Abstract

Optically stimulated luminescence has been demonstrated within a fluoride phosphate glass optical fibre. These fibres have been used as the basis of a novel dosimeter architecture whereby the optical fibre acts as both the sensing and light guiding component. Fibres were fabricated from a commercially acquired glass and irradiated using a 90Sr/90Y source. Following optical stimulation with a 532 nm laser, optically stimulated luminescence of 483 ± 18 cnts/g/μJ was detected. In addition to OSL, scintillation of 6155 ± 78 cnts/s was also measured. A linear response between 0.16 – 2 Gy of irradiation was measured, after which the intensity was observed to plateau. These results indicate the potential suitability of fluoride phosphate optical fibres for radiation sensing applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
    [CrossRef]
  2. S. O’Keeffe, C. Fitzpatrick, E. Lewis, and A. I. Al-Shamma’a, “A review of optical fibre radiation dosimeters,” Sens. Rev. 28, 136–142 (2008).
    [CrossRef]
  3. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
  4. J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3 fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).
  5. J. A. Tanyi, K. D. Nitzling, C. J. Lodwick, A. L. Huston, and B. L. Justus, “Characterisation of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry,” Med. Phys. 38, 961–967 (2011).
    [CrossRef] [PubMed]
  6. C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3 : C: influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
    [CrossRef]
  7. M. J. Marrone, “Radiation-induced luminescence in silica core optical fibers,” Appl. Phys. Lett. 38, 115–117 (1981).
    [CrossRef]
  8. B. D. Evans, G. H. Sigel, L. B. Langworthy, and B. J. Faraday, “The fiber optic dosimeter on the Navigational Technology Satellite 2,” IEEE Trans. Nucl. Sci. 25, 1619–1624 (1978).
    [CrossRef]
  9. A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
    [CrossRef]
  10. A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
    [CrossRef]
  11. M. G. Stabin, Radiation Protection and Dosimetry (Springer, 2008).
  12. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
  13. C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
    [CrossRef]
  14. M. J. Aitken, An Introduction to Optical Dating (Oxford Science Publications, 1998).
  15. L. Bøtter-Jensen, S. W. S. McKeever, and A. G. Wintle, Optically Stimulated Luminescence Dosimetry (Elsiver Science B. V., 2003).
  16. “Schott optical glass data sheet,” www.schott.com/advanced_optics/english/download/schott_optical_glass_pocket_catalogue_may_2011_en.pdf (2011).
  17. H. Ebendorff-Heidepriem and T. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
    [CrossRef] [PubMed]
  18. A. R. Beierholm, C. E. Andersen, L. R. Lindvold, F. Kjær-Kristoffersen, and J. Medin, “A comparison of BCF-12 organic scintillators and Al2O3 : C crystals for real-time medical dosimetry,” Radiat. Meas. 43, 898–903 (2008).
    [CrossRef]
  19. R. Chen, V. Pagonis, and J. L. Lawless, “The nonmonotonic dose dependence of optically stimulated luminescence in Al2O3 : C: analytical and numerical simulation results,” J. Appl. Phys. 99, 033511 (2006).
    [CrossRef]
  20. V. Pagonis, R. Chen, and J. L. Lawless, “Nonmonotonic dose dependence of OSL intensity due to competition during irradiation and readout,” Radiat. Meas. 41, 903–909 (2006).
    [CrossRef]

2011 (3)

J. A. Tanyi, K. D. Nitzling, C. J. Lodwick, A. L. Huston, and B. L. Justus, “Characterisation of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry,” Med. Phys. 38, 961–967 (2011).
[CrossRef] [PubMed]

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[CrossRef]

2010 (1)

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3 : C: influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[CrossRef]

2008 (3)

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

S. O’Keeffe, C. Fitzpatrick, E. Lewis, and A. I. Al-Shamma’a, “A review of optical fibre radiation dosimeters,” Sens. Rev. 28, 136–142 (2008).
[CrossRef]

A. R. Beierholm, C. E. Andersen, L. R. Lindvold, F. Kjær-Kristoffersen, and J. Medin, “A comparison of BCF-12 organic scintillators and Al2O3 : C crystals for real-time medical dosimetry,” Radiat. Meas. 43, 898–903 (2008).
[CrossRef]

2007 (1)

2006 (2)

R. Chen, V. Pagonis, and J. L. Lawless, “The nonmonotonic dose dependence of optically stimulated luminescence in Al2O3 : C: analytical and numerical simulation results,” J. Appl. Phys. 99, 033511 (2006).
[CrossRef]

V. Pagonis, R. Chen, and J. L. Lawless, “Nonmonotonic dose dependence of OSL intensity due to competition during irradiation and readout,” Radiat. Meas. 41, 903–909 (2006).
[CrossRef]

2002 (3)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3 fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

2001 (1)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

1981 (1)

M. J. Marrone, “Radiation-induced luminescence in silica core optical fibers,” Appl. Phys. Lett. 38, 115–117 (1981).
[CrossRef]

1978 (1)

B. D. Evans, G. H. Sigel, L. B. Langworthy, and B. J. Faraday, “The fiber optic dosimeter on the Navigational Technology Satellite 2,” IEEE Trans. Nucl. Sci. 25, 1619–1624 (1978).
[CrossRef]

Aitken, M. J.

