Abstract

The effect of enclosing a nanowire (NW) radial pn junction photovoltaic (PV) element inside a nanoring optical antenna to enhance the electric field in the near field region has been investigated. Five different materials for the NW (Si, Ge, GaAs, GaInP and InGaAs) have been selected to maximize the absorbed solar spectrum. In addition, the position and diameter of the NW are varied through a random distribution to optimize the power conversion efficiency. Results show that the ring antenna geometry and the NW random spatial distribution are effective in both spectral widening and field concentration which result in an increase of the cell conversion efficiency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Kayes, C. E. Richardson, N. S. Lewis, and H. A. Atwater, “Radial pn junction nanorod solar cells: device physics principles and routes to fabrication in silicon,” in Proceedings of the 31th IEEE Photovoltaic Specialists Conference, Florida, USA (January 3–7, 2005).
  2. S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “A comparison between Si and GaAs nanowire-based photovoltaic devices,” Proc. SPIE 8204, 820412 (2011).
    [CrossRef]
  3. H.-S. Philip Wong, P. Peumans, M. Brongersma, and Y. Nishi, “Lateral nanoconcentrator nanowire multijunction photovoltaic cells,” GCEP Progress Report (Stanford University, 2011).
  4. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  6. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  7. G. C. Schatz, “Using theory and computation to model nanoscale properties,” Proc. Natl. Acad. Sci. U.S.A. 104(17), 6885–6892 (2007).
    [CrossRef] [PubMed]
  8. COMSOL, Version 4.2. http://www.comsol.com .
  9. P. P. Altermatt, Y. Yang, T. Lange, A. Schenk, and R. Brendel, “Simulation of optical properties of Si wire cells,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference, Philadelphia, USA (June 7–12, 2009).

2011 (1)

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “A comparison between Si and GaAs nanowire-based photovoltaic devices,” Proc. SPIE 8204, 820412 (2011).
[CrossRef]

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

G. C. Schatz, “Using theory and computation to model nanoscale properties,” Proc. Natl. Acad. Sci. U.S.A. 104(17), 6885–6892 (2007).
[CrossRef] [PubMed]

2005 (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Abdellatif, S.

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “A comparison between Si and GaAs nanowire-based photovoltaic devices,” Proc. SPIE 8204, 820412 (2011).
[CrossRef]

Anis, W.

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “A comparison between Si and GaAs nanowire-based photovoltaic devices,” Proc. SPIE 8204, 820412 (2011).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Ghali, H.

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “A comparison between Si and GaAs nanowire-based photovoltaic devices,” Proc. SPIE 8204, 820412 (2011).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Kirah, K.

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “A comparison between Si and GaAs nanowire-based photovoltaic devices,” Proc. SPIE 8204, 820412 (2011).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

G. C. Schatz, “Using theory and computation to model nanoscale properties,” Proc. Natl. Acad. Sci. U.S.A. 104(17), 6885–6892 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. C. Schatz, “Using theory and computation to model nanoscale properties,” Proc. Natl. Acad. Sci. U.S.A. 104(17), 6885–6892 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “A comparison between Si and GaAs nanowire-based photovoltaic devices,” Proc. SPIE 8204, 820412 (2011).
[CrossRef]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Other (4)

B. M. Kayes, C. E. Richardson, N. S. Lewis, and H. A. Atwater, “Radial pn junction nanorod solar cells: device physics principles and routes to fabrication in silicon,” in Proceedings of the 31th IEEE Photovoltaic Specialists Conference, Florida, USA (January 3–7, 2005).

H.-S. Philip Wong, P. Peumans, M. Brongersma, and Y. Nishi, “Lateral nanoconcentrator nanowire multijunction photovoltaic cells,” GCEP Progress Report (Stanford University, 2011).

COMSOL, Version 4.2. http://www.comsol.com .

P. P. Altermatt, Y. Yang, T. Lange, A. Schenk, and R. Brendel, “Simulation of optical properties of Si wire cells,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference, Philadelphia, USA (June 7–12, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The electric field inside the Si NW has increased about 100 times due to the presence of the nanoring.

Fig. 2
Fig. 2

External quantum efficiency splitting due to nanowire antenna. A red-shift peak located at 700 nm is reduced to a lower value with a decrease in EQE from 75% to 73% causing a wider tuning range for Si NW.

Fig. 3
Fig. 3

EQE of different materials used in the array. Photons covering a wide range of the solar spectrum are absorbed.

Fig. 4
Fig. 4

The uniform random distribution array which shows minimum surface potential.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V( r )= 4ε [ ( a r ) 4 ( a r ) 2 ]

Metrics