Abstract

Yb:LuAG laser ceramics with different Yb3+ doping concentrations were successfully fabricated by using a solid-state reactive sintering method. SEM graphs demonstrate that the samples have a dense and pore-free microstructure. Based on the spectroscopic studies the ceramics have a large emission cross-section of 2.7 × 10−20 cm2 at 1030 nm emission peak. CW laser operation of the samples has given 7.2 W output power with 65% slope efficiency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical emission in ruby,” Nature187(4736), 493–494 (1960).
    [CrossRef]
  2. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
    [CrossRef]
  3. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
    [CrossRef]
  4. A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc.89(6), 1936–1944 (2006).
    [CrossRef]
  5. K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+-doped Y3Al5O12 ceramics — a new solid-state laser material,” Phys. Status Solidi A200(1), R5–R7 (2003).
    [CrossRef]
  6. J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett.29(11), 1212–1214 (2004).
    [CrossRef] [PubMed]
  7. Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
    [CrossRef]
  8. M. Pokhrel, G. A. Kumar, P. Samuel, K. I. Ueda, T. Yanagitani, H. Yagi, and D. K. Sardar, “Infrared and upconversion spectroscopic studies of high Er3+content transparent YAG ceramic,” Opt. Mater. Express1(7), 1272–1285 (2011).
    [CrossRef]
  9. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett.16(14), 1089–1091 (1991).
    [CrossRef] [PubMed]
  10. J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
    [CrossRef]
  11. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express18(20), 20712–20722 (2010).
    [CrossRef] [PubMed]
  12. C. Stewen, M. Larionov, A. Giesen, and K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MA5. http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-2000-MA5 .
  13. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett.32(13), 1890–1892 (2007).
    [CrossRef] [PubMed]
  14. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
    [CrossRef]
  15. K. Beil, S. T. Fredrich-Thornton, R. Peters, K. Petermann, and G. Huber, “Yb-doped thin-disk laser materials: a comparison between Yb:LuAG and Yb:YAG,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB28. http://www.opticsinfobase.org/abstract.cfm?uri=ASSP-2009-WB28 .
  16. R. Gaumé, B. Viana, D. Vivien, J. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett.83(7), 1355–1358 (2003).
    [CrossRef]
  17. Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth260(1–2), 159–165 (2004).
    [CrossRef]
  18. D. S. Sumida, T. Y. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” in Advanced Solid State Lasers, OSA Proceedings Series (Optical Society of America, 1995), paper YL5, http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1995-YL5 .
  19. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B23(4), 676–683 (2006).
    [CrossRef]
  20. J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
    [CrossRef] [PubMed]
  21. J. He, X. Liang, J. Li, H. Yu, X. Xu, Z. Zhao, J. Xu, and Z. Xu, “LD pumped Yb:LuAG mode-locked laser with 7.63ps duration,” Opt. Express17(14), 11537–11542 (2009).
    [CrossRef] [PubMed]
  22. C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
    [CrossRef]
  23. H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, and T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express20(14), 15385–15391 (2012).
    [CrossRef] [PubMed]
  24. D. W. Luo, J. Zhang, C. W. Xu, X. P. Qin, D. Y. Tang, and J. Ma, “Fabrication and laser properties of transparent Yb:YAG ceramics,” Opt. Mater.34(6), 936–939 (2012).
    [CrossRef]

2012

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
[CrossRef]

H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, and T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express20(14), 15385–15391 (2012).
[CrossRef] [PubMed]

D. W. Luo, J. Zhang, C. W. Xu, X. P. Qin, D. Y. Tang, and J. Ma, “Fabrication and laser properties of transparent Yb:YAG ceramics,” Opt. Mater.34(6), 936–939 (2012).
[CrossRef]

2011

2010

J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
[CrossRef]

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express18(20), 20712–20722 (2010).
[CrossRef] [PubMed]

2009

2008

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

2007

2006

2004

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett.29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth260(1–2), 159–165 (2004).
[CrossRef]

2003

R. Gaumé, B. Viana, D. Vivien, J. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett.83(7), 1355–1358 (2003).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+-doped Y3Al5O12 ceramics — a new solid-state laser material,” Phys. Status Solidi A200(1), R5–R7 (2003).
[CrossRef]

1995

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

1994

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

1991

1960

T. H. Maiman, “Stimulated optical emission in ruby,” Nature187(4736), 493–494 (1960).
[CrossRef]

Aggarwal, R. L.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc.89(6), 1936–1944 (2006).
[CrossRef]

Beil, K.

Boulon, G.

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Brenier, A.

Canibano, H.

Choi, H. K.

Dong, J.

Eganyan, A.

Fan, T. Y.

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett.83(7), 1355–1358 (2003).
[CrossRef]

Fredrich-Thornton, S. T.

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett.83(7), 1355–1358 (2003).
[CrossRef]

Giesen, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Guyot, Y.

He, J.

Huber, G.

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc.89(6), 1936–1944 (2006).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Ishizawa, N.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth260(1–2), 159–165 (2004).
[CrossRef]

Jaque, D.

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Kaminskii, A. A.

J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett.32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+-doped Y3Al5O12 ceramics — a new solid-state laser material,” Phys. Status Solidi A200(1), R5–R7 (2003).
[CrossRef]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Kong, J.

Kränkel, C.

Kumar, G. A.

Kuwano, Y.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth260(1–2), 159–165 (2004).
[CrossRef]

Lacovara, P.

Li, J.

Liang, X.

Lu, J.