M. J. Aitken, An Introduction to Optical Dating (Oxford Science Publications, 1998).

Akselrod, M. S.

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3 fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).

Al-Shamma’a, A. I.

S. O’Keeffe, C. Fitzpatrick, E. Lewis, and A. I. Al-Shamma’a, “A review of optical fibre radiation dosimeters,” Sens. Rev. 28, 136–142 (2008).
[CrossRef]

Altemus, R.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Andersen, C. E.

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3 : C: influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[CrossRef]

A. R. Beierholm, C. E. Andersen, L. R. Lindvold, F. Kjær-Kristoffersen, and J. Medin, “A comparison of BCF-12 organic scintillators and Al2O3 : C crystals for real-time medical dosimetry,” Radiat. Meas. 43, 898–903 (2008).
[CrossRef]

Barbagallo, M.

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Beierholm, A. R.

A. R. Beierholm, C. E. Andersen, L. R. Lindvold, F. Kjær-Kristoffersen, and J. Medin, “A comparison of BCF-12 organic scintillators and Al2O3 : C crystals for real-time medical dosimetry,” Radiat. Meas. 43, 898–903 (2008).
[CrossRef]

Bøtter-Jensen, L.

L. Bøtter-Jensen, S. W. S. McKeever, and A. G. Wintle, Optically Stimulated Luminescence Dosimetry (Elsiver Science B. V., 2003).

Brichard, B.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

Cali, C.

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Chen, R.

V. Pagonis, R. Chen, and J. L. Lawless, “Nonmonotonic dose dependence of OSL intensity due to competition during irradiation and readout,” Radiat. Meas. 41, 903–909 (2006).
[CrossRef]

R. Chen, V. Pagonis, and J. L. Lawless, “The nonmonotonic dose dependence of optically stimulated luminescence in Al2O3 : C: analytical and numerical simulation results,” J. Appl. Phys. 99, 033511 (2006).
[CrossRef]

Cosentino, L.

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Damkjær, S. M. S.

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3 : C: influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[CrossRef]

Dusseau, L.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

Ebendorff-Heidepriem, H.

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[CrossRef]

H. Ebendorff-Heidepriem and T. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
[CrossRef] [PubMed]

Edmund, J. M.

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3 : C: influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[CrossRef]

El-Rabii, H.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

Evans, B. D.

B. D. Evans, G. H. Sigel, L. B. Langworthy, and B. J. Faraday, “The fiber optic dosimeter on the Navigational Technology Satellite 2,” IEEE Trans. Nucl. Sci. 25, 1619–1624 (1978).
[CrossRef]

Falkenstein, P. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Faraday, B. J.

B. D. Evans, G. H. Sigel, L. B. Langworthy, and B. J. Faraday, “The fiber optic dosimeter on the Navigational Technology Satellite 2,” IEEE Trans. Nucl. Sci. 25, 1619–1624 (1978).
[CrossRef]

Fernandez, A. F.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

Finocchiaro, P.

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Fitzpatrick, C.

S. O’Keeffe, C. Fitzpatrick, E. Lewis, and A. I. Al-Shamma’a, “A review of optical fibre radiation dosimeters,” Sens. Rev. 28, 136–142 (2008).
[CrossRef]

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

Glaser, M.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

Guardo, G.

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Holmstrom, S.

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3 fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).

Huston, A. L.

J. A. Tanyi, K. D. Nitzling, C. J. Lodwick, A. L. Huston, and B. L. Justus, “Characterisation of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry,” Med. Phys. 38, 961–967 (2011).
[CrossRef] [PubMed]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Jackson, D. A.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

Justus, B. L.

J. A. Tanyi, K. D. Nitzling, C. J. Lodwick, A. L. Huston, and B. L. Justus, “Characterisation of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry,” Med. Phys. 38, 961–967 (2011).
[CrossRef] [PubMed]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Kalnins, C. A. G.

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[CrossRef]

Kjær-Kristoffersen, F.

