Abstract

We report on the luminescence properties of bismuth-germanate glasses in which the speciation of bismuth is controlled via addition of CeO2 as an oxidant. A glass system with the composition (70.5-x)GeO2 – 24.5Bi2O3 – 5WO3: xCeO2, with x = 0...2.0, is analyzed in terms of optical properties and redox states of bismuth and cerium. We show that optical transmission and luminescence in the visible to near-infrared (NIR) spectral range can be adjusted by the ratio of bismuth and cerium. Specifically, ultra-broad NIR luminescence spanning the range of 1000 – 1600 nm can be obtained for x ≤ 0.1. This is of particular interest for application of this type of glass in fiber-optical amplifiers where no additional dopants would be required.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1(1), 74–86 (2010).
    [CrossRef]
  2. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
    [CrossRef] [PubMed]
  3. J. Lucas, “Infrared fibers,” Infrared Phys.25(1-2), 277–281 (1985).
    [CrossRef]
  4. W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc.75(9), 2315–2326 (1992).
    [CrossRef]
  5. D. L. Wood, K. Nassau, and D. L. Chadwick, “Optical properties of new oxide glasses with potential for long-wavelength optical fibers,” Appl. Opt.21(23), 4276–4279 (1982).
    [CrossRef] [PubMed]
  6. S. S. Rojas, J. E. De Souza, M. R. B. Andreeta, and A. C. Hernandes, “Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses,” J. Non-Cryst. Solids356(52-54), 2942–2946 (2010).
    [CrossRef]
  7. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  8. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
    [CrossRef] [PubMed]
  9. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
    [CrossRef] [PubMed]
  10. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
    [CrossRef]
  11. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012).
    [CrossRef] [PubMed]
  12. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
    [CrossRef]
  13. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008).
    [CrossRef] [PubMed]
  14. K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Z. Yue, L. Wondraczek, communicated to J. Non-Cryst. Solids (2012).
  15. W. A. Weyl, Coloured Glasses, 5th ed. (Sheffield: Society of Glass Technology, 1999).
  16. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
    [CrossRef] [PubMed]
  17. X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
    [CrossRef]
  18. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
    [CrossRef]
  19. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
    [CrossRef]
  20. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
    [CrossRef]
  21. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]
  22. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
    [CrossRef] [PubMed]
  23. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
    [CrossRef]
  24. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
    [CrossRef]
  25. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express13(5), 1635–1642 (2005).
    [CrossRef] [PubMed]
  26. S. Khonthon, S. Murimoto, Y. Arai, and Y. Ohishi, “Near infrared luminescence from Bi-doped soda lime silicate glasses,” Suranaree J. Sci. Technol.14, 141–146 (2007).
  27. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  28. W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).
  29. J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990).
    [CrossRef]
  30. T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to thermal properties and electronic polarizability from average single bond strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem.183(12), 3078–3085 (2010).
    [CrossRef]
  31. V. Dimitrov and T. Komatsu, “Average single bond strength and optical basicity of Na2O-GeO2 glasses,” J. Ceram. Soc. Jpn.117(1370), 1105–1111 (2009).
    [CrossRef]
  32. V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Technol. Metall.45, 219–250 (2010).
  33. H. Bach, F. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes (Springer, 2001), p. 293.
  34. G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
    [CrossRef]
  35. N. Haage, K. H. Hellwege, J. Jäger, and G. Schaack, “Absorptionsspektrum des Ce3+-ions und Schwingungsspektrum im CeCl3·7H2O und CeCl3·7D2O,” Phys. Kondens. Mater.10, 144–151 (1969).
  36. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
    [CrossRef]
  37. H. You, T. Hayakawa, and M. Nogami, “Upconversion luminescence of Al2O3–SiO2:Ce3+ glass by femtosecond laser irradiation,” Appl. Phys. Lett.85(16), 3432–3434 (2004).
    [CrossRef]
  38. O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,” J. Mol. Spectrosc.190(1), 28–77 (1998).
    [CrossRef] [PubMed]
  39. L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. G. Xia, and J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB2O4 single crystals,” Opt. Lett.34(16), 2504–2506 (2009).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

2010 (7)

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Technol. Metall.45, 219–250 (2010).

T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to thermal properties and electronic polarizability from average single bond strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem.183(12), 3078–3085 (2010).
[CrossRef]

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1(1), 74–86 (2010).
[CrossRef]

S. S. Rojas, J. E. De Souza, M. R. B. Andreeta, and A. C. Hernandes, “Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses,” J. Non-Cryst. Solids356(52-54), 2942–2946 (2010).
[CrossRef]

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

2009 (8)

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

V. Dimitrov and T. Komatsu, “Average single bond strength and optical basicity of Na2O-GeO2 glasses,” J. Ceram. Soc. Jpn.117(1370), 1105–1111 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. G. Xia, and J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB2O4 single crystals,” Opt. Lett.34(16), 2504–2506 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

2008 (3)

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

2007 (2)

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

S. Khonthon, S. Murimoto, Y. Arai, and Y. Ohishi, “Near infrared luminescence from Bi-doped soda lime silicate glasses,” Suranaree J. Sci. Technol.14, 141–146 (2007).

