Abstract

Effects of multiple drawing operations on As38Se62 and Ge10As22Se68 chalcogenide microstructured optical fibers (MOF) are investigated. Fabrication of small-core single-mode chalcogenide MOF’s with 3 rings of holes necessitates a two-step drawing operation which may conduct to additional optical losses, as compared to single-step processes. Thus, glasses with high stability against crystallization are required. With this respect, Ge10As22Se68 single-mode microstructured optical were obtained with optical losses equal to 1 dB/m at 1.55 µm and lower than 1 dB/m at 3.0µm. Core diameter is as small as 4-6 µm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
    [CrossRef]
  2. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly Nonlinear Ge-As-Se and Ge-As-S-Se Glasses for All-Optical Switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
    [CrossRef]
  3. P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express15(19), 12529–12538 (2007).
    [CrossRef] [PubMed]
  4. L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express13(19), 7637–7644 (2005).
    [CrossRef] [PubMed]
  5. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
    [CrossRef] [PubMed]
  6. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8(6), 2148–2155 (2006).
  7. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett.33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  8. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “Small-core As-Se fiber for Raman amplification,” Opt. Lett.28(16), 1406–1408 (2003).
    [CrossRef] [PubMed]
  9. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
    [CrossRef] [PubMed]
  10. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express16(22), 18524–18534 (2008).
    [CrossRef] [PubMed]
  11. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, “Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient,” Opt. Express14(17), 7924–7930 (2006).
    [CrossRef] [PubMed]
  12. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B21(6), 1146–1155 (2004).
    [CrossRef]
  13. J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt.28(23), 5122–5127 (1989).
    [CrossRef] [PubMed]
  14. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  15. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica Glasses for Holey Fibers,” J. Lightwave Technol.23(6), 2046–2054 (2005).
    [CrossRef]
  16. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
    [CrossRef]
  17. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
    [CrossRef] [PubMed]
  18. J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
    [CrossRef]
  19. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt.47(32), 6014–6021 (2008).
    [CrossRef] [PubMed]
  20. L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
    [CrossRef]
  21. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
    [CrossRef] [PubMed]
  22. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express19(26), B653–B660 (2011).
    [CrossRef] [PubMed]
  23. M. D. Nguyen, S. D. Le, L. Brilland, Q. Coulombier, J. Troles, D. Méchin, T. Chartier, and M. Thual, “Demonstration of a low loss and ultra highly nonlinear AsSe suspended core chalcogenide fiber,” in ECOC (Torino, 2010), pp. 1–3.
  24. D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikàty40(2), 55–59 (1996).
  25. W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids181(3), 231–237 (1995).
    [CrossRef]
  26. I. D. Aggarwal, P. C. Pureza, F. H. Kung, J. S. Sanghera, and V. Q. Nguyen, “Very large temperature-induced absorptive loss in high Te-containing chalcogenide fibers,” J. Lightwave Technol.18(10), 1395–1401 (2000).
    [CrossRef]
  27. V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, and I. D. Aggarwal, “Effect of heating on the optical loss in the As-Se glass fiber,” J. Lightwave Technol.21(1), 122–126 (2003).
    [CrossRef]
  28. V. Q. Nguyen, J. S. Sanghera, F. H. Kung, I. D. Aggarwal, and I. K. Lloyd, “Effect of temperature on the absorption loss of chalcogenide glass fibers,” Appl. Opt.38(15), 3206–3213 (1999).
    [CrossRef] [PubMed]
  29. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater.45(13), 1439–1460 (2009).
    [CrossRef]
  30. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008).
    [CrossRef] [PubMed]
  31. S. D. Le and D. M. Nguyen, “42.7 Gbit/s RZ-33% Wavelength Conversion in a Chalcogenide Microstructured Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh4H.4.
  32. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B19(10), 2322–2330 (2002).
    [CrossRef]
  33. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B19(10), 2331–2340 (2002).
    [CrossRef]

2011 (2)

2010 (2)

2009 (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

2008 (5)

2007 (1)

2006 (4)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8(6), 2148–2155 (2006).