A. R. Beierholm, C. E. Andersen, L. R. Lindvold, F. Kjær-Kristoffersen, and J. Medin, “A comparison of BCF-12 organic scintillators and Al2O3 : C crystals for real-time medical dosimetry,” Radiat. Meas. 43, 898–903 (2008).
[CrossRef]

Langworthy, L. B.

B. D. Evans, G. H. Sigel, L. B. Langworthy, and B. J. Faraday, “The fiber optic dosimeter on the Navigational Technology Satellite 2,” IEEE Trans. Nucl. Sci. 25, 1619–1624 (1978).
[CrossRef]

Lawless, J. L.

R. Chen, V. Pagonis, and J. L. Lawless, “The nonmonotonic dose dependence of optically stimulated luminescence in Al2O3 : C: analytical and numerical simulation results,” J. Appl. Phys. 99, 033511 (2006).
[CrossRef]

V. Pagonis, R. Chen, and J. L. Lawless, “Nonmonotonic dose dependence of OSL intensity due to competition during irradiation and readout,” Radiat. Meas. 41, 903–909 (2006).
[CrossRef]

Lewis, E.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

S. O’Keeffe, C. Fitzpatrick, E. Lewis, and A. I. Al-Shamma’a, “A review of optical fibre radiation dosimeters,” Sens. Rev. 28, 136–142 (2008).
[CrossRef]

Lindvold, L. R.

A. R. Beierholm, C. E. Andersen, L. R. Lindvold, F. Kjær-Kristoffersen, and J. Medin, “A comparison of BCF-12 organic scintillators and Al2O3 : C crystals for real-time medical dosimetry,” Radiat. Meas. 43, 898–903 (2008).
[CrossRef]

Litrico, P.

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Lodwick, C. J.

J. A. Tanyi, K. D. Nitzling, C. J. Lodwick, A. L. Huston, and B. L. Justus, “Characterisation of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry,” Med. Phys. 38, 961–967 (2011).
[CrossRef] [PubMed]

Marrone, M. J.

M. J. Marrone, “Radiation-induced luminescence in silica core optical fibers,” Appl. Phys. Lett. 38, 115–117 (1981).
[CrossRef]

McKeever, S. W. S.

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3 fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).

L. Bøtter-Jensen, S. W. S. McKeever, and A. G. Wintle, Optically Stimulated Luminescence Dosimetry (Elsiver Science B. V., 2003).

Medin, J.

A. R. Beierholm, C. E. Andersen, L. R. Lindvold, F. Kjær-Kristoffersen, and J. Medin, “A comparison of BCF-12 organic scintillators and Al2O3 : C crystals for real-time medical dosimetry,” Radiat. Meas. 43, 898–903 (2008).
[CrossRef]

Miller, R. W.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Monro, T.

Monro, T. M.

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[CrossRef]

Ning, H.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Nitzling, K. D.

J. A. Tanyi, K. D. Nitzling, C. J. Lodwick, A. L. Huston, and B. L. Justus, “Characterisation of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry,” Med. Phys. 38, 961–967 (2011).
[CrossRef] [PubMed]

O’Keeffe, S.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

S. O’Keeffe, C. Fitzpatrick, E. Lewis, and A. I. Al-Shamma’a, “A review of optical fibre radiation dosimeters,” Sens. Rev. 28, 136–142 (2008).
[CrossRef]

Pagonis, V.

V. Pagonis, R. Chen, and J. L. Lawless, “Nonmonotonic dose dependence of OSL intensity due to competition during irradiation and readout,” Radiat. Meas. 41, 903–909 (2006).
[CrossRef]

R. Chen, V. Pagonis, and J. L. Lawless, “The nonmonotonic dose dependence of optically stimulated luminescence in Al2O3 : C: analytical and numerical simulation results,” J. Appl. Phys. 99, 033511 (2006).
[CrossRef]

Pappalaro, A.

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Polf, J. C.

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3 fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).

Ravotti, F.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

Scire, C.

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Scire, S.

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Sigel, G. H.

B. D. Evans, G. H. Sigel, L. B. Langworthy, and B. J. Faraday, “The fiber optic dosimeter on the Navigational Technology Satellite 2,” IEEE Trans. Nucl. Sci. 25, 1619–1624 (1978).
[CrossRef]

Spooner, N. A.

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[CrossRef]

Stabin, M. G.

M. G. Stabin, Radiation Protection and Dosimetry (Springer, 2008).

Tanyi, J. A.

J. A. Tanyi, K. D. Nitzling, C. J. Lodwick, A. L. Huston, and B. L. Justus, “Characterisation of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry,” Med. Phys. 38, 961–967 (2011).
[CrossRef] [PubMed]

Vaille, J. R.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

Wintle, A. G.