2005 (2)

2004 (1)

H. You, T. Hayakawa, and M. Nogami, “Upconversion luminescence of Al2O3–SiO2:Ce3+ glass by femtosecond laser irradiation,” Appl. Phys. Lett.85(16), 3432–3434 (2004).
[CrossRef]

2003 (1)

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

2001 (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

1999 (1)

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

1998 (1)

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,” J. Mol. Spectrosc.190(1), 28–77 (1998).
[CrossRef] [PubMed]

1992 (1)

W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc.75(9), 2315–2326 (1992).
[CrossRef]

1990 (1)

J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990).
[CrossRef]

1985 (1)

J. Lucas, “Infrared fibers,” Infrared Phys.25(1-2), 277–281 (1985).
[CrossRef]

1982 (1)

1969 (1)

N. Haage, K. H. Hellwege, J. Jäger, and G. Schaack, “Absorptionsspektrum des Ce3+-ions und Schwingungsspektrum im CeCl3·7H2O und CeCl3·7D2O,” Phys. Kondens. Mater.10, 144–151 (1969).

Aka, G.

J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990).
[CrossRef]

Akada, T.

Andreeta, M. R. B.

S. S. Rojas, J. E. De Souza, M. R. B. Andreeta, and A. C. Hernandes, “Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses,” J. Non-Cryst. Solids356(52-54), 2942–2946 (2010).
[CrossRef]

Arai, Y.

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

S. Khonthon, S. Murimoto, Y. Arai, and Y. Ohishi, “Near infrared luminescence from Bi-doped soda lime silicate glasses,” Suranaree J. Sci. Technol.14, 141–146 (2007).

Baccaro, S.

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

Barrie, J. D.

J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990).
[CrossRef]

Breidohr, R.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,” J. Mol. Spectrosc.190(1), 28–77 (1998).
[CrossRef] [PubMed]

Cao, R.

Cecilia, A.

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

Chadwick, D. L.

Chen, D.

Chen, D. P.

Chen, G.

W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

Da, N.

W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

De Souza, J. E.

S. S. Rojas, J. E. De Souza, M. R. B. Andreeta, and A. C. Hernandes, “Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses,” J. Non-Cryst. Solids356(52-54), 2942–2946 (2010).
[CrossRef]

Demes, H.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,” J. Mol. Spectrosc.190(1), 28–77 (1998).
[CrossRef] [PubMed]

Dianov, E.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Dianov, E. M.

Dimitrov, V.

T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to thermal properties and electronic polarizability from average single bond strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem.183(12), 3078–3085 (2010).
[CrossRef]

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Technol. Metall.45, 219–250 (2010).

V. Dimitrov and T. Komatsu, “Average single bond strength and optical basicity of Na2O-GeO2 glasses,” J. Ceram. Soc. Jpn.117(1370), 1105–1111 (2009).
[CrossRef]

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Du, Y.

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

Dumbaugh, W. H.

W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc.75(9), 2315–2326 (1992).
[CrossRef]

Dunn, B.

J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990).
[CrossRef]

Dvoyrin, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Fink, E. H.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,” J. Mol. Spectrosc.190(1), 28–77 (1998).
[CrossRef] [PubMed]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Fujita, H.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Gourier, D.

J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990).
[CrossRef]

Haage, N.

N. Haage, K. H. Hellwege, J. Jäger, and G. Schaack, “Absorptionsspektrum des Ce3+-ions und Schwingungsspektrum im CeCl3·7H2O und CeCl3·7D2O,” Phys. Kondens. Mater.10, 144–151 (1969).

Hao, J.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Hayakawa, T.

H. You, T. Hayakawa, and M. Nogami, “Upconversion luminescence of Al2O3–SiO2:Ce3+ glass by femtosecond laser irradiation,” Appl. Phys. Lett.85(16), 3432–3434 (2004).
[CrossRef]

Hellwege, K. H.

N. Haage, K. H. Hellwege, J. Jäger, and G. Schaack, “Absorptionsspektrum des Ce3+-ions und Schwingungsspektrum im CeCl3·7H2O und CeCl3·7D2O,” Phys. Kondens. Mater.10, 144–151 (1969).

Hernandes, A. C.

