Abstract

We use a surface-enhanced infrared absorption (SEIRA) spectroscopy, a useful sensing and surface analysis method complimentary to the Raman scattering spectroscopy, for the individual enhancement of specific molecular vibration bands and fingerprinting of molecular vibrations. SEIRA spectroscopic measurement using the metal hole array (MHA) is demonstrated with high spectral selectivity. The molecular IR absorption peaks are enhanced up to 10 times at the transmission peak of MHA structure when electromagnetic field enhancement is localized on the walls inside the holes. Experimental and numerical simulations results are in a good qualitative agreement. Selective IR band enhancement can be used for identification of specific molecules within complex mixtures and it can be extended to the longer wavelengths at THz molecular bands.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
    [CrossRef]
  2. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
    [CrossRef] [PubMed]
  3. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
    [CrossRef] [PubMed]
  4. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010).
    [CrossRef]
  5. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
    [CrossRef]
  6. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
    [CrossRef]
  7. Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mater. Express2, 1226–1235 (2012).
    [CrossRef]
  8. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
    [CrossRef] [PubMed]
  9. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
    [CrossRef]
  10. A. Roberts and L. Lin, “Substrate and aspect-ratio effects in resonant nanoaperture arrays,” Opt. Mater. Express1, 480–488 (2011).
    [CrossRef]
  11. T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano6, 1291–1298 (2012).
    [CrossRef] [PubMed]
  12. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
    [CrossRef]
  13. F. S. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys.8, 216–224 (2006).
    [CrossRef]
  14. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
    [CrossRef]
  15. M. Osawa, “Dynamic process electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRA),” Bull. Chem. Soc. Jpn.70, 2861–2880 (1997).
    [CrossRef]
  16. N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
    [CrossRef] [PubMed]
  17. H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
    [CrossRef]
  18. H. Miyatake, S. Ye, and M. Osawa, “Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry,” Electrochem. Commun.4, 973–977 (2002).
    [CrossRef]
  19. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
    [CrossRef]
  20. E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
    [CrossRef]
  21. H. J. Lezee and T. Thio, “Diffraction evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12, 3629–3650 (2004).
    [CrossRef]
  22. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
    [CrossRef]
  23. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical Transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
    [CrossRef]
  24. H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
    [CrossRef] [PubMed]
  25. J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole allays: enhanced absorption, refractive index changes, and all-optical switching,” Adv. Mater.18, 1267–1270 (2006).
    [CrossRef]
  26. N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010).
    [CrossRef]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, 2005).
  28. E. D. Palik, ed., Handbook of Optical Constants of Solids, 3rd ed. (Academic Press, 1998).
  29. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
    [CrossRef] [PubMed]
  30. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
    [CrossRef]
  31. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett.99, 083901 (2007).
    [CrossRef] [PubMed]
  32. E. G. Gamaly, “Optical phenomena on the interface between a conventional dielectric and a uniaxial medium with mixed metal-dielectric properties,” Phys. Rev. E51, 3556–3560 (1995).
    [CrossRef]
  33. L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011).
    [CrossRef]
  34. S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nanogap,” Phys. Status Solidi (RRL)4, 244–246 (2010).
    [CrossRef]
  35. V. Mizeikis, S. Juodkazis, K. Sun, and H. Misawa, “Fabrication of frequency-selective surface structures by femtosecond laser ablation of gold films,” J. Laser Micro/Nanoeng.5, 115–120 (2010).
    [CrossRef]
  36. V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express15, 8454–8464 (2007).
    [CrossRef] [PubMed]
  37. L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi (RRL)5, 175–177 (2011).
    [CrossRef]

2012 (3)

2011 (5)

L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011).
[CrossRef]

A. Roberts and L. Lin, “Substrate and aspect-ratio effects in resonant nanoaperture arrays,” Opt. Mater. Express1, 480–488 (2011).
[CrossRef]

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi (RRL)5, 175–177 (2011).
[CrossRef]

2010 (7)

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010).
[CrossRef]

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
[CrossRef]

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010).
[CrossRef]

S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nanogap,” Phys. Status Solidi (RRL)4, 244–246 (2010).
[CrossRef]

V. Mizeikis, S. Juodkazis, K. Sun, and H. Misawa, “Fabrication of frequency-selective surface structures by femtosecond laser ablation of gold films,” J. Laser Micro/Nanoeng.5, 115–120 (2010).
[CrossRef]

