Abstract

A distributed-feedback laser, operating in the spectral range of 590-670 nm is reported. The laser device is based on surface relief grating providing a second order DFB structure. The surface relief grating is inscribed in an azobenzene-containing material and an active layer realized in high refractive index poly(phenylquinoxaline) matrix. It is shown that the design of laser device provides for the possibility of simple replacement of an active layer. This allows, in particular, laser wavelength tuning without rewriting of the surface relief grating.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
    [CrossRef] [PubMed]
  2. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
    [CrossRef] [PubMed]
  3. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
    [CrossRef]
  4. Y. Zhao and T. Ikeda, eds., Smart Light-Responsive Materials. Azobenzene-Containing Polymers and Liquid Crystals (Wiley, 2009).
  5. K. Harada, M. Itoh, T. Yatagai, and S.-i. Kamemaru, “Application of Surface Relief Hologram Using Azobenzene Containing Polymer Film,” Opt. Rev. 12(2), 130–134 (2005).
    [CrossRef]
  6. D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005).
    [CrossRef]
  7. A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. (Deerfield Beach Fla.) 23(36), 4174–4177 (2011).
    [CrossRef] [PubMed]
  8. O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular Azobenzene-Based Materials for Optical Generation of Microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
    [CrossRef]
  9. L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte,” Langmuir 21(11), 4794–4796 (2005).
    [CrossRef] [PubMed]
  10. L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “Extremely high patterning efficiency in easily made azobenzene-containing polymer films,” J. Mater. Chem. 19(34), 6103–6105 (2009).
    [CrossRef]
  11. L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings,” J. Mater. Chem. 19(43), 8068–8071 (2009).
    [CrossRef]
  12. L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir 26(4), 2214–2217 (2010).
    [CrossRef] [PubMed]
  13. L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
    [CrossRef]
  14. L. M. Goldenberg, Y. Gritsai, and J. Stumpe, “Efficient surface relief grating generated in azobenzene-containing material using He-Ne laser,” J. Opt. 13(7), 075601 (2011).
    [CrossRef]
  15. J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
    [CrossRef]
  16. N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 516–521 (2008).
    [CrossRef]
  17. Q. Zhang, C. G. Bazuin, and C. J. Barrett, “Simple Spacer-Free Dye-Polyelectrolyte Ionic Complex: Side-Chain Liquid Crystal Order with High and Stable Photoinduced Birefringence,” Chem. Mater. 20(1), 29–31 (2008).
    [CrossRef]
  18. Q. Zhang, X. Wang, C. J. Barrett, and C. G. Bazuin, “Spacer-Free Ionic Dye-Polyelectrolyte Complexes: Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion,” Chem. Mater. 21(14), 3216–3227 (2009).
    [CrossRef]
  19. A. Priimagi, K. Lindfors, M. Kaivola, and P. Rochon, “Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes,” ACS Appl. Mater. Interfaces 1(6), 1183–1189 (2009).
    [CrossRef] [PubMed]
  20. J. Vapaavuori, A. Priimagi, and M. Kaivola, “Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes,” J. Mater. Chem. 20(25), 5260–5264 (2010).
    [CrossRef]
  21. T. Ubukata, T. Seki, and K. Ichimura, “Surface Relief Grating in Host-Guest Supramolecular Materials,” Adv. Mater. (Deerfield Beach Fla.) 12(22), 1675–1678 (2000).
    [CrossRef]
  22. Y. Shirota, “Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications,” J. Mater. Chem. 15(1), 75–93 (2005).
    [CrossRef]
  23. C. Chun, M.-J. Kim, D. Vak, and D. Y. Kim, “A novel azobenzene-based amorphous molecular material with a spiro linked bifluorene,” J. Mater. Chem. 13(12), 2904–2909 (2003).
    [CrossRef]
  24. T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of Flexible Distributed Feedback Laser Using Photoinduced Surface Relief Grating on Azo-Polymer Film as a Template,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1386–L1388 (2002).
    [CrossRef]
  25. S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010).
    [CrossRef]
  26. S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. (Deerfield Beach Fla.) 23(37), 4265–4269 (2011).
    [CrossRef] [PubMed]
  27. L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
    [CrossRef]
  28. T. Ubukata, T. Isoshima, and M. Hara, “Wavelength Programmable Organic Distributed Feedback Laser based on a Photoassisted Polymer Migration System,” Adv. Mater. (Deerfield Beach Fla.) 17(13), 1630–1633 (2005).
    [CrossRef]
  29. T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-Programmable Organic Distributed-Feedback Laser Using a Photoinduced Surface Relief Grating,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 445(1), 269–273 (2006).
    [CrossRef]
  30. J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
    [CrossRef]
  31. H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [CrossRef]
  32. T. Isoshima, E. Ito, T. Ubukata, and M. Hara, “Fluorescence Dynamics of Organic Laser Dyes in Azobenzene Polymer,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 444(1), 81–86 (2006).
    [CrossRef]
  33. L. M. Goldenberg, Y. Gritsai, O. Kulikovska, and J. Stumpe, “Three-dimensional planarized diffraction structures based on surface relief gratings in azobenzene materials,” Opt. Lett. 33(12), 1309–1311 (2008).
    [CrossRef] [PubMed]
  34. Y. Gritsai, L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “3D structures using surface relief gratings of azobenzene materials,” J. Opt. A 10(12), 125304 (2008).
    [CrossRef]
  35. L. M. Goldenberg, Y. Gritsai, O. Sakhno, O. Kulikovska, and J. Stumpe, “All-optical fabrication of 2D, 3D and hierarchic structures using step-by-step approach and a single polymer phase mask,” Proc. First Mediterranean Photonics Conference, 28–30 (2008).
  36. Y. Gritsai, L. M. Goldenberg, O. Kulikovska, O. Sakhno, and J. Stumpe, “All-optical fabrication of 2D and 3D photonic micro-structures in polymeric materials,” Proc. SPIE 7716, 77161V (2010).
    [CrossRef]
  37. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
    [CrossRef] [PubMed]
  38. S. Schrader, P. Imperia, N. Koch, G. Leising, and B. Falk, “Organic Light-emitting Devices Based on New Heterocyclic Compounds,” Proc. SPIE 3797, 209–220 (1999).
    [CrossRef]
  39. H. Rabbani-Haghighi, S. Forget, S. Chénais, and A. Siove, “Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser,” Opt. Lett. 35(12), 1968–1970 (2010).
    [CrossRef] [PubMed]
  40. S. Schrader, D. Prescher, and V. Zauls, “New chromophores and polymers for second order nonlinear optics,” Proc. SPIE 3474, 160–171 (1998).
    [CrossRef]
  41. C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000).
    [CrossRef]
  42. A. Hayer, H. Bässler, B. Falk, and S. Schrader, “Delayed Fluorescence and Phosphorescence from Polyphenylquinoxalines,” J. Phys. Chem. A 106(46), 11045–11053 (2002).
    [CrossRef]
  43. V. Ksianzou, R. K. Velagapudi, B. Grimm, and S. Schrader, “Polarization-dependent optical characterization of poly(phenylquinoxaline) thin films,” J. Appl. Phys. 100(6), 063106 (2006).
    [CrossRef]
  44. K. Izuka, Elements of Photonics, Volume II: For Fiber and Integrated Optics (John Wiley & Sons, 2002).