S. S. Rojas, J. E. De Souza, M. R. B. Andreeta, and A. C. Hernandes, “Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses,” J. Non-Cryst. Solids356(52-54), 2942–2946 (2010).
[CrossRef]

Hewak, D. W.

Hirao, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1(1), 74–86 (2010).
[CrossRef]

Honma, T.

T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to thermal properties and electronic polarizability from average single bond strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem.183(12), 3078–3085 (2010).
[CrossRef]

Hughes, M. A.

Inoue, T.

T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to thermal properties and electronic polarizability from average single bond strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem.183(12), 3078–3085 (2010).
[CrossRef]

Jäger, J.

N. Haage, K. H. Hellwege, J. Jäger, and G. Schaack, “Absorptionsspektrum des Ce3+-ions und Schwingungsspektrum im CeCl3·7H2O und CeCl3·7D2O,” Phys. Kondens. Mater.10, 144–151 (1969).

Jha, A.

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

Jiang, N.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Jiang, X.

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

Jiang, X. W.

Kanabe, T.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Khonthon, S.

S. Khonthon, S. Murimoto, Y. Arai, and Y. Ohishi, “Near infrared luminescence from Bi-doped soda lime silicate glasses,” Suranaree J. Sci. Technol.14, 141–146 (2007).

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

Komatsu, T.

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Technol. Metall.45, 219–250 (2010).

T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to thermal properties and electronic polarizability from average single bond strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem.183(12), 3078–3085 (2010).
[CrossRef]

V. Dimitrov and T. Komatsu, “Average single bond strength and optical basicity of Na2O-GeO2 glasses,” J. Ceram. Soc. Jpn.117(1370), 1105–1111 (2009).
[CrossRef]

Krol, D.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1(1), 74–86 (2010).
[CrossRef]

Krolikowski, S.

Lakshminarayana, G.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Lapp, J. C.

W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc.75(9), 2315–2326 (1992).
[CrossRef]

Li, H.

Lucas, J.

J. Lucas, “Infrared fibers,” Infrared Phys.25(1-2), 277–281 (1985).
[CrossRef]

Mashinsky, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Meng, X.

Meng, X. G.

Momoda, L. A.

J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990).
[CrossRef]

Montecchi, M.

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

Morimoto, S.

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

Murata, K.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Murimoto, S.

S. Khonthon, S. Murimoto, Y. Arai, and Y. Ohishi, “Near infrared luminescence from Bi-doped soda lime silicate glasses,” Suranaree J. Sci. Technol.14, 141–146 (2007).

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Nassau, K.

Nie, J.

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

Nogami, M.

H. You, T. Hayakawa, and M. Nogami, “Upconversion luminescence of Al2O3–SiO2:Ce3+ glass by femtosecond laser irradiation,” Appl. Phys. Lett.85(16), 3432–3434 (2004).
[CrossRef]

Ohishi, Y.

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

S. Khonthon, S. Murimoto, Y. Arai, and Y. Ohishi, “Near infrared luminescence from Bi-doped soda lime silicate glasses,” Suranaree J. Sci. Technol.14, 141–146 (2007).

Peng, M.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Peng, M. Y.

Plotnichenko, V. G.

Qiu, J.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Qiu, J. R.

Ren, J.

W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).

Richardson, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1(1), 74–86 (2010).
[CrossRef]

Rojas, S. S.

S. S. Rojas, J. E. De Souza, M. R. B. Andreeta, and A. C. Hernandes, “Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses,” J. Non-Cryst. Solids356(52-54), 2942–2946 (2010).
[CrossRef]

Schaack, G.

N. Haage, K. H. Hellwege, J. Jäger, and G. Schaack, “Absorptionsspektrum des Ce3+-ions und Schwingungsspektrum im CeCl3·7H2O und CeCl3·7D2O,” Phys. Kondens. Mater.10, 144–151 (1969).

Schmidt, M. A.

Schwefel, H. G.

Setzer, K. D.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,” J. Mol. Spectrosc.190(1), 28–77 (1998).
[CrossRef] [PubMed]

Shestakov, O.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,” J. Mol. Spectrosc.190(1), 28–77 (1998).
[CrossRef] [PubMed]

Sokolov, V. O.

Sprenger, B.

Stiegelschmitt, A.

Su, L.

Suzuki, T.

Vivien, D.

J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990).
[CrossRef]

Wang, S.

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

Wang, W.

W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).

Wondraczek, L.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

Wood, D. L.

Wu, F.

Xia, H. G.

Xu, J.

Yan, Q.

W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).

Yang, H.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Yang, Y.

Yang, Z.

Ye, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

You, H.

H. You, T. Hayakawa, and M. Nogami, “Upconversion luminescence of Al2O3–SiO2:Ce3+ glass by femtosecond laser irradiation,” Appl. Phys. Lett.85(16), 3432–3434 (2004).
[CrossRef]

Yu, J.

