Abstract

We present a laser processing study of optically transparent ytrria stabilized zirconia (YSZ) ceramics (ZrO2-8 mol. % Y2O3) using unamplified femtosecond (fs) laser pulses of a few nJ and high repetition rate (70 MHz). The ceramics were fabricated using current activated pressure assisted densification (CAPAD) and have fine grain size and minimal porosity, producing a transparent material. Irradiation using fs laser pulses caused permanent changes in the optical properties of the irradiated zone. These laser written structures were found to confine He-Ne laser light (632 nm) in effect functioning as waveguide like structures and were written into the YSZ ceramics using a remarkably low per-pulse energy (5nJ). The number of passes with the laser i.e total incident pulses per unit area was found to significantly affect the waveguide writing. We believe that waveguides are regions were the concentration of oxygen vacancies and/or their associated free electrons have been altered by laser irradiation. We are not aware of previous reports of low fluence fs laser pulses being used to influence vacancy related defects to produce waveguides in ceramics. This new mechanism opens the door for writing strictures in optical ceramics with lower power than previously thought feasible.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
    [CrossRef]
  3. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
    [CrossRef]
  4. C. Florea and K. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol.21(1), 246–253 (2003).
    [CrossRef]
  5. G. A. Torchia, C. Méndez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin.128(5-6), 754–756 (2008).
    [CrossRef]
  6. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci.253(19), 8300–8303 (2007).
    [CrossRef]
  7. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
    [CrossRef]
  8. E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1181 (2012).
    [CrossRef]
  9. J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys.109(9), 093110 (2011).
    [CrossRef]
  10. G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express15(20), 13266–13271 (2007).
    [CrossRef] [PubMed]
  11. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
    [CrossRef]
  12. S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
    [CrossRef]
  13. J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
    [CrossRef]
  14. J. E. Garay, “Current activated pressure assisted densification of materials,” Annu. Rev. Mater. Res.40(1), 445–468 (2010).
    [CrossRef]
  15. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
    [CrossRef]
  16. R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
    [CrossRef]
  17. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001).
    [CrossRef] [PubMed]
  18. M. Yoshimura, “Phase stability of zirconia,” Am. Ceram. Soc. Bull.67, 1950–1955 (1988).
  19. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001).
    [CrossRef] [PubMed]
  20. C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
    [CrossRef]
  21. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  22. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]
  23. V. M. Orera and R. I. Merino, “Correlation between intrinsic electron traps and electrical conductivity in stabilized zirconia,” Solid State Ionics76(1-2), 97–102 (1995).
    [CrossRef]
  24. F. E. G. Henn, R. M. Buchanan, N. Jiang, and D. A. Stevenson, “Permittivity and AC Conductivity in yttria-stabilized zirconia: Application of a pairs-approximation model and determination of the binding energy of the oxygen vacancies,” Appl. Phys., A Mater. Sci. Process.60(5), 515–519 (1995).
    [CrossRef]

2012 (1)

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1181 (2012).
[CrossRef]

2011 (1)

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys.109(9), 093110 (2011).
[CrossRef]

2010 (1)

J. E. Garay, “Current activated pressure assisted densification of materials,” Annu. Rev. Mater. Res.40(1), 445–468 (2010).
[CrossRef]

2009 (1)

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

2008 (6)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

G. A. Torchia, C. Méndez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin.128(5-6), 754–756 (2008).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

2007 (2)

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express15(20), 13266–13271 (2007).
[CrossRef] [PubMed]

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci.253(19), 8300–8303 (2007).
[CrossRef]

2006 (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

2005 (1)

2003 (2)

C. Florea and K. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol.21(1), 246–253 (2003).
[CrossRef]

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

2001 (2)

1998 (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
[CrossRef]

1997 (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

1996 (1)

1995 (2)

V. M. Orera and R. I. Merino, “Correlation between intrinsic electron traps and electrical conductivity in stabilized zirconia,” Solid State Ionics76(1-2), 97–102 (1995).
[CrossRef]

F. E. G. Henn, R. M. Buchanan, N. Jiang, and D. A. Stevenson, “Permittivity and AC Conductivity in yttria-stabilized zirconia: Application of a pairs-approximation model and determination of the binding energy of the oxygen vacancies,” Appl. Phys., A Mater. Sci. Process.60(5), 515–519 (1995).
[CrossRef]

1988 (1)

M. Yoshimura, “Phase stability of zirconia,” Am. Ceram. Soc. Bull.67, 1950–1955 (1988).

Aguilar, G.