2009 (1)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

2007 (2)

2006 (3)

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole allays: enhanced absorption, refractive index changes, and all-optical switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

F. S. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys.8, 216–224 (2006).
[CrossRef]

2005 (4)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

2004 (2)

H. J. Lezee and T. Thio, “Diffraction evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12, 3629–3650 (2004).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical Transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

2003 (1)

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
[CrossRef]

2002 (1)

H. Miyatake, S. Ye, and M. Osawa, “Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry,” Electrochem. Commun.4, 973–977 (2002).
[CrossRef]

2000 (1)

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

1997 (1)

M. Osawa, “Dynamic process electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRA),” Bull. Chem. Soc. Jpn.70, 2861–2880 (1997).
[CrossRef]

1995 (1)

E. G. Gamaly, “Optical phenomena on the interface between a conventional dielectric and a uniaxial medium with mixed metal-dielectric properties,” Phys. Rev. E51, 3556–3560 (1995).
[CrossRef]

Akiyama, S.

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Apodaca, M. M.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Bauerdick, S.

L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011).
[CrossRef]

Bayvel, P.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett.99, 083901 (2007).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Bishop, K. J. M.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Bolivar, P. H.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
[CrossRef]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Bonod, N.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Dahlin, A.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Davis, T. J.

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano6, 1291–1298 (2012).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical Transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

Devaux, E.

N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010).
[CrossRef]

Dintinger, J.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole allays: enhanced absorption, refractive index changes, and all-optical switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Djaker, N.

N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010).
[CrossRef]

Ebbesen, T. W.

N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole allays: enhanced absorption, refractive index changes, and all-optical switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical Transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Elliott, J.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett.99, 083901 (2007).
[CrossRef] [PubMed]

Enoch, S.

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

Erbe, A.

F. S. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys.8, 216–224 (2006).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

Gamaly, E. G.

E. G. Gamaly, “Optical phenomena on the interface between a conventional dielectric and a uniaxial medium with mixed metal-dielectric properties,” Phys. Rev. E51, 3556–3560 (1995).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Giessen, H.

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano6, 1291–1298 (2012).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

Grzybowski, B. A.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, 2005).

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

Hentschel, M.

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano6, 1291–1298 (2012).
[CrossRef] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Hook, F.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Hosono, E.

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

Hostein, R.

N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010).
[CrossRef]

Ishihara, H.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
[CrossRef]

Itoh, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

Juodkazis, K.

Juodkazis, S.

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
[CrossRef] [PubMed]

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi (RRL)5, 175–177 (2011).
[CrossRef]

L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011).
[CrossRef]

S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nanogap,” Phys. Status Solidi (RRL)4, 244–246 (2010).
[CrossRef]

V. Mizeikis, S. Juodkazis, K. Sun, and H. Misawa, “Fabrication of frequency-selective surface structures by femtosecond laser ablation of gold films,” J. Laser Micro/Nanoeng.5, 115–120 (2010).
[CrossRef]

V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express15, 8454–8464 (2007).
[CrossRef] [PubMed]

Juodkazyte, J.

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Kall, M.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Kitamura, N.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
[CrossRef]

Klajn, R.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Klein, S.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole allays: enhanced absorption, refractive index changes, and all-optical switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

Kowalczyk, B.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Kurz, H.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
[CrossRef]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

F. S. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys.8, 216–224 (2006).
[CrossRef]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Lenne, P. F.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical Transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Lezee, H. J.

Lin, L.

Liu, N.

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano6, 1291–1298 (2012).
[CrossRef] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

Merkt, F. S.

F. S. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys.8, 216–224 (2006).
[CrossRef]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Mikhailov, V.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett.99, 083901 (2007).
[CrossRef] [PubMed]

Misawa, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010).
[CrossRef]

V. Mizeikis, S. Juodkazis, K. Sun, and H. Misawa, “Fabrication of frequency-selective surface structures by femtosecond laser ablation of gold films,” J. Laser Micro/Nanoeng.5, 115–120 (2010).
[CrossRef]

V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express15, 8454–8464 (2007).
[CrossRef] [PubMed]

Miyatake, H.

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

H. Miyatake, S. Ye, and M. Osawa, “Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry,” Electrochem. Commun.4, 973–977 (2002).
[CrossRef]

Mizeikis, V.