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

Zhang, Q.

Zhang, Y.

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

Zhao, Q.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

Zhao, Q. Z.

Zheng, L.

Zhou, P.

Zhou, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhu, B.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhu, C.

Zhu, C. S.

Zollfrank, C.

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. You, T. Hayakawa, and M. Nogami, “Upconversion luminescence of Al2O3–SiO2:Ce3+ glass by femtosecond laser irradiation,” Appl. Phys. Lett.85(16), 3432–3434 (2004).
[CrossRef]

Fusion Eng. Des. (1)

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Infrared Phys. (1)

J. Lucas, “Infrared fibers,” Infrared Phys.25(1-2), 277–281 (1985).
[CrossRef]

Int. J. Appl. Glass Sci. (1)

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1(1), 74–86 (2010).
[CrossRef]

J. Am. Ceram. Soc. (2)

W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc.75(9), 2315–2326 (1992).
[CrossRef]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

J. Ceram. Soc. Jpn. (2)

V. Dimitrov and T. Komatsu, “Average single bond strength and optical basicity of Na2O-GeO2 glasses,” J. Ceram. Soc. Jpn.117(1370), 1105–1111 (2009).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

J. Mater. Chem. (1)

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

J. Mol. Spectrosc. (1)

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,” J. Mol. Spectrosc.190(1), 28–77 (1998).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (3)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003).
[CrossRef]

S. S. Rojas, J. E. De Souza, M. R. B. Andreeta, and A. C. Hernandes, “Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses,” J. Non-Cryst. Solids356(52-54), 2942–2946 (2010).
[CrossRef]

J. Phys. Condens. Matter (1)

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

J. Solid State Chem. (2)

J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990).
[CrossRef]

T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to thermal properties and electronic polarizability from average single bond strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem.183(12), 3078–3085 (2010).
[CrossRef]

J. Univ. Chem. Technol. Metall. (1)

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Technol. Metall.45, 219–250 (2010).

Jpn. J. Appl. Phys. (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Opt. Mater. (1)

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B (1)

W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).

Phys. Kondens. Mater. (1)

N. Haage, K. H. Hellwege, J. Jäger, and G. Schaack, “Absorptionsspektrum des Ce3+-ions und Schwingungsspektrum im CeCl3·7H2O und CeCl3·7D2O,” Phys. Kondens. Mater.10, 144–151 (1969).

Suranaree J. Sci. Technol. (1)

S. Khonthon, S. Murimoto, Y. Arai, and Y. Ohishi, “Near infrared luminescence from Bi-doped soda lime silicate glasses,” Suranaree J. Sci. Technol.14, 141–146 (2007).

Other (3)

H. Bach, F. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes (Springer, 2001), p. 293.

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Z. Yue, L. Wondraczek, communicated to J. Non-Cryst. Solids (2012).

W. A. Weyl, Coloured Glasses, 5th ed. (Sheffield: Society of Glass Technology, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photograph of (mol%) (70.5-x)GeO2 – 24.5Bi2O3 – 5WO3: xCeO2 glass samples for varying x (a) and corresponding optical absorption spectra (b). The photograph was taken under ambient illumination.

Fig. 2
Fig. 2

FTIR absorption spectra of (mol.%) (70.5-x)GeO2 – 24.5Bi2O3 – 5WO3: xCeO2 glass samples for varying x (a), and integrated area of the 2.5 - 5.2 μm absorption band, corrected by the absorption spectrum of the undoped sample (b). Labels in (a) indicate absorption bands of Ce3+ and OH- groups. The inset of (b) shows the spectra after subtraction of the absorption spectrum of the undoped sample, assuming that residual absorption originates solely from Ce3+.

Fig. 3
Fig. 3

Luminescence spectra of (mol.%) (70.5-x)GeO2 – 24.5Bi2O3 – 5WO3: xCeO2 glass samples for varying x at an excitation wavelength of 368 nm (a) and 500 nm (b), respectively.

Fig. 4
Fig. 4

Simplified energy level diagram for Bi2+ (left) and Bi+ (right). The arrows indicate potential excitation and relaxation paths.

Fig. 5
Fig. 5

Exemplary decay spectra of the 70.5GeO2 – 24.5Bi2O3 – 5WO3. The solid line represents the best fit of the data to a double exponential function, Eq. (2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2C e 4+ +B i +  2C e 3+ +B i 3+ ,
log K c =2log [C e 3+ ] [C e 4+ ] log [B i + ] [B i 3+ ] .
I( t )=A+ B 1 exp( t τ 1 )+  B 2  exp( t τ 2 ),

Metrics