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

Alaniz, J. E.

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

Amos, N.

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys.109(9), 093110 (2011).
[CrossRef]

Apostolopoulos, V.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci.253(19), 8300–8303 (2007).
[CrossRef]

Arai, A.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Benayas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Borca, C. N.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci.253(19), 8300–8303 (2007).
[CrossRef]

Bovatsek, J.

Brodeur, A.

Buchanan, R. M.

F. E. G. Henn, R. M. Buchanan, N. Jiang, and D. A. Stevenson, “Permittivity and AC Conductivity in yttria-stabilized zirconia: Application of a pairs-approximation model and determination of the binding energy of the oxygen vacancies,” Appl. Phys., A Mater. Sci. Process.60(5), 515–519 (1995).
[CrossRef]

Cantelar, E.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Casolco, S. R.

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

Cerullo, G.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
[CrossRef]

Chan, J. W.

Chen, W. J.

Chiodo, N.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
[CrossRef]

Davis, K. M.

Della Valle, G.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
[CrossRef]

Eaton, S.

Eaton, S. M.

Florea, C.

Garay, J. E.

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1181 (2012).
[CrossRef]

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys.109(9), 093110 (2011).
[CrossRef]

J. E. Garay, “Current activated pressure assisted densification of materials,” Annu. Rev. Mater. Res.40(1), 445–468 (2010).
[CrossRef]

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

Garcia, J.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

García, J. F.

Gardillou, F.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci.253(19), 8300–8303 (2007).
[CrossRef]

Henn, F. E. G.

F. E. G. Henn, R. M. Buchanan, N. Jiang, and D. A. Stevenson, “Permittivity and AC Conductivity in yttria-stabilized zirconia: Application of a pairs-approximation model and determination of the binding energy of the oxygen vacancies,” Appl. Phys., A Mater. Sci. Process.60(5), 515–519 (1995).
[CrossRef]

Herman, P.

Herman, P. R.

Hirao, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Ho, S.

Huser, T.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Jaque, D.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express15(20), 13266–13271 (2007).
[CrossRef] [PubMed]

Jiang, N.

F. E. G. Henn, R. M. Buchanan, N. Jiang, and D. A. Stevenson, “Permittivity and AC Conductivity in yttria-stabilized zirconia: Application of a pairs-approximation model and determination of the binding energy of the oxygen vacancies,” Appl. Phys., A Mater. Sci. Process.60(5), 515–519 (1995).
[CrossRef]

Khizroev, S.

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys.109(9), 093110 (2011).
[CrossRef]

Kodera, Y.

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1181 (2012).
[CrossRef]

Krol, D. M.

Laporta, P.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
[CrossRef]

Li, J.

Limberger, H. G.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci.253(19), 8300–8303 (2007).
[CrossRef]

Mazur, E.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001).
[CrossRef] [PubMed]

Meilán, P. F.

Mendez, C.

Méndez, C.

G. A. Torchia, C. Méndez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin.128(5-6), 754–756 (2008).
[CrossRef]

Merino, R. I.

V. M. Orera and R. I. Merino, “Correlation between intrinsic electron traps and electrical conductivity in stabilized zirconia,” Solid State Ionics76(1-2), 97–102 (1995).
[CrossRef]

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Morales, J. R.

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys.109(9), 093110 (2011).
[CrossRef]

Ng, M. L.

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Orera, V. M.

V. M. Orera and R. I. Merino, “Correlation between intrinsic electron traps and electrical conductivity in stabilized zirconia,” Solid State Ionics76(1-2), 97–102 (1995).
[CrossRef]

Osellame, R.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
[CrossRef]

Penilla, E. H.

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1181 (2012).
[CrossRef]

Perez-Gutierrez, F. G.

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

Pollnau, M.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci.253(19), 8300–8303 (2007).
[CrossRef]

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Risbud, S.