L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011).
[CrossRef]

V. Mizeikis, S. Juodkazis, K. Sun, and H. Misawa, “Fabrication of frequency-selective surface structures by femtosecond laser ablation of gold films,” J. Laser Micro/Nanoeng.5, 115–120 (2010).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010).
[CrossRef]

V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express15, 8454–8464 (2007).
[CrossRef] [PubMed]

Mizumoto, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
[CrossRef]

Murakoshi, K.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
[CrossRef]

Nakanishi, H.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Neviere, M.

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

Nishijima, Y.

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
[CrossRef] [PubMed]

Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mater. Express2, 1226–1235 (2012).
[CrossRef]

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010).
[CrossRef]

Nitzan, A.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Nomura, K.

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

Ohta, N.

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

Okada, T.

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

Onishi, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

Osawa, M.

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

H. Miyatake, S. Ye, and M. Osawa, “Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry,” Electrochem. Commun.4, 973–977 (2002).
[CrossRef]

M. Osawa, “Dynamic process electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRA),” Bull. Chem. Soc. Jpn.70, 2861–2880 (1997).
[CrossRef]

Peto, L.

L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

Popov, E.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

Reinisc, R.

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

Rigneault, H.

N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Rivas, J. G.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
[CrossRef]

Roberts, A.

Rosa, L.

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
[CrossRef] [PubMed]

L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011).
[CrossRef]

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi (RRL)5, 175–177 (2011).
[CrossRef]

S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nanogap,” Phys. Status Solidi (RRL)4, 244–246 (2010).
[CrossRef]

Schotsch, C.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
[CrossRef]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Shoji, T.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

Stoddart, J. F.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Sun, K.

L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011).
[CrossRef]

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi (RRL)5, 175–177 (2011).
[CrossRef]

V. Mizeikis, S. Juodkazis, K. Sun, and H. Misawa, “Fabrication of frequency-selective surface structures by femtosecond laser ablation of gold films,” J. Laser Micro/Nanoeng.5, 115–120 (2010).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Sutherland, D. S.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, 2005).

Takabatake, S.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010).
[CrossRef]

Takase, M.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
[CrossRef]

Tarozaite, R.

Thio, T.

H. J. Lezee and T. Thio, “Diffraction evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12, 3629–3650 (2004).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Tretiakov, K. V.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Tsuboi, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
[CrossRef]

Ueno, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010).
[CrossRef]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

Wegner, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Weiss, E. A.

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

Wenger, J.

N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Wurtz, G. A.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett.99, 083901 (2007).
[CrossRef] [PubMed]

Yagi, I.

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical Transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

Ye, S.

H. Miyatake, S. Ye, and M. Osawa, “Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry,” Electrochem. Commun.4, 973–977 (2002).
[CrossRef]

Yokota, Y.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010).
[CrossRef]

Zayats, A. V.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett.99, 083901 (2007).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

ACS Nano (1)

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano6, 1291–1298 (2012).
[CrossRef] [PubMed]

Adv. Mater. (1)

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole allays: enhanced absorption, refractive index changes, and all-optical switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005).
[CrossRef]

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

M. Osawa, “Dynamic process electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRA),” Bull. Chem. Soc. Jpn.70, 2861–2880 (1997).
[CrossRef]

Chem. Lett. (1)

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

Electrochem. Commun. (1)

H. Miyatake, S. Ye, and M. Osawa, “Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry,” Electrochem. Commun.4, 973–977 (2002).
[CrossRef]

J. Chem. Phys. C (1)

L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

V. Mizeikis, S. Juodkazis, K. Sun, and H. Misawa, “Fabrication of frequency-selective surface structures by femtosecond laser ablation of gold films,” J. Laser Micro/Nanoeng.5, 115–120 (2010).
[CrossRef]

J. Phys. Chem. C (1)

N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010).
[CrossRef]

J. Phys. Chem. Lett. (1)

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010).
[CrossRef]

Langmuir (1)

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

Nano Lett. (1)

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Nature (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009).
[CrossRef] [PubMed]

New J. Phys. (1)

F. S. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys.8, 216–224 (2006).
[CrossRef]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical Transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

Opt. Express (3)

Opt. Mater. Express (2)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

Phys. Rev. B (2)

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
[CrossRef]

Phys. Rev. E (1)

E. G. Gamaly, “Optical phenomena on the interface between a conventional dielectric and a uniaxial medium with mixed metal-dielectric properties,” Phys. Rev. E51, 3556–3560 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett.99, 083901 (2007).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi (RRL) (2)

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi (RRL)5, 175–177 (2011).
[CrossRef]

S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nanogap,” Phys. Status Solidi (RRL)4, 244–246 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Science (1)

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, 2005).

