Abstract

White long-lasting persistent luminescence covering the whole visible region in Bi3+-doped ZnGa2O4 ceramics is reported. The afterglow luminescence can be observed for several tens of minutes after 360 nm or 280 nm excitation. Photochromism is also observed during ultra-violet excitation. The persistent luminescence and photochromism are considered to originate from electron trapping by defect centers in the ZnGa2O4 crystals. The Bi3+-doped ZnGa2O4 ceramics are expected to be potential white-color afterglow phosphors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Roda, “The discovery of luminescence: ‘The Bolognian stone’,” (International Society for Bioluminescence and Chemiluminescence, 1998). http://www.isbc.unibo.it/Files/10_SE_BoStone.htm .
  2. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
    [CrossRef]
  3. H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
    [CrossRef]
  4. T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
    [CrossRef]
  5. Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
    [CrossRef]
  6. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin.72-74, 287–289 (1997).
    [CrossRef]
  7. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
    [CrossRef]
  8. J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18, 42–45 (2009).
  9. S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc.81(3), 649–654 (1998).
    [CrossRef]
  10. J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
    [CrossRef]
  11. L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.141(7), 1950–1954 (1994).
    [CrossRef]
  12. G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B8(3), 955–973 (1973).
    [CrossRef]
  13. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011).
    [CrossRef] [PubMed]
  14. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
    [CrossRef]
  15. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
    [CrossRef]
  16. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express13(5), 1628–1634 (2005).
    [CrossRef] [PubMed]
  17. G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
    [CrossRef]
  18. M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids61(5), 675–681 (2000).
    [CrossRef]
  19. M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
    [CrossRef]
  20. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  21. D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin.91(1-2), 59–65 (2000).
    [CrossRef]
  22. M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
    [CrossRef]
  23. H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun.104(11), 705–708 (1997).
    [CrossRef]
  24. G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun.91(1), 29–31 (1994).
    [CrossRef]
  25. V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids57(4), 437–441 (1996).
    [CrossRef]
  26. A. Srivastava and W. Beers, “On the impurity trapped exciton luminescence in La2Zr2O7: Bi3+,” J. Lumin.81(4), 293–300 (1999).
    [CrossRef]
  27. J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express4(4), 042602 (2011).
    [CrossRef]

2011

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011).
[CrossRef] [PubMed]

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express4(4), 042602 (2011).
[CrossRef]

2009

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18, 42–45 (2009).

2008

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

2005

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express13(5), 1628–1634 (2005).
[CrossRef] [PubMed]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
[CrossRef]

2003

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

2001

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

2000

D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin.91(1-2), 59–65 (2000).
[CrossRef]

M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids61(5), 675–681 (2000).
[CrossRef]

1999

A. Srivastava and W. Beers, “On the impurity trapped exciton luminescence in La2Zr2O7: Bi3+,” J. Lumin.81(4), 293–300 (1999).
[CrossRef]

1998

S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc.81(3), 649–654 (1998).
[CrossRef]

1997

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin.72-74, 287–289 (1997).
[CrossRef]

H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun.104(11), 705–708 (1997).
[CrossRef]

1996

V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids57(4), 437–441 (1996).
[CrossRef]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

1994

L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.141(7), 1950–1954 (1994).
[CrossRef]

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun.91(1), 29–31 (1994).
[CrossRef]

1973

G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B8(3), 955–973 (1973).
[CrossRef]

1968

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Aishima, K.

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express4(4), 042602 (2011).
[CrossRef]

Aitasalo, T.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Akiyama, M.

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Beers, W.

A. Srivastava and W. Beers, “On the impurity trapped exciton luminescence in La2Zr2O7: Bi3+,” J. Lumin.81(4), 293–300 (1999).
[CrossRef]

Berezovskaya, I.

V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids57(4), 437–441 (1996).
[CrossRef]

G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun.91(1), 29–31 (1994).
[CrossRef]

Bessière, A.

Blasse, G.

G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun.91(1), 29–31 (1994).
[CrossRef]

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Bril, A.

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Brown, J.

L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.141(7), 1950–1954 (1994).
[CrossRef]

Chen, D.

Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Chen, D. P.

Chirila, M.

M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids61(5), 675–681 (2000).
[CrossRef]

Choi, J.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Cordaro, J. F.

S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc.81(3), 649–654 (1998).
[CrossRef]

Da, N.

Datta, R.

L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.141(7), 1950–1954 (1994).
[CrossRef]

de Mello Donega, C.

G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun.91(1), 29–31 (1994).
[CrossRef]

Deren, P.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Dorenbos, P.

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
[CrossRef]

Dotsenko, V.

V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids57(4), 437–441 (1996).
[CrossRef]

G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun.91(1), 29–31 (1994).
[CrossRef]

Efryushina, N.

V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids57(4), 437–441 (1996).
[CrossRef]

Folkerts, H.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Fujitsu, S.

H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun.104(11), 705–708 (1997).
[CrossRef]

Giles, N.

M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids61(5), 675–681 (2000).
[CrossRef]

Gourier, D.

Hamstra, M.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Han, M.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Hanada, T.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

Hao, J.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Henning, J.

G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B8(3), 955–973 (1973).
[CrossRef]

Hölsä, J.

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18, 42–45 (2009).

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Hosono, H.

H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun.104(11), 705–708 (1997).
[CrossRef]

Hwang, Y.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Jacquart, S.

Jia, D.

