Abstract

We demonstrate a two-dimensional absorbing photonic crystal with a uniform real part of the refractive index, but a periodically modulated imaginary part. It was realized through back-filling the voids of a periodic array of azo-dye-doped polymeric disks with the same undoped polymers. The photonic crystals were characterized using the diffraction method. The experimental results showed that only the light in the spectral range where the azo-dye absorbed was diffracted, indicating that a purely absorbing photonic crystal was formed. This absorbing photonic crystal also showed switchable diffraction properties due to the trans-cis isomerization of the azo-dye under the light pump.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046604 (2005).
    [CrossRef] [PubMed]
  4. O. El Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. Roca I Cabarrocas, H. Jeon, and C. Seassal, “Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell,” Opt. Express 18(S3Suppl 3), A293–A299 (2010).
    [CrossRef] [PubMed]
  5. M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng. B 49(2), 155–165 (1997).
    [CrossRef]
  6. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
    [CrossRef] [PubMed]
  7. E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994).
    [CrossRef]
  8. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  9. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
    [CrossRef]
  10. D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002).
    [CrossRef]
  11. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19(11), 2238–2244 (2002).
    [CrossRef] [PubMed]
  12. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
    [CrossRef]
  13. Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystals fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
    [CrossRef]
  14. Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
    [CrossRef]
  15. Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
    [CrossRef]
  16. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [CrossRef]
  17. M. C. Gupta, Handbook of Photonics (CRC Press, 1997).
  18. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
    [CrossRef] [PubMed]
  19. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
    [CrossRef] [PubMed]
  20. L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichormatic switching,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2316–2319 (2010).
    [CrossRef]
  21. L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
    [CrossRef]
  22. I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001).
    [CrossRef]
  23. T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. (Deerfield Beach Fla.) 15(3), 201–205 (2003).
    [CrossRef]
  24. Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
    [CrossRef]
  25. V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
    [CrossRef] [PubMed]
  26. A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
    [CrossRef] [PubMed]
  27. M. Shian Li, A. Y.-G. Fuh, and S.-T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett. 36(19), 3864–3866 (2011).
    [CrossRef] [PubMed]
  28. Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater. 34(1), 251–255 (2011).
    [CrossRef]
  29. C. Decker and K. Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
    [CrossRef]
  30. A. E. Rydholm, C. N. Bowman, and K. S. Anseth, “Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial,” Biomaterials 26(22), 4495–4506 (2005).
    [CrossRef] [PubMed]
  31. G. J. Lee, D. Kim, and M. Lee, “Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer,” Appl. Opt. 34(1), 138–143 (1995).
    [CrossRef] [PubMed]
  32. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
    [CrossRef] [PubMed]
  33. L. De Sio and C. Umeton, “Dual-mode control of light by two-dimensional periodic structures realized in liquid-crystalline composite materials,” Opt. Lett. 35(16), 2759–2761 (2010).
    [CrossRef] [PubMed]
  34. Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011).
    [CrossRef]
  35. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
    [CrossRef]
  36. W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
    [CrossRef]
  37. N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
    [CrossRef] [PubMed]
  38. I.-C. Khoo, J.-H. Park, and J. D. Liou, “Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 25(11), 1931–1937 (2008).
    [CrossRef]

2011 (6)

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[CrossRef]

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[CrossRef]

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[CrossRef]

M. Shian Li, A. Y.-G. Fuh, and S.-T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett. 36(19), 3864–3866 (2011).
[CrossRef] [PubMed]

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater. 34(1), 251–255 (2011).
[CrossRef]

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011).
[CrossRef]

2010 (4)

2009 (1)

2008 (2)

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

I.-C. Khoo, J.-H. Park, and J. D. Liou, “Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 25(11), 1931–1937 (2008).
[CrossRef]

2007 (1)

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
[CrossRef]

2006 (1)

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystals fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[CrossRef]

2005 (2)

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046604 (2005).
[CrossRef] [PubMed]

A. E. Rydholm, C. N. Bowman, and K. S. Anseth, “Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial,” Biomaterials 26(22), 4495–4506 (2005).
[CrossRef] [PubMed]

2004 (2)

W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
[CrossRef]

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

2003 (4)

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. (Deerfield Beach Fla.) 15(3), 201–205 (2003).
[CrossRef]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

2002 (2)

D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19(11), 2238–2244 (2002).
[CrossRef] [PubMed]

2001 (2)

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001).
[CrossRef]

2000 (3)

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
[CrossRef] [PubMed]

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

1999 (1)

C. Decker and K. Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
[CrossRef]

1997 (1)

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng. B 49(2), 155–165 (1997).
[CrossRef]

1995 (2)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

G. J. Lee, D. Kim, and M. Lee, “Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer,” Appl. Opt. 34(1), 138–143 (1995).
[CrossRef] [PubMed]

1994 (1)

E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Ahn, S.