E. D. Palik, ed., Handbook of Optical Constants of Solids, 3rd ed. (Academic Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Optical micro-photograph of the fabricated hole array (MHA) in 100-nm-thick silver where hole diameter c = 1.65 μm and period a ≃ 2c = 3.3 μm. (b) Schematic illustration of SEIRA caused by localized plasmonic resonance in the micro hole.

Fig. 2
Fig. 2

(a) Experimental transmission spectra of MHA periodic structures with period a = 2.9 to 3.9 μm (2.9 μm (1), 3.1 (2), 3.3 (3), 3.5 (4), 3.6 (5), 3.9 (6) and c = a/2 diameter holes; thickness of Ag d = 100 nm. Markers show the peak positions of the mode-I (circle) and mode-II (square) transmission maxima; the extinction dip (minima) on the left-side from the peaks is traced by dashed lines. The transmission min-max span is indicated by arrows. Transmission is normalized for better comparison between different samples since the maximum is only 7– 15% transmission in terms of the absolute value. (b) Position of the transmission peak of modes-I,II vs the period c. The linear fit by Eq. (2) is shown by line λmax = 3.466a for the major peak i = 1; j = 0 and i = 0; j = 1 (mode-II) and λ max = 3.466 a / 2 for the minor peak i = 1; j = 1 (mode-I).

Fig. 3
Fig. 3

Surface enhanced infrared absorption (SEIRA) spectra of azobenzene dye on the MHA (a = 2.9 μm, d = 100 nm, upper row) and on the Ag film (lower row). The baseline of the spectra was strongly modified by the transmission spectra of MHA, hence, only the IR absorption from azobenzene is shown; spectra are collated from measurement over three different spectral windows.

Fig. 4
Fig. 4

Experiment: SEIRA enhancement spectrum on a MHA substrate with period from a = 2.9 to 3.9 μm and hole diameter ca/2 = 1.45 to 1.95 μm (from bottom upwards, same periods as in Fig. 2), Ag thickness d = 100 nm) normalized to the absorption on an unstructured Ag film. The shaded regions show the width of the transmission minimum and the maximum span according to Fig. 2(a); marked by arrows on the top.

Fig. 5
Fig. 5

SEIRA enhancement on MHA with a = 2.9 μm period and different thickness of Ag film d = 30, 50 and 100 nm.

Fig. 6
Fig. 6

Numerical simulations. (a) Cross-sections for period = 3.7 μm (hole diameter = 1.85 μm). The TFSF source encompasses 25 holes (5 × 5 lattice periods) and its total-field region indicated by the pink square in (b,c). The geometrical cross-section of one hole is 2.688 μm2, for 25 holes it is 67.2 μm2. The geometrical cross-section of the metal surface minus the holes is 275.05 μm2. The markers indicate the maximum field enhancement wavelengths for the three resonant modes, and the colored bars show the bandwidth extension between the min transmission (max extinction) and max transmission (max field enhancement) wavelengths. Mode-II: (b) xz-plane |E|2 enhancement log-plot, revealing the thin enhancement layers in the total-field region and the x-directed long-range plasmon coupling in the scattered-field region; (c) xy-plane |E|2 enhancement log-plot showing metal interface distributions on Si-side (left half of the panel, max enhancement = 32) and Air-side (right half of the panel, max enhancement = 11). The scale has been restricted in the log-plots to mitigate color blooming.

Fig. 7
Fig. 7

Summary of the 3D-FDTD calculations for the extinction maximum peak wavelength in wavenumbers cm−1 (a) and |E|2 enhancement factors at the top air-Ag (b) and interface Si-Ag (c) planes. These extinction peaks are related to the transmission modes I, II, and III in correspondence with Figs. 2 and 4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E total = E inc + E scat ; H total = H inc + H scat .
λ max = a i 2 + j 2 ε 1 ε 2 ε 1 + ε 2 ,

Metrics