D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin.91(1-2), 59–65 (2000).
[CrossRef]

Jiang, N.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Jiang, X. W.

Jung, M.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Jungner, H.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Kang, H.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Kawazoe, H.

H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun.104(11), 705–708 (1997).
[CrossRef]

Kim, G.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Kim, J.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Kim, T.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Kim, W.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Krolikowski, S.

Krupa, J.-C.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Lakshminarayana, G.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Lastusaari, M.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Lecointre, A.

Legendziewicz, J.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Lin, Y.

Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Matsuzawa, T.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin.72-74, 287–289 (1997).
[CrossRef]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Meng, X. G.

Mho, S.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Mizoguchi, H.

H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun.104(11), 705–708 (1997).
[CrossRef]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Murphy, H.

M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids61(5), 675–681 (2000).
[CrossRef]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Nan, C.

Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Niittykoski, J.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Nishiura, S.

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express4(4), 042602 (2011).
[CrossRef]

Park, H.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Peng, M.

Peng, M. Y.

Priolkar, K.

Qiu, J.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Qiu, J. R.

Sakai, K.

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

Sampath, S. K.

S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc.81(3), 649–654 (1998).
[CrossRef]

Shea, L.

L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.141(7), 1950–1954 (1994).
[CrossRef]

Srivastava, A.

A. Srivastava and W. Beers, “On the impurity trapped exciton luminescence in La2Zr2O7: Bi3+,” J. Lumin.81(4), 293–300 (1999).
[CrossRef]

Stevens, K.

M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids61(5), 675–681 (2000).
[CrossRef]

Stiegelschmitt, A.

Strek, W.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Takasaki, H.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Tanabe, S.

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express4(4), 042602 (2011).
[CrossRef]

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

Ueda, J.

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express4(4), 042602 (2011).
[CrossRef]

van Gorkom, G.

G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B8(3), 955–973 (1973).
[CrossRef]

van Stapele, R.

G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B8(3), 955–973 (1973).
[CrossRef]

Viana, B.

Wang, H.

Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Wondraczek, L.

Wu, B.

D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin.91(1-2), 59–65 (2000).
[CrossRef]

Wu, J.

Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Xu, S.

Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Yamada, H.

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

Yamamoto, H.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin.72-74, 287–289 (1997).
[CrossRef]

Yang, H.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Ye, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhao, Q. Z.

Zhou, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhou, X.

Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Zhu, B.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhu, C. S.

Zhu, J.

D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin.91(1-2), 59–65 (2000).
[CrossRef]

Adv. Funct. Mater.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Appl. Phys. Express

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express4(4), 042602 (2011).
[CrossRef]

Appl. Phys. Lett.

J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett.82(13), 2029–2031 (2003).
[CrossRef]

Electrochem. Soc. Interface

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18, 42–45 (2009).

J. Am. Ceram. Soc.

S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc.81(3), 649–654 (1998).
[CrossRef]

J. Ceram. Soc. Jpn.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

J. Chem. Phys.

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

J. Electrochem. Soc.

L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.141(7), 1950–1954 (1994).
[CrossRef]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
[CrossRef]

J. Lumin.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin.72-74, 287–289 (1997).
[CrossRef]

D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin.91(1-2), 59–65 (2000).
[CrossRef]

A. Srivastava and W. Beers, “On the impurity trapped exciton luminescence in La2Zr2O7: Bi3+,” J. Lumin.81(4), 293–300 (1999).
[CrossRef]

J. Mater. Chem.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

J. Phys. Chem. Solids

M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids61(5), 675–681 (2000).
[CrossRef]

V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids57(4), 437–441 (1996).
[CrossRef]

J. Solid State Chem.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem.171(1-2), 114–122 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Mater. Chem. Phys.

Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Opt. Express

Phys. Rev. B

G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B8(3), 955–973 (1973).
[CrossRef]

Solid State Commun.

H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun.104(11), 705–708 (1997).
[CrossRef]

G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun.91(1), 29–31 (1994).
[CrossRef]

Other

A. Roda, “The discovery of luminescence: ‘The Bolognian stone’,” (International Society for Bioluminescence and Chemiluminescence, 1998). http://www.isbc.unibo.it/Files/10_SE_BoStone.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD patterns of the ZGO and ZGO-Bi samples.

Fig. 2
Fig. 2

Diffuse reflection spectra of non-doped sample ZGO (black solid curve) and Bi-doped sample ZGO-Bi (red solid curve). Before measurement, the two samples were heated up to 250 °C. Then the ZGO-Bi sample was radiated by a 360 nm LED (100mW) for 2s, 5s, 10s and measured again. The results were shown as dash, dash-dot, and dot curves, respectively.

Fig. 3
Fig. 3

PLE (a) and PL (b) spectra of the ZGO and ZGO-Bi samples at room temperature. Monitoring wavelength and excitation wavelength was noted in (a) and (b), respectively. The PL spectra of the ZGO-Bi sample were normalized.

Fig. 4
Fig. 4

Photograph images of the ZGO-Bi sample in nature light (a), under (b) and after stopping (c) excitation of an UV lamp in a dark room.

Fig. 5
Fig. 5

Afterglow curves of 410 nm and 550 nm emissions in the ZGO-Bi sample after 360 nm excitation for 5 min. Inset shows fluorescence spectra during 360 nm excitation (solid curve) and phosphorescence spectra measured at 30 s after stopping the excitation (dash curve).

Metrics