2011 (3)

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. (Deerfield Beach Fla.) 23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

L. M. Goldenberg, Y. Gritsai, and J. Stumpe, “Efficient surface relief grating generated in azobenzene-containing material using He-Ne laser,” J. Opt. 13(7), 075601 (2011).
[CrossRef]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. (Deerfield Beach Fla.) 23(37), 4265–4269 (2011).
[CrossRef] [PubMed]

2010 (7)

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010).
[CrossRef]

J. Vapaavuori, A. Priimagi, and M. Kaivola, “Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes,” J. Mater. Chem. 20(25), 5260–5264 (2010).
[CrossRef]

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[CrossRef]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, O. Sakhno, and J. Stumpe, “All-optical fabrication of 2D and 3D photonic micro-structures in polymeric materials,” Proc. SPIE 7716, 77161V (2010).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir 26(4), 2214–2217 (2010).
[CrossRef] [PubMed]

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[CrossRef]

H. Rabbani-Haghighi, S. Forget, S. Chénais, and A. Siove, “Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser,” Opt. Lett. 35(12), 1968–1970 (2010).
[CrossRef] [PubMed]

2009 (4)

Q. Zhang, X. Wang, C. J. Barrett, and C. G. Bazuin, “Spacer-Free Ionic Dye-Polyelectrolyte Complexes: Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion,” Chem. Mater. 21(14), 3216–3227 (2009).
[CrossRef]

A. Priimagi, K. Lindfors, M. Kaivola, and P. Rochon, “Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes,” ACS Appl. Mater. Interfaces 1(6), 1183–1189 (2009).
[CrossRef] [PubMed]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “Extremely high patterning efficiency in easily made azobenzene-containing polymer films,” J. Mater. Chem. 19(34), 6103–6105 (2009).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings,” J. Mater. Chem. 19(43), 8068–8071 (2009).
[CrossRef]

2008 (4)

N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 516–521 (2008).
[CrossRef]

Q. Zhang, C. G. Bazuin, and C. J. Barrett, “Simple Spacer-Free Dye-Polyelectrolyte Ionic Complex: Side-Chain Liquid Crystal Order with High and Stable Photoinduced Birefringence,” Chem. Mater. 20(1), 29–31 (2008).
[CrossRef]

L. M. Goldenberg, Y. Gritsai, O. Kulikovska, and J. Stumpe, “Three-dimensional planarized diffraction structures based on surface relief gratings in azobenzene materials,” Opt. Lett. 33(12), 1309–1311 (2008).
[CrossRef] [PubMed]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “3D structures using surface relief gratings of azobenzene materials,” J. Opt. A 10(12), 125304 (2008).
[CrossRef]

2007 (3)

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
[CrossRef]

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular Azobenzene-Based Materials for Optical Generation of Microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[CrossRef]

2006 (3)

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-Programmable Organic Distributed-Feedback Laser Using a Photoinduced Surface Relief Grating,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 445(1), 269–273 (2006).
[CrossRef]

T. Isoshima, E. Ito, T. Ubukata, and M. Hara, “Fluorescence Dynamics of Organic Laser Dyes in Azobenzene Polymer,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 444(1), 81–86 (2006).
[CrossRef]