Rodenas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express15(20), 13266–13271 (2007).
[CrossRef] [PubMed]

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

G. A. Torchia, C. Méndez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin.128(5-6), 754–756 (2008).
[CrossRef]

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express15(20), 13266–13271 (2007).
[CrossRef] [PubMed]

Salathe, R. P.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci.253(19), 8300–8303 (2007).
[CrossRef]

Schaffer, C.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001).
[CrossRef] [PubMed]

Shah, L.

Stevenson, D. A.

F. E. G. Henn, R. M. Buchanan, N. Jiang, and D. A. Stevenson, “Permittivity and AC Conductivity in yttria-stabilized zirconia: Application of a pairs-approximation model and determination of the binding energy of the oxygen vacancies,” Appl. Phys., A Mater. Sci. Process.60(5), 515–519 (1995).
[CrossRef]

Sugimoto, N.

Svelto, O.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
[CrossRef]

Taccheo, S.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
[CrossRef]

Tocho, J. O.

G. A. Torchia, C. Méndez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin.128(5-6), 754–756 (2008).
[CrossRef]

Torchia, G. A.

G. A. Torchia, C. Méndez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin.128(5-6), 754–756 (2008).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express15(20), 13266–13271 (2007).
[CrossRef] [PubMed]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Winick, K.

Xu, J.

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

Yoshimura, M.

M. Yoshimura, “Phase stability of zirconia,” Am. Ceram. Soc. Bull.67, 1950–1955 (1988).

Yoshino, F.

Zhang, H.

Am. Ceram. Soc. Bull. (1)

M. Yoshimura, “Phase stability of zirconia,” Am. Ceram. Soc. Bull.67, 1950–1955 (1988).

Annu. Rev. Mater. Res. (1)

J. E. Garay, “Current activated pressure assisted densification of materials,” Annu. Rev. Mater. Res.40(1), 445–468 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

F. E. G. Henn, R. M. Buchanan, N. Jiang, and D. A. Stevenson, “Permittivity and AC Conductivity in yttria-stabilized zirconia: Application of a pairs-approximation model and determination of the binding energy of the oxygen vacancies,” Appl. Phys., A Mater. Sci. Process.60(5), 515–519 (1995).
[CrossRef]

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process.93(1), 17–26 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci.253(19), 8300–8303 (2007).
[CrossRef]

J. Appl. Phys. (1)

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys.109(9), 093110 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

G. A. Torchia, C. Méndez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin.128(5-6), 754–756 (2008).
[CrossRef]

J. Non-Cryst. Solids (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998).
[CrossRef]

Mater. Sci. Eng. B (1)

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1181 (2012).
[CrossRef]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. (1)

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

Scr. Mater. (1)

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

Solid State Ionics (1)

V. M. Orera and R. I. Merino, “Correlation between intrinsic electron traps and electrical conductivity in stabilized zirconia,” Solid State Ionics76(1-2), 97–102 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM micrograph of the thermally etched surface of an 8YSZ sample produced via CAPAD at 1200⁰C with a 10 min hold time at temperature, 106 MPa (b) Photograph of the same 8YSZ on top of backlit text showing transparency of the ceramic.

Fig. 2
Fig. 2

Schematic of laser processing set-up.

Fig. 3
Fig. 3

Optical micrograph (in transmission) of the waveguide-like structures written in the YSZ ceramic using varying energies a) 3.6, b) 4.6 and c) 5 nJ per pulse. The inset number over the structures indicates the number of scans along the same track.

Fig. 4
Fig. 4

Phase contrast micrograph of a waveguide-like structure written at 5 nJ and 200 scans.

Fig. 5
Fig. 5

a) Light confinement in a waveguide-like structure written at 5 nJ and 200 scans. b) Coupling light in a zone out of the waveguide-like structure.

Fig. 6
Fig. 6

Intensity profile at the output face of the waveguide-like structure for a transmitted beam for a wavelength of 632 nm.

Tables (1)

Tables Icon

Table 1 Laser Induced Changes in the YSZ Ceramic as a Function of the Annealing Time

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V O ¨ + e V O ˙
n ( ε ε o ) 1 2

Metrics