E41(6), 920–922 (2009).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

S. Pillai and M. A. Green, “Plasmonics for photovoltaic application,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Other (1)

J. Tauc, Amorphous and Liquid Semiconductors (Springer, London, New York, Plenum, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM images of (a) Ag6 without post-thermal annealing (Ag6_no TA), (b) Ag6 with post-thermal annealing (Ag6_TA), (c) Ag12 without post-thermal annealing (Ag12_no TA), and (d) Ag12 with post-thermal annealing (Ag12_TA).

Fig. 2
Fig. 2

Size distributions of (a) Ag6 without post-thermal annealing (Ag6_no TA), (b) Ag6 with post-thermal annealing (Ag6_TA), (c) Ag12 without post-thermal annealing (Ag12_no TA), and (d) Ag12 with post-thermal annealing (Ag12_TA). Their Gauss fittings (red lines) are also provided.

Fig. 3
Fig. 3

Extinction spectra of the SiNx films with different N/Si ratios (N3/8, N2, and N6). Inset is their optical bandgap fittings via the Tauc model, black square for N3/8, red circle for N2, and blue triangle for N6.

Fig. 4
Fig. 4

Normalized extinction spectra of Ag nanostructures on (a) N3/8, (b) N2, and (c) N6, black circle for Ag6 without post-thermal annealing (Ag6_no TA), red triangle for Ag6 with post-thermal annealing (Ag6_TA), green diamond for Ag12 without post-thermal annealing (Ag12_no TA), and blue star for Ag 12 with post-thermal annealing (Ag12_TA). The PL spectra of (a) N3/8, (b) N2, and (c) N6 without the addition of Ag nanostructures are also provided at the right side (black lines).

Fig. 5
Fig. 5

PL spectra of (a) N3/8, (b) N2, and (c) N6 with and without the addition of Ag nanostructures, red line for SiNx film without Ag nanostructures, black circle for Ag6 without post-thermal annealing (Ag6_no TA), green triangle for Ag6 with post-thermal annealing (Ag6_TA), blue diamond for Ag12 without post-thermal annealing (Ag12_no TA), and wine star for Ag 12 with post-thermal annealing (Ag12_TA).

Fig. 6
Fig. 6

Enhancement factor of PL by dividing the PL intensity of SiNx with Ag12_TA by that of SiNx without Ag nanostructures. Inset is the integrated enhancement factor of PL intensity.

Fig. 7
Fig. 7

PL spectra of the SiNx films with different N/Si ratios with and without the addition of Ag nanostructures, (a) Ag6 without post-thermal annealing (Ag6_no TA), (b) Ag6 with post-thermal annealing (Ag6_TA), (c) Ag12 without post-thermal annealing (Ag12_no TA), and (d) Ag12 with post-thermal annealing (Ag12_TA).

Metrics