V. Ksianzou, R. K. Velagapudi, B. Grimm, and S. Schrader, “Polarization-dependent optical characterization of poly(phenylquinoxaline) thin films,” J. Appl. Phys. 100(6), 063106 (2006).
[CrossRef]

2005 (5)

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength Programmable Organic Distributed Feedback Laser based on a Photoassisted Polymer Migration System,” Adv. Mater. (Deerfield Beach Fla.) 17(13), 1630–1633 (2005).
[CrossRef]

Y. Shirota, “Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications,” J. Mater. Chem. 15(1), 75–93 (2005).
[CrossRef]

L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte,” Langmuir 21(11), 4794–4796 (2005).
[CrossRef] [PubMed]

K. Harada, M. Itoh, T. Yatagai, and S.-i. Kamemaru, “Application of Surface Relief Hologram Using Azobenzene Containing Polymer Film,” Opt. Rev. 12(2), 130–134 (2005).
[CrossRef]

D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005).
[CrossRef]

2003 (1)

C. Chun, M.-J. Kim, D. Vak, and D. Y. Kim, “A novel azobenzene-based amorphous molecular material with a spiro linked bifluorene,” J. Mater. Chem. 13(12), 2904–2909 (2003).
[CrossRef]

2002 (3)

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of Flexible Distributed Feedback Laser Using Photoinduced Surface Relief Grating on Azo-Polymer Film as a Template,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1386–L1388 (2002).
[CrossRef]

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

A. Hayer, H. Bässler, B. Falk, and S. Schrader, “Delayed Fluorescence and Phosphorescence from Polyphenylquinoxalines,” J. Phys. Chem. A 106(46), 11045–11053 (2002).
[CrossRef]

2001 (1)

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[CrossRef]

2000 (3)

K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[CrossRef] [PubMed]

T. Ubukata, T. Seki, and K. Ichimura, “Surface Relief Grating in Host-Guest Supramolecular Materials,” Adv. Mater. (Deerfield Beach Fla.) 12(22), 1675–1678 (2000).
[CrossRef]

C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000).
[CrossRef]

1999 (2)

S. Schrader, P. Imperia, N. Koch, G. Leising, and B. Falk, “Organic Light-emitting Devices Based on New Heterocyclic Compounds,” Proc. SPIE 3797, 209–220 (1999).
[CrossRef]

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

1998 (1)

S. Schrader, D. Prescher, and V. Zauls, “New chromophores and polymers for second order nonlinear optics,” Proc. SPIE 3474, 160–171 (1998).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Baro, A. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Barrett, C. J.

Q. Zhang, X. Wang, C. J. Barrett, and C. G. Bazuin, “Spacer-Free Ionic Dye-Polyelectrolyte Complexes: Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion,” Chem. Mater. 21(14), 3216–3227 (2009).
[CrossRef]

Q. Zhang, C. G. Bazuin, and C. J. Barrett, “Simple Spacer-Free Dye-Polyelectrolyte Ionic Complex: Side-Chain Liquid Crystal Order with High and Stable Photoinduced Birefringence,” Chem. Mater. 20(1), 29–31 (2008).
[CrossRef]

Bartkiewicz, S.

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[CrossRef]

Bässler, H.

A. Hayer, H. Bässler, B. Falk, and S. Schrader, “Delayed Fluorescence and Phosphorescence from Polyphenylquinoxalines,” J. Phys. Chem. A 106(46), 11045–11053 (2002).
[CrossRef]

Bazuin, C. G.

Q. Zhang, X. Wang, C. J. Barrett, and C. G. Bazuin, “Spacer-Free Ionic Dye-Polyelectrolyte Complexes: Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion,” Chem. Mater. 21(14), 3216–3227 (2009).
[CrossRef]

Q. Zhang, C. G. Bazuin, and C. J. Barrett, “Simple Spacer-Free Dye-Polyelectrolyte Ionic Complex: Side-Chain Liquid Crystal Order with High and Stable Photoinduced Birefringence,” Chem. Mater. 20(1), 29–31 (2008).
[CrossRef]

Bian, S.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Chénais, S.

Chun, C.

C. Chun, M.-J. Kim, D. Vak, and D. Y. Kim, “A novel azobenzene-based amorphous molecular material with a spiro linked bifluorene,” J. Mater. Chem. 13(12), 2904–2909 (2003).
[CrossRef]

Colchero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Denis, C.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[CrossRef]

Döring, S.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. (Deerfield Beach Fla.) 23(37), 4265–4269 (2011).
[CrossRef] [PubMed]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010).
[CrossRef]

Dumarcher, V.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[CrossRef]

El-Morsy, M. A.

D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005).
[CrossRef]

Falk, B.

A. Hayer, H. Bässler, B. Falk, and S. Schrader, “Delayed Fluorescence and Phosphorescence from Polyphenylquinoxalines,” J. Phys. Chem. A 106(46), 11045–11053 (2002).
[CrossRef]

S. Schrader, P. Imperia, N. Koch, G. Leising, and B. Falk, “Organic Light-emitting Devices Based on New Heterocyclic Compounds,” Proc. SPIE 3797, 209–220 (1999).
[CrossRef]

Fernández, R.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Fiorini, C.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[CrossRef]

Flueraru, C.