Anseth, K. S.

A. E. Rydholm, C. N. Bowman, and K. S. Anseth, “Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial,” Biomaterials 26(22), 4495–4506 (2005).
[CrossRef] [PubMed]

Artoni, M.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046604 (2005).
[CrossRef] [PubMed]

Bassani, F.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046604 (2005).
[CrossRef] [PubMed]

Biswas, R.

E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994).
[CrossRef]

Blanco, A.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Bo, X. Z.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Bowman, C. N.

A. E. Rydholm, C. N. Bowman, and K. S. Anseth, “Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial,” Biomaterials 26(22), 4495–4506 (2005).
[CrossRef] [PubMed]

Brandelik, D. M.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

Bunning, T.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Bunning, T. J.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Busch, K.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Cai, L. Z.

Campbell, M.

D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002).
[CrossRef]

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Chandra, S.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

Chang, W.-T.

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater. 34(1), 251–255 (2011).
[CrossRef]

Charlton, M. D. B.

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng. B 49(2), 155–165 (1997).
[CrossRef]

Chen, P. H.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001).
[CrossRef]

Chiang, I.-K.

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011).
[CrossRef]

Chu, C.-C.

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater. 34(1), 251–255 (2011).
[CrossRef]

Crespi, V. H.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[CrossRef]

Dai, H. T.

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[CrossRef]

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[CrossRef]

De Sio, L.

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[CrossRef]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichormatic switching,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2316–2319 (2010).
[CrossRef]

L. De Sio and C. Umeton, “Dual-mode control of light by two-dimensional periodic structures realized in liquid-crystalline composite materials,” Opt. Lett. 35(16), 2759–2761 (2010).
[CrossRef] [PubMed]

Decker, C.

C. Decker and K. Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
[CrossRef]

Dedman, E. R.

D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002).
[CrossRef]

Denning, R. G.

D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002).
[CrossRef]

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Deubel, M.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Dickey, M. D.

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

Divliansky, I.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[CrossRef]

Drouard, E.

El Daif, O.

Elbing, M.

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

Enkrich, C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Fave, A.

Ferjani, S.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichormatic switching,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2316–2319 (2010).
[CrossRef]

Ferri, V.

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

Fuh, A. Y.-G.

Gomard, G.

Harrison, M. T.

D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002).
[CrossRef]

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Ho, K. M.

E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994).
[CrossRef]

Hoke, L.

Holliday, K. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[CrossRef]

Hrozhyk, U. A.

Hsiao, V. K. S.

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater. 34(1), 251–255 (2011).
[CrossRef]

Huang, H.

Huang, T. J.

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011).
[CrossRef]

Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
[CrossRef] [PubMed]

Ikeda, T.

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. (Deerfield Beach Fla.) 15(3), 201–205 (2003).
[CrossRef]

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Jeon, H.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kaminski, A.

Kanazawa, A.

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. (Deerfield Beach Fla.) 15(3), 201–205 (2003).
[CrossRef]

Khoo, I. C.

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011).
[CrossRef]

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001).
[CrossRef]

Khoo, I.-C.

Kim, D.

Kim, S.

Kimball, B. R.

Koch, W.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

La Rocca, G.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046604 (2005).
[CrossRef] [PubMed]

Lee, G. J.

Lee, M.

Lemiti, M.

Leong, E. S. P.

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[CrossRef]

Li, J.-H.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Liou, J.

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011).
[CrossRef]

Liou, J. D.

Liu, Y. J.

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011).
[CrossRef]

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[CrossRef]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[CrossRef]

Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
[CrossRef] [PubMed]

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystals fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[CrossRef]

Lu, W.

W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
[CrossRef]

Luo, D.

W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
[CrossRef]

Mayer, T. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[CrossRef]

Mayor, M.

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

Meisel, D. C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Michel, E.

E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994).
[CrossRef]

Miklyaev, Y. V.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Miyasaka, H.

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
[CrossRef] [PubMed]

Nakano, M.

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. (Deerfield Beach Fla.) 15(3), 201–205 (2003).
[CrossRef]

Natarajan, L.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Natarajan, L. V.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Norris, D. J.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Özbay, E.

E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994).
[CrossRef]

Pace, G.

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

Park, J.-H.

Parker, G. J.

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng. B 49(2), 155–165 (1997).
[CrossRef]

Rampi, M. A.

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

Roberts, S. W.