O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, “Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient,” Opt. Express14(17), 7924–7930 (2006).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

2005 (2)

2004 (1)

2003 (2)

2002 (3)

2000 (2)

1999 (1)

1996 (2)

D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikàty40(2), 55–59 (1996).

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

1995 (1)

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids181(3), 231–237 (1995).
[CrossRef]

1989 (1)

1965 (1)

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
[CrossRef]

Adam, J.-L.

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt.47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8(6), 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8(6), 2148–2155 (2006).

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B21(6), 1146–1155 (2004).
[CrossRef]

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, and I. D. Aggarwal, “Effect of heating on the optical loss in the As-Se glass fiber,” J. Lightwave Technol.21(1), 122–126 (2003).
[CrossRef]

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “Small-core As-Se fiber for Raman amplification,” Opt. Lett.28(16), 1406–1408 (2003).
[CrossRef] [PubMed]

I. D. Aggarwal, P. C. Pureza, F. H. Kung, J. S. Sanghera, and V. Q. Nguyen, “Very large temperature-induced absorptive loss in high Te-containing chalcogenide fibers,” J. Lightwave Technol.18(10), 1395–1401 (2000).
[CrossRef]

V. Q. Nguyen, J. S. Sanghera, F. H. Kung, I. D. Aggarwal, and I. K. Lloyd, “Effect of temperature on the absorption loss of chalcogenide glass fibers,” Appl. Opt.38(15), 3206–3213 (1999).
[CrossRef] [PubMed]

Aitken, B. G.

Atkin, D. M.

Birks, T. A.

Bosc, D.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

Botten, L. C.

Bourdon, P.

Boussard-Plédel, C.

Bramerie, L.

Brawley, G.

Brilland, L.

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express19(26), B653–B660 (2011).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt.47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Bureau, B.

Canat, G.

Chartier, T.

Cheng, L. K.

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Clare, A. G.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids181(3), 231–237 (1995).
[CrossRef]

Costa e Silva, M.

Coulombier, Q.

Currie, S. C.

de Sterke, C. M.

Desevedavy, F.

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

Désévédavy, F.

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Duhant, M.

Eggleton, B.

Eggleton, B. J.

El-Amraoui, M.

Faber, A. J.

Fatome, J.

Feng, X.

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8(6), 2148–2155 (2006).

Fortier, C.

Freeman, M. J.

Fu, L.

Gadret, G.

Gay, M.

Gielesen, W. L. M.

Gurovic, J.

D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikàty40(2), 55–59 (1996).

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly Nonlinear Ge-As-Se and Ge-As-S-Se Glasses for All-Optical Switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

Hewak, D. W.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica Glasses for Holey Fibers,” J. Lightwave Technol.23(6), 2046–2054 (2005).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Hodelin, J.

Houizot, P.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly Nonlinear Ge-As-Se and Ge-As-S-Se Glasses for All-Optical Switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

Islam, M. N.

Jouan, T.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

Jules, J. C.

Kibler, B.

King, W. A.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids181(3), 231–237 (1995).
[CrossRef]

Knight, J. C.

Kuditcher, A.

Kuhlmey, B. T.

Kulkarni, O. P.

Kumar, M.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8(6), 2148–2155 (2006).

Kung, F. H.

Lacourse, W. C.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids181(3), 231–237 (1995).
[CrossRef]

Lamont, M. R. E.

Le, S. D.

Le Person, J.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

Lee, D. J.

Lenglé, K.

Lenz, G.

Lezal, D.

D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikàty40(2), 55–59 (1996).

Lloyd, I. K.

Lucas, J.

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Mairaj, A. K.

Maystre, D.

McCarthy, J. E.

McPhedran, R. C.

Méchin, D.

Messaddeq, Y.

Monro, T. M.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica Glasses for Holey Fibers,” J. Lightwave Technol.23(6), 2046–2054 (2005).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Monteville, A.

Moss, D.

Moss, D. J.

N’guyen, T. N.