C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000).
[CrossRef]

Forget, S.

Gao, J.

J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
[CrossRef]

Goldenberg, L. M.

L. M. Goldenberg, Y. Gritsai, and J. Stumpe, “Efficient surface relief grating generated in azobenzene-containing material using He-Ne laser,” J. Opt. 13(7), 075601 (2011).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir 26(4), 2214–2217 (2010).
[CrossRef] [PubMed]

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[CrossRef]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, O. Sakhno, and J. Stumpe, “All-optical fabrication of 2D and 3D photonic micro-structures in polymeric materials,” Proc. SPIE 7716, 77161V (2010).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings,” J. Mater. Chem. 19(43), 8068–8071 (2009).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “Extremely high patterning efficiency in easily made azobenzene-containing polymer films,” J. Mater. Chem. 19(34), 6103–6105 (2009).
[CrossRef]

L. M. Goldenberg, Y. Gritsai, O. Kulikovska, and J. Stumpe, “Three-dimensional planarized diffraction structures based on surface relief gratings in azobenzene materials,” Opt. Lett. 33(12), 1309–1311 (2008).
[CrossRef] [PubMed]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “3D structures using surface relief gratings of azobenzene materials,” J. Opt. A 10(12), 125304 (2008).
[CrossRef]

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular Azobenzene-Based Materials for Optical Generation of Microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[CrossRef]

L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte,” Langmuir 21(11), 4794–4796 (2005).
[CrossRef] [PubMed]

Gómez-Herrero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Gómez-Rodríguez, J. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Grimm, B.

V. Ksianzou, R. K. Velagapudi, B. Grimm, and S. Schrader, “Polarization-dependent optical characterization of poly(phenylquinoxaline) thin films,” J. Appl. Phys. 100(6), 063106 (2006).
[CrossRef]

Gritsai, Y.

L. M. Goldenberg, Y. Gritsai, and J. Stumpe, “Efficient surface relief grating generated in azobenzene-containing material using He-Ne laser,” J. Opt. 13(7), 075601 (2011).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[CrossRef]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, O. Sakhno, and J. Stumpe, “All-optical fabrication of 2D and 3D photonic micro-structures in polymeric materials,” Proc. SPIE 7716, 77161V (2010).
[CrossRef]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “3D structures using surface relief gratings of azobenzene materials,” J. Opt. A 10(12), 125304 (2008).
[CrossRef]

L. M. Goldenberg, Y. Gritsai, O. Kulikovska, and J. Stumpe, “Three-dimensional planarized diffraction structures based on surface relief gratings in azobenzene materials,” Opt. Lett. 33(12), 1309–1311 (2008).
[CrossRef] [PubMed]

Hara, M.

T. Isoshima, E. Ito, T. Ubukata, and M. Hara, “Fluorescence Dynamics of Organic Laser Dyes in Azobenzene Polymer,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 444(1), 81–86 (2006).
[CrossRef]

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-Programmable Organic Distributed-Feedback Laser Using a Photoinduced Surface Relief Grating,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 445(1), 269–273 (2006).
[CrossRef]

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength Programmable Organic Distributed Feedback Laser based on a Photoassisted Polymer Migration System,” Adv. Mater. (Deerfield Beach Fla.) 17(13), 1630–1633 (2005).
[CrossRef]

Harada, K.

D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005).
[CrossRef]

K. Harada, M. Itoh, T. Yatagai, and S.-i. Kamemaru, “Application of Surface Relief Hologram Using Azobenzene Containing Polymer Film,” Opt. Rev. 12(2), 130–134 (2005).
[CrossRef]

Hayer, A.

A. Hayer, H. Bässler, B. Falk, and S. Schrader, “Delayed Fluorescence and Phosphorescence from Polyphenylquinoxalines,” J. Phys. Chem. A 106(46), 11045–11053 (2002).
[CrossRef]

He, Y.

J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
[CrossRef]

Hildebrandt, N.

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010).
[CrossRef]

Horcas, I.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Ichimura, K.

T. Ubukata, T. Seki, and K. Ichimura, “Surface Relief Grating in Host-Guest Supramolecular Materials,” Adv. Mater. (Deerfield Beach Fla.) 12(22), 1675–1678 (2000).
[CrossRef]

K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[CrossRef] [PubMed]

Imperia, P.

S. Schrader, P. Imperia, N. Koch, G. Leising, and B. Falk, “Organic Light-emitting Devices Based on New Heterocyclic Compounds,” Proc. SPIE 3797, 209–220 (1999).
[CrossRef]

Isoshima, T.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-Programmable Organic Distributed-Feedback Laser Using a Photoinduced Surface Relief Grating,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 445(1), 269–273 (2006).
[CrossRef]

T. Isoshima, E. Ito, T. Ubukata, and M. Hara, “Fluorescence Dynamics of Organic Laser Dyes in Azobenzene Polymer,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 444(1), 81–86 (2006).
[CrossRef]

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength Programmable Organic Distributed Feedback Laser based on a Photoassisted Polymer Migration System,” Adv. Mater. (Deerfield Beach Fla.) 17(13), 1630–1633 (2005).
[CrossRef]

Ito, E.