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng. B 49(2), 155–165 (1997).
[CrossRef]

Roca I Cabarrocas, P.

Rydholm, A. E.

A. E. Rydholm, C. N. Bowman, and K. S. Anseth, “Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial,” Biomaterials 26(22), 4495–4506 (2005).
[CrossRef] [PubMed]

Samorì, P.

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

Seassal, C.

Serak, S.

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[CrossRef]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichormatic switching,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2316–2319 (2010).
[CrossRef]

Serak, S. V.

Sharp, D. N.

D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002).
[CrossRef]

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

She, W.

W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
[CrossRef]

Shepherd, C. K.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

Shi, J.

Shian Li, M.

Shih, M. Y.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001).
[CrossRef]

Shishido, A.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001).
[CrossRef]

Sigalas, M.

E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994).
[CrossRef]

Slussarenko, S.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001).
[CrossRef]

Steeves, D. M.

Sturm, J. C.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Su, Y.-C.

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater. 34(1), 251–255 (2011).
[CrossRef]

Sun, X. W.

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[CrossRef]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystals fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[CrossRef]

Sutherland, R.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Sutherland, R. L.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Tabiryan, N.

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[CrossRef]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichormatic switching,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2316–2319 (2010).
[CrossRef]

Tabiryan, N. V.

Tamai, N.

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
[CrossRef] [PubMed]

Tang, T.

W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
[CrossRef]

Teng, J. H.

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[CrossRef]

Tomlin, D.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

Tondiglia, V.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Tondiglia, V. P.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Tsutsumi, O.

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. (Deerfield Beach Fla.) 15(3), 201–205 (2003).
[CrossRef]

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Turberfield, A. J.

D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002).
[CrossRef]

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Tuttle, G.

E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994).
[CrossRef]

Umeton, C.

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[CrossRef]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichormatic switching,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2316–2319 (2010).
[CrossRef]

L. De Sio and C. Umeton, “Dual-mode control of light by two-dimensional periodic structures realized in liquid-crystalline composite materials,” Opt. Lett. 35(16), 2759–2761 (2010).
[CrossRef] [PubMed]

Urbas, A.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Veltri, A.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichormatic switching,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2316–2319 (2010).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

Von Freymann, G.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Walker, T. R.

Wang, Y. R.

Wegener, M.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Wood, M. V.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001).
[CrossRef]

Wu, S.

W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
[CrossRef]

Wu, S.-T.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, X. L.

Yao, S.

W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
[CrossRef]

Yu, H.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Yu, Y.

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. (Deerfield Beach Fla.) 15(3), 201–205 (2003).
[CrossRef]

Zahouily, K.

C. Decker and K. Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
[CrossRef]

Zeng, F.

W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
[CrossRef]

Zharnikov, M.

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

Zheng, Y. B.

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011).
[CrossRef]

Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichormatic switching,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2316–2319 (2010).
[CrossRef]

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. (Deerfield Beach Fla.) 15(3), 201–205 (2003).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004).
[CrossRef]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystals fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[CrossRef]

E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994).
[CrossRef]

Biomaterials (1)

A. E. Rydholm, C. N. Bowman, and K. S. Anseth, “Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial,” Biomaterials 26(22), 4495–4506 (2005).
[CrossRef] [PubMed]

Chem. Mater. (1)

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[CrossRef]

Chem. Rev. (1)

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

J. Mater. Chem. (2)

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[CrossRef]

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007).
[CrossRef]

Mater. Sci. Eng. B (1)

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng. B 49(2), 155–165 (1997).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001).
[CrossRef]

Nature (2)

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001).
[CrossRef] [PubMed]

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater. 34(1), 251–255 (2011).
[CrossRef]

Opt. Quantum Electron. (1)

D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046604 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Polym. Degrad. Stabil. (1)

C. Decker and K. Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
[CrossRef]

Science (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Other (1)

M. C. Gupta, Handbook of Photonics (CRC Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of thee-sided pyramid and (b) refracted three-beam interference configuration caused by the pyramid.

Fig. 2
Fig. 2

(a) Absorption spectra and associated refractive indices before and after photoirradiation, and (b) Absorbance change δA and associated refractive index change δRI induced by photoirradiation.

Fig. 3
Fig. 3

Microscopic images of the patterned polymeric disks through holographic lithography before (a) and after (b) back-filling. Scale bar: 10 µm.

Fig. 4
Fig. 4

Diffraction pattern of the PhC structure before (a) and after (b) back-filling.

Fig. 5
Fig. 5

Comparison of the optical switching effect for the red and green light diffraction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn( ω' )= c π 0 Δα( ω ) ω 2 ( ω' ) 2 dω

Metrics