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett.29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+-doped Y3Al5O12 ceramics — a new solid-state laser material,” Phys. Status Solidi A200(1), R5–R7 (2003).
[CrossRef]

Luo, D. W.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
[CrossRef]

D. W. Luo, J. Zhang, C. W. Xu, X. P. Qin, D. Y. Tang, and J. Ma, “Fabrication and laser properties of transparent Yb:YAG ceramics,” Opt. Mater.34(6), 936–939 (2012).
[CrossRef]

Ma, J.

D. W. Luo, J. Zhang, C. W. Xu, X. P. Qin, D. Y. Tang, and J. Ma, “Fabrication and laser properties of transparent Yb:YAG ceramics,” Opt. Mater.34(6), 936–939 (2012).
[CrossRef]

Maiman, T. H.

T. H. Maiman, “Stimulated optical emission in ruby,” Nature187(4736), 493–494 (1960).
[CrossRef]

Nakao, H.

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Petermann, K.

Peters, R.

Petrosyan, A. G.

Pokhrel, M.

Qin, X. P.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
[CrossRef]

D. W. Luo, J. Zhang, C. W. Xu, X. P. Qin, D. Y. Tang, and J. Ma, “Fabrication and laser properties of transparent Yb:YAG ceramics,” Opt. Mater.34(6), 936–939 (2012).
[CrossRef]

Ródenas, A.

Roger, J.

R. Gaumé, B. Viana, D. Vivien, J. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett.83(7), 1355–1358 (2003).
[CrossRef]

Saikawa, J.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

Samuel, P.

Sardar, D. K.

Sato, Y.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

Shirakawa, A.

Suda, K.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth260(1–2), 159–165 (2004).
[CrossRef]

Taira, T.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

Takaichi, K.

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+-doped Y3Al5O12 ceramics — a new solid-state laser material,” Phys. Status Solidi A200(1), R5–R7 (2003).
[CrossRef]

Tan, W. D.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
[CrossRef]

Tang, D. Y.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
[CrossRef]

D. W. Luo, J. Zhang, C. W. Xu, X. P. Qin, D. Y. Tang, and J. Ma, “Fabrication and laser properties of transparent Yb:YAG ceramics,” Opt. Mater.34(6), 936–939 (2012).
[CrossRef]

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett.29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

Tellkamp, F.

Ueda, K.

Ueda, K. I.

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett.83(7), 1355–1358 (2003).
[CrossRef]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett.83(7), 1355–1358 (2003).
[CrossRef]

Voss, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Wang, C. A.

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Xu, C. W.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
[CrossRef]

D. W. Luo, J. Zhang, C. W. Xu, X. P. Qin, D. Y. Tang, and J. Ma, “Fabrication and laser properties of transparent Yb:YAG ceramics,” Opt. Mater.34(6), 936–939 (2012).
[CrossRef]

Xu, J.

Xu, X.

Xu, Z.

Yagi, H.

Yamada, T.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth260(1–2), 159–165 (2004).
[CrossRef]

Yanagitani, T.

Yang, H.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
[CrossRef]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Yu, H.

Zhang, J.

D. W. Luo, J. Zhang, C. W. Xu, X. P. Qin, D. Y. Tang, and J. Ma, “Fabrication and laser properties of transparent Yb:YAG ceramics,” Opt. Mater.34(6), 936–939 (2012).
[CrossRef]

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
[CrossRef]

Zhao, Z.

Appl. Phys. B

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Appl. Phys. Lett.

R. Gaumé, B. Viana, D. Vivien, J. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett.83(7), 1355–1358 (2003).
[CrossRef]

J. Am. Ceram. Soc.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc.89(6), 1936–1944 (2006).
[CrossRef]

J. Cryst. Growth

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth260(1–2), 159–165 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
[CrossRef]

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett.9(1), 30–34 (2012).
[CrossRef]

Nat. Photonics

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Nature

T. H. Maiman, “Stimulated optical emission in ruby,” Nature187(4736), 493–494 (1960).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

D. W. Luo, J. Zhang, C. W. Xu, X. P. Qin, D. Y. Tang, and J. Ma, “Fabrication and laser properties of transparent Yb:YAG ceramics,” Opt. Mater.34(6), 936–939 (2012).
[CrossRef]

Opt. Mater. Express

Phys. Status Solidi A

K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+-doped Y3Al5O12 ceramics — a new solid-state laser material,” Phys. Status Solidi A200(1), R5–R7 (2003).
[CrossRef]

Other

C. Stewen, M. Larionov, A. Giesen, and K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MA5. http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-2000-MA5 .

K. Beil, S. T. Fredrich-Thornton, R. Peters, K. Petermann, and G. Huber, “Yb-doped thin-disk laser materials: a comparison between Yb:LuAG and Yb:YAG,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB28. http://www.opticsinfobase.org/abstract.cfm?uri=ASSP-2009-WB28 .

D. S. Sumida, T. Y. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” in Advanced Solid State Lasers, OSA Proceedings Series (Optical Society of America, 1995), paper YL5, http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1995-YL5 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Microstructure of the polished and thermally etched Yb:LuAG polycrystalline ceramics with 5% (a), 10% (b), 15% (c) and 20% (d) Yb doping concentrations.

Fig. 2
Fig. 2

The absorption spectra and photo of the as fabricated Yb:LuAG ceramic samples.

Fig. 3
Fig. 3

Emission cross-section and decay curve (inset) for a 5.0 at.% Yb:LuAG ceramic sample.

Fig. 4
Fig. 4

Gain cross-section of Yb:LuAG ceramics under different value of inversion ratio β.

Fig. 5
Fig. 5

The CW laser performance of a 5.0 at.% Yb:LuAG ceramic sample under different output couplers.

Metrics