T. Isoshima, E. Ito, T. Ubukata, and M. Hara, “Fluorescence Dynamics of Organic Laser Dyes in Azobenzene Polymer,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 444(1), 81–86 (2006).
[CrossRef]

Itoh, M.

K. Harada, M. Itoh, T. Yatagai, and S.-i. Kamemaru, “Application of Surface Relief Hologram Using Azobenzene Containing Polymer Film,” Opt. Rev. 12(2), 130–134 (2005).
[CrossRef]

D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005).
[CrossRef]

Kaivola, M.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. (Deerfield Beach Fla.) 23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

J. Vapaavuori, A. Priimagi, and M. Kaivola, “Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes,” J. Mater. Chem. 20(25), 5260–5264 (2010).
[CrossRef]

A. Priimagi, K. Lindfors, M. Kaivola, and P. Rochon, “Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes,” ACS Appl. Mater. Interfaces 1(6), 1183–1189 (2009).
[CrossRef] [PubMed]

Kajzar, F.

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of Flexible Distributed Feedback Laser Using Photoinduced Surface Relief Grating on Azo-Polymer Film as a Template,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1386–L1388 (2002).
[CrossRef]

Kamemaru, S.-i.

D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005).
[CrossRef]

K. Harada, M. Itoh, T. Yatagai, and S.-i. Kamemaru, “Application of Surface Relief Hologram Using Azobenzene Containing Polymer Film,” Opt. Rev. 12(2), 130–134 (2005).
[CrossRef]

Kiebooms, R.

C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000).
[CrossRef]

Kim, D. Y.

C. Chun, M.-J. Kim, D. Vak, and D. Y. Kim, “A novel azobenzene-based amorphous molecular material with a spiro linked bifluorene,” J. Mater. Chem. 13(12), 2904–2909 (2003).
[CrossRef]

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Kim, M.-J.

C. Chun, M.-J. Kim, D. Vak, and D. Y. Kim, “A novel azobenzene-based amorphous molecular material with a spiro linked bifluorene,” J. Mater. Chem. 13(12), 2904–2909 (2003).
[CrossRef]

Koch, N.

S. Schrader, P. Imperia, N. Koch, G. Leising, and B. Falk, “Organic Light-emitting Devices Based on New Heterocyclic Compounds,” Proc. SPIE 3797, 209–220 (1999).
[CrossRef]

Kofod, G.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. (Deerfield Beach Fla.) 23(37), 4265–4269 (2011).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Kollosche, M.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. (Deerfield Beach Fla.) 23(37), 4265–4269 (2011).
[CrossRef] [PubMed]

Kravchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. (Deerfield Beach Fla.) 23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

Ksianzou, V.

V. Ksianzou, R. K. Velagapudi, B. Grimm, and S. Schrader, “Polarization-dependent optical characterization of poly(phenylquinoxaline) thin films,” J. Appl. Phys. 100(6), 063106 (2006).
[CrossRef]

Kulikovska, O.

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir 26(4), 2214–2217 (2010).
[CrossRef] [PubMed]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010).
[CrossRef]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, O. Sakhno, and J. Stumpe, “All-optical fabrication of 2D and 3D photonic micro-structures in polymeric materials,” Proc. SPIE 7716, 77161V (2010).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “Extremely high patterning efficiency in easily made azobenzene-containing polymer films,” J. Mater. Chem. 19(34), 6103–6105 (2009).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings,” J. Mater. Chem. 19(43), 8068–8071 (2009).
[CrossRef]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “3D structures using surface relief gratings of azobenzene materials,” J. Opt. A 10(12), 125304 (2008).
[CrossRef]

L. M. Goldenberg, Y. Gritsai, O. Kulikovska, and J. Stumpe, “Three-dimensional planarized diffraction structures based on surface relief gratings in azobenzene materials,” Opt. Lett. 33(12), 1309–1311 (2008).
[CrossRef] [PubMed]

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular Azobenzene-Based Materials for Optical Generation of Microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[CrossRef]

L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte,” Langmuir 21(11), 4794–4796 (2005).
[CrossRef] [PubMed]

Kulikovsky, L.

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir 26(4), 2214–2217 (2010).
[CrossRef] [PubMed]

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings,” J. Mater. Chem. 19(43), 8068–8071 (2009).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “Extremely high patterning efficiency in easily made azobenzene-containing polymer films,” J. Mater. Chem. 19(34), 6103–6105 (2009).
[CrossRef]

Kumar, J.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Leising, G.

S. Schrader, P. Imperia, N. Koch, G. Leising, and B. Falk, “Organic Light-emitting Devices Based on New Heterocyclic Compounds,” Proc. SPIE 3797, 209–220 (1999).
[CrossRef]

Li, L.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Lindfors, K.

A. Priimagi, K. Lindfors, M. Kaivola, and P. Rochon, “Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes,” ACS Appl. Mater. Interfaces 1(6), 1183–1189 (2009).
[CrossRef] [PubMed]

Liu, W.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Matsui, T.

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of Flexible Distributed Feedback Laser Using Photoinduced Surface Relief Grating on Azo-Polymer Film as a Template,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1386–L1388 (2002).
[CrossRef]

Miniewicz, A.

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[CrossRef]

Mizoshita, N.

N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 516–521 (2008).
[CrossRef]

Motschmann, H.