L. Bøtter-Jensen, S. W. S. McKeever, and A. G. Wintle, Optically Stimulated Luminescence Dosimetry (Elsiver Science B. V., 2003).

Appl. Phys. Lett. (1)

M. J. Marrone, “Radiation-induced luminescence in silica core optical fibers,” Appl. Phys. Lett. 38, 115–117 (1981).
[CrossRef]

Fusion Eng. Des. (1)

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83, 50–59 (2008).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

B. D. Evans, G. H. Sigel, L. B. Langworthy, and B. J. Faraday, “The fiber optic dosimeter on the Navigational Technology Satellite 2,” IEEE Trans. Nucl. Sci. 25, 1619–1624 (1978).
[CrossRef]

J. Am. Ceram. Soc. (1)

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[CrossRef]

J. Appl. Phys. (1)

R. Chen, V. Pagonis, and J. L. Lawless, “The nonmonotonic dose dependence of optically stimulated luminescence in Al2O3 : C: analytical and numerical simulation results,” J. Appl. Phys. 99, 033511 (2006).
[CrossRef]

Med. Phys. (1)

J. A. Tanyi, K. D. Nitzling, C. J. Lodwick, A. L. Huston, and B. L. Justus, “Characterisation of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry,” Med. Phys. 38, 961–967 (2011).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Nucl. Phys. B Proc. Suppl. (1)

A. Pappalaro, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, and P. Finocchiaro, “Performance evaluation of SiPM’s for low threshold gamma detection,” Nucl. Phys. B Proc. Suppl. 215, 41–43 (2011).
[CrossRef]

Opt. Express (1)

Radiat. Meas. (3)

V. Pagonis, R. Chen, and J. L. Lawless, “Nonmonotonic dose dependence of OSL intensity due to competition during irradiation and readout,” Radiat. Meas. 41, 903–909 (2006).
[CrossRef]

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3 : C: influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[CrossRef]

A. R. Beierholm, C. E. Andersen, L. R. Lindvold, F. Kjær-Kristoffersen, and J. Medin, “A comparison of BCF-12 organic scintillators and Al2O3 : C crystals for real-time medical dosimetry,” Radiat. Meas. 43, 898–903 (2008).
[CrossRef]

Radiat. Prot. Dosim. (3)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3 fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).

Sens. Rev. (1)

S. O’Keeffe, C. Fitzpatrick, E. Lewis, and A. I. Al-Shamma’a, “A review of optical fibre radiation dosimeters,” Sens. Rev. 28, 136–142 (2008).
[CrossRef]

Other (4)

M. G. Stabin, Radiation Protection and Dosimetry (Springer, 2008).

M. J. Aitken, An Introduction to Optical Dating (Oxford Science Publications, 1998).

L. Bøtter-Jensen, S. W. S. McKeever, and A. G. Wintle, Optically Stimulated Luminescence Dosimetry (Elsiver Science B. V., 2003).

“Schott optical glass data sheet,” www.schott.com/advanced_optics/english/download/schott_optical_glass_pocket_catalogue_may_2011_en.pdf (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fundamental mechanism of optically stimulated luminescence: (1) Ionising radiation creates an electron-hole pair in the glass (2) electron is trapped in an excited state (3) optical stimulation releases this trapped electron (4) electron is free to recombine with a hole via a radiative transition.

Fig. 2
Fig. 2

Experimental configuration used for the detection of optically stimulated luminescence in optical fibre bundles. Optical stimulation is at 532 nm, luminescence is produced at approximately 400 nm.

Fig. 3
Fig. 3

Stimulation and detection wavelengths used for OSL measurements. Shown are the quantum efficiency of the EMI 9635 QA photomultiplier tube, the transmission of the Corning 7–59 band pass filters, and the laser stimulation wavelength of 532nm.

Fig. 4
Fig. 4

Luminescence with respect to time during the measurement of OSL. Shaded regions indicate where integration of photon counts was performed in order to quantify (1) scintillation, (2) OSL and (3) the background. Channels are of 10 ms duration.

Fig. 5
Fig. 5

Reproducibility of OSL response over ten consecutive measurements. Original luminescence data is shown in conjunction with the integrated value, where the time interval shown for each measurement for each is 0.65 s.

Fig. 6
Fig. 6

OSL intensity with respect to the applied radiation dose. A linear trend is observed between 0.016 and 2 Gy, with an R2 value of 0.934.

Fig. 7
Fig. 7

OSL response with respect to the number of fibres exposed to 8 Gy of radiation. Current fibre quality requires approximately six fibres to observe the OSL signal over the noise at this radiation dosage.

Metrics