Nguyen, D. M.

Nguyen, T.

Nguyen, T. N.

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

Nguyen, V. Q.

Nielsen, S.

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
[CrossRef]

Nishii, J.

Nolan, D. A.

Orain, H.

Pain, T.

Pedlikova, J.

D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikàty40(2), 55–59 (1996).

Pereira do Carmo, J.

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Polacchini, C. F.

Powley, M. L.

Prasad, A.

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8(6), 2148–2155 (2006).

Pureza, P. C.

Renard, W.

Renversez, G.

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt.47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B19(10), 2331–2340 (2002).
[CrossRef]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B19(10), 2322–2330 (2002).
[CrossRef]

Richardson, D. J.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Rochette, M.

Roelens, M. A. F.

Russell, P. S. J.

Sanghera, J.

Sanghera, J. S.

Sangleboeuf, J.-C.

Savage, J. A.

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
[CrossRef]

Shaw, L. B.

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Skripatchev, I.

Slusher, R. E.

Smektala, F.

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt.47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

Smith, A.

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Szpulak, M.

Ta’eed, V.

Terry, F. L.

Thielen, P. A.

Thual, M.

Toupin, P.

Traynor, N.

Troles, J.

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express19(26), B653–B660 (2011).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt.47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Trolès, J.

Tuniz, A.

Van Nijnatten, P. A.

Vogt, R.

D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikàty40(2), 55–59 (1996).

Wang, R.-P.

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

White, T. P.

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly Nonlinear Ge-As-Se and Ge-As-S-Se Glasses for All-Optical Switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

Xia, C.

Yamagishi, T.

Yamashita, T.

Yeom, D.-I.

Zha, C.-J.

Appl. Opt. (3)

Ceramics-Silikàty (1)

D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikàty40(2), 55–59 (1996).

Electron. Lett. (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly Nonlinear Ge-As-Se and Ge-As-S-Se Glasses for All-Optical Switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

Infrared Phys. (1)

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
[CrossRef]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids181(3), 231–237 (1995).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8(6), 2148–2155 (2006).

Mater. Res. Bull. (1)

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

Opt. Express (9)

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express19(26), B653–B660 (2011).
[CrossRef] [PubMed]

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express15(19), 12529–12538 (2007).
[CrossRef] [PubMed]

L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express13(19), 7637–7644 (2005).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express16(22), 18524–18534 (2008).
[CrossRef] [PubMed]

O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, “Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient,” Opt. Express14(17), 7924–7930 (2006).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (2)

S. D. Le and D. M. Nguyen, “42.7 Gbit/s RZ-33% Wavelength Conversion in a Chalcogenide Microstructured Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh4H.4.

M. D. Nguyen, S. D. Le, L. Brilland, Q. Coulombier, J. Troles, D. Méchin, T. Chartier, and M. Thual, “Demonstration of a low loss and ultra highly nonlinear AsSe suspended core chalcogenide fiber,” in ECOC (Torino, 2010), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Attenuation curves of AsSe and GeAsSe single-index fibers.

Fig. 2
Fig. 2

Experimental setup for measuring heating effects on chalcogenide fiber optical transmission.

Fig. 3
Fig. 3

Effect of temperature on a) an AsSe single glass fiber b) a GeAsSe single glass fiber.

Fig. 4
Fig. 4

SEM micrographs of the GeAsSe small-core fiber at two different scales. Fiber diameter = 125 µm, core diameter = 4 µm, d/Λ = 0.4.

Fig. 5
Fig. 5

Near field observation of the 1.55-µm beam at the output of the small-core Ge-As-Se microstructured fiber.The experimental profile (black curve) fits a Gaussian curve (red curve).

Fig. 6
Fig. 6

Material losses of the GeAsSe glass (black curve) and attenuation of the GeAsSe small core microstructured fiber (grey curve). Picture: cross-section of the MOF used for this measurement.

Tables (1)

Tables Icon

Table 1 Characteristic Geometries of Small-Core Ge-As-Se Microstructured Fibers

Metrics