C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000).
[CrossRef]

Mysliwiec, J.

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[CrossRef]

Nagano, S.

N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 516–521 (2008).
[CrossRef]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

Nunzi, J.-M.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[CrossRef]

Ogasawara, T.

N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 516–521 (2008).
[CrossRef]

Ovchinnikov, V.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. (Deerfield Beach Fla.) 23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

Ozaki, M.

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of Flexible Distributed Feedback Laser Using Photoinduced Surface Relief Grating on Azo-Polymer Film as a Template,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1386–L1388 (2002).
[CrossRef]

Prescher, D.

S. Schrader, D. Prescher, and V. Zauls, “New chromophores and polymers for second order nonlinear optics,” Proc. SPIE 3474, 160–171 (1998).
[CrossRef]

Priimagi, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. (Deerfield Beach Fla.) 23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

J. Vapaavuori, A. Priimagi, and M. Kaivola, “Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes,” J. Mater. Chem. 20(25), 5260–5264 (2010).
[CrossRef]

A. Priimagi, K. Lindfors, M. Kaivola, and P. Rochon, “Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes,” ACS Appl. Mater. Interfaces 1(6), 1183–1189 (2009).
[CrossRef] [PubMed]

Rabbani-Haghighi, H.

Rabe, T.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. (Deerfield Beach Fla.) 23(37), 4265–4269 (2011).
[CrossRef] [PubMed]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010).
[CrossRef]

Raimond, P.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[CrossRef]

Rocha, L.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[CrossRef]

Rochon, P.

A. Priimagi, K. Lindfors, M. Kaivola, and P. Rochon, “Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes,” ACS Appl. Mater. Interfaces 1(6), 1183–1189 (2009).
[CrossRef] [PubMed]

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

Rosenhauer, R.

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010).
[CrossRef]

Sakai, D.

D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005).
[CrossRef]

Sakhno, O.

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, O. Sakhno, and J. Stumpe, “All-optical fabrication of 2D and 3D photonic micro-structures in polymeric materials,” Proc. SPIE 7716, 77161V (2010).
[CrossRef]

Samuelson, L.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Schrader, S.

V. Ksianzou, R. K. Velagapudi, B. Grimm, and S. Schrader, “Polarization-dependent optical characterization of poly(phenylquinoxaline) thin films,” J. Appl. Phys. 100(6), 063106 (2006).
[CrossRef]

A. Hayer, H. Bässler, B. Falk, and S. Schrader, “Delayed Fluorescence and Phosphorescence from Polyphenylquinoxalines,” J. Phys. Chem. A 106(46), 11045–11053 (2002).
[CrossRef]

C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000).
[CrossRef]

S. Schrader, P. Imperia, N. Koch, G. Leising, and B. Falk, “Organic Light-emitting Devices Based on New Heterocyclic Compounds,” Proc. SPIE 3797, 209–220 (1999).
[CrossRef]

S. Schrader, D. Prescher, and V. Zauls, “New chromophores and polymers for second order nonlinear optics,” Proc. SPIE 3474, 160–171 (1998).
[CrossRef]

Seki, T.

N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 516–521 (2008).
[CrossRef]

T. Ubukata, T. Seki, and K. Ichimura, “Surface Relief Grating in Host-Guest Supramolecular Materials,” Adv. Mater. (Deerfield Beach Fla.) 12(22), 1675–1678 (2000).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Shevchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. (Deerfield Beach Fla.) 23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

Shirota, Y.

Y. Shirota, “Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications,” J. Mater. Chem. 15(1), 75–93 (2005).
[CrossRef]

Siove, A.

Sobolewska, A.

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[CrossRef]

Song, B.

J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
[CrossRef]

Stiller, B.

C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000).
[CrossRef]

Stumpe, J.

L. M. Goldenberg, Y. Gritsai, and J. Stumpe, “Efficient surface relief grating generated in azobenzene-containing material using He-Ne laser,” J. Opt. 13(7), 075601 (2011).
[CrossRef]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. (Deerfield Beach Fla.) 23(37), 4265–4269 (2011).
[CrossRef] [PubMed]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010).
[CrossRef]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, O. Sakhno, and J. Stumpe, “All-optical fabrication of 2D and 3D photonic micro-structures in polymeric materials,” Proc. SPIE 7716, 77161V (2010).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir 26(4), 2214–2217 (2010).
[CrossRef] [PubMed]

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “Extremely high patterning efficiency in easily made azobenzene-containing polymer films,” J. Mater. Chem. 19(34), 6103–6105 (2009).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings,” J. Mater. Chem. 19(43), 8068–8071 (2009).
[CrossRef]

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “3D structures using surface relief gratings of azobenzene materials,” J. Opt. A 10(12), 125304 (2008).
[CrossRef]

L. M. Goldenberg, Y. Gritsai, O. Kulikovska, and J. Stumpe, “Three-dimensional planarized diffraction structures based on surface relief gratings in azobenzene materials,” Opt. Lett. 33(12), 1309–1311 (2008).
[CrossRef] [PubMed]

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular Azobenzene-Based Materials for Optical Generation of Microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[CrossRef]

L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte,” Langmuir 21(11), 4794–4796 (2005).
[CrossRef] [PubMed]

Sznitko, L.

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[CrossRef]

Tomczyk, J.

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir 26(4), 2214–2217 (2010).
[CrossRef] [PubMed]

Tripathy, S. K.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Ubukata, T.

T. Isoshima, E. Ito, T. Ubukata, and M. Hara, “Fluorescence Dynamics of Organic Laser Dyes in Azobenzene Polymer,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 444(1), 81–86 (2006).
[CrossRef]

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-Programmable Organic Distributed-Feedback Laser Using a Photoinduced Surface Relief Grating,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 445(1), 269–273 (2006).
[CrossRef]

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength Programmable Organic Distributed Feedback Laser based on a Photoassisted Polymer Migration System,” Adv. Mater. (Deerfield Beach Fla.) 17(13), 1630–1633 (2005).
[CrossRef]

T. Ubukata, T. Seki, and K. Ichimura, “Surface Relief Grating in Host-Guest Supramolecular Materials,” Adv. Mater. (Deerfield Beach Fla.) 12(22), 1675–1678 (2000).
[CrossRef]

Vak, D.

C. Chun, M.-J. Kim, D. Vak, and D. Y. Kim, “A novel azobenzene-based amorphous molecular material with a spiro linked bifluorene,” J. Mater. Chem. 13(12), 2904–2909 (2003).
[CrossRef]

Vapaavuori, J.

J. Vapaavuori, A. Priimagi, and M. Kaivola, “Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes,” J. Mater. Chem. 20(25), 5260–5264 (2010).
[CrossRef]

Velagapudi, R. K.

V. Ksianzou, R. K. Velagapudi, B. Grimm, and S. Schrader, “Polarization-dependent optical characterization of poly(phenylquinoxaline) thin films,” J. Appl. Phys. 100(6), 063106 (2006).
[CrossRef]

Viswanathan, N. K.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Wang, X.

Q. Zhang, X. Wang, C. J. Barrett, and C. G. Bazuin, “Spacer-Free Ionic Dye-Polyelectrolyte Complexes: Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion,” Chem. Mater. 21(14), 3216–3227 (2009).
[CrossRef]

J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
[CrossRef]

Wang, Z.

J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
[CrossRef]

Williams, J.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Xu, H.

J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
[CrossRef]

Yatagai, T.

K. Harada, M. Itoh, T. Yatagai, and S.-i. Kamemaru, “Application of Surface Relief Hologram Using Azobenzene Containing Polymer Film,” Opt. Rev. 12(2), 130–134 (2005).
[CrossRef]

D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005).
[CrossRef]

Yoshino, K.

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of Flexible Distributed Feedback Laser Using Photoinduced Surface Relief Grating on Azo-Polymer Film as a Template,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1386–L1388 (2002).
[CrossRef]

Zauls, V.

C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000).
[CrossRef]

S. Schrader, D. Prescher, and V. Zauls, “New chromophores and polymers for second order nonlinear optics,” Proc. SPIE 3474, 160–171 (1998).
[CrossRef]

Zettsu, N.

N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 516–521 (2008).
[CrossRef]

Zhang, Q.

Q. Zhang, X. Wang, C. J. Barrett, and C. G. Bazuin, “Spacer-Free Ionic Dye-Polyelectrolyte Complexes: Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion,” Chem. Mater. 21(14), 3216–3227 (2009).
[CrossRef]

Q. Zhang, C. G. Bazuin, and C. J. Barrett, “Simple Spacer-Free Dye-Polyelectrolyte Ionic Complex: Side-Chain Liquid Crystal Order with High and Stable Photoinduced Birefringence,” Chem. Mater. 20(1), 29–31 (2008).
[CrossRef]

Zhang, X.

J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
[CrossRef]

ACS Appl. Mater. Interfaces (1)

A. Priimagi, K. Lindfors, M. Kaivola, and P. Rochon, “Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes,” ACS Appl. Mater. Interfaces 1(6), 1183–1189 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (5)

N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 516–521 (2008).
[CrossRef]

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. (Deerfield Beach Fla.) 23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

T. Ubukata, T. Seki, and K. Ichimura, “Surface Relief Grating in Host-Guest Supramolecular Materials,” Adv. Mater. (Deerfield Beach Fla.) 12(22), 1675–1678 (2000).
[CrossRef]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. (Deerfield Beach Fla.) 23(37), 4265–4269 (2011).
[CrossRef] [PubMed]

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength Programmable Organic Distributed Feedback Laser based on a Photoassisted Polymer Migration System,” Adv. Mater. (Deerfield Beach Fla.) 17(13), 1630–1633 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[CrossRef]

Chem. Mater. (4)

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular Azobenzene-Based Materials for Optical Generation of Microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[CrossRef]

Q. Zhang, C. G. Bazuin, and C. J. Barrett, “Simple Spacer-Free Dye-Polyelectrolyte Ionic Complex: Side-Chain Liquid Crystal Order with High and Stable Photoinduced Birefringence,” Chem. Mater. 20(1), 29–31 (2008).
[CrossRef]

Q. Zhang, X. Wang, C. J. Barrett, and C. G. Bazuin, “Spacer-Free Ionic Dye-Polyelectrolyte Complexes: Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion,” Chem. Mater. 21(14), 3216–3227 (2009).
[CrossRef]

J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007).
[CrossRef]

Chem. Rev. (2)

K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[CrossRef] [PubMed]

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[CrossRef]

V. Ksianzou, R. K. Velagapudi, B. Grimm, and S. Schrader, “Polarization-dependent optical characterization of poly(phenylquinoxaline) thin films,” J. Appl. Phys. 100(6), 063106 (2006).
[CrossRef]

J. Mater. Chem. (7)

Y. Shirota, “Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications,” J. Mater. Chem. 15(1), 75–93 (2005).
[CrossRef]

C. Chun, M.-J. Kim, D. Vak, and D. Y. Kim, “A novel azobenzene-based amorphous molecular material with a spiro linked bifluorene,” J. Mater. Chem. 13(12), 2904–2909 (2003).
[CrossRef]

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

J. Vapaavuori, A. Priimagi, and M. Kaivola, “Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes,” J. Mater. Chem. 20(25), 5260–5264 (2010).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “Extremely high patterning efficiency in easily made azobenzene-containing polymer films,” J. Mater. Chem. 19(34), 6103–6105 (2009).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings,” J. Mater. Chem. 19(43), 8068–8071 (2009).
[CrossRef]

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[CrossRef]

J. Opt. (1)

L. M. Goldenberg, Y. Gritsai, and J. Stumpe, “Efficient surface relief grating generated in azobenzene-containing material using He-Ne laser,” J. Opt. 13(7), 075601 (2011).
[CrossRef]

J. Opt. A (1)

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “3D structures using surface relief gratings of azobenzene materials,” J. Opt. A 10(12), 125304 (2008).
[CrossRef]

J. Phys. Chem. A (1)

A. Hayer, H. Bässler, B. Falk, and S. Schrader, “Delayed Fluorescence and Phosphorescence from Polyphenylquinoxalines,” J. Phys. Chem. A 106(46), 11045–11053 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of Flexible Distributed Feedback Laser Using Photoinduced Surface Relief Grating on Azo-Polymer Film as a Template,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1386–L1388 (2002).
[CrossRef]

Langmuir (2)

L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir 26(4), 2214–2217 (2010).
[CrossRef] [PubMed]

L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte,” Langmuir 21(11), 4794–4796 (2005).
[CrossRef] [PubMed]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-Programmable Organic Distributed-Feedback Laser Using a Photoinduced Surface Relief Grating,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 445(1), 269–273 (2006).
[CrossRef]

T. Isoshima, E. Ito, T. Ubukata, and M. Hara, “Fluorescence Dynamics of Organic Laser Dyes in Azobenzene Polymer,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 444(1), 81–86 (2006).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (2)

K. Harada, M. Itoh, T. Yatagai, and S.-i. Kamemaru, “Application of Surface Relief Hologram Using Azobenzene Containing Polymer Film,” Opt. Rev. 12(2), 130–134 (2005).
[CrossRef]

D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005).
[CrossRef]

Proc. SPIE (4)

Y. Gritsai, L. M. Goldenberg, O. Kulikovska, O. Sakhno, and J. Stumpe, “All-optical fabrication of 2D and 3D photonic micro-structures in polymeric materials,” Proc. SPIE 7716, 77161V (2010).
[CrossRef]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010).
[CrossRef]

S. Schrader, D. Prescher, and V. Zauls, “New chromophores and polymers for second order nonlinear optics,” Proc. SPIE 3474, 160–171 (1998).
[CrossRef]

S. Schrader, P. Imperia, N. Koch, G. Leising, and B. Falk, “Organic Light-emitting Devices Based on New Heterocyclic Compounds,” Proc. SPIE 3797, 209–220 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Synth. Met. (1)

C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000).
[CrossRef]

Other (3)

K. Izuka, Elements of Photonics, Volume II: For Fiber and Integrated Optics (John Wiley & Sons, 2002).

L. M. Goldenberg, Y. Gritsai, O. Sakhno, O. Kulikovska, and J. Stumpe, “All-optical fabrication of 2D, 3D and hierarchic structures using step-by-step approach and a single polymer phase mask,” Proc. First Mediterranean Photonics Conference, 28–30 (2008).

Y. Zhao and T. Ikeda, eds., Smart Light-Responsive Materials. Azobenzene-Containing Polymers and Liquid Crystals (Wiley, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of DFB laser design using SRG inscribed in azobenzene-containing layer: a) and c) – active layer on the top of SRG; b) – SRG on the top of active layer.

Fig. 2
Fig. 2

(a) Schematic presentation of the experimental setup for the lasing measurements, (b) CCD camera image of laser generation in a device with SRG of ca 380 nm period, ca 50 nm amplitude, and an active layer of DCM 10%w/w in PPQ.

Fig. 3
Fig. 3

Inscription kinetics (0th diffraction order efficiency) for the SRG of 400nm period.

Fig. 4
Fig. 4

AFM images (Veeco CPII intermittent-contact mode) of SRG written in PAZO layer: (a) - 580nm period (inscription time 30 min, amplitude modulation ca 120nm), (b) - 345nm period (inscription time 45min, amplitude modulation ca 55nm).

Fig. 5
Fig. 5

Spectra of laser generation (solid lines) in DFB structures with the following parameters: a) SRG of ca 400nm period, ca 50nm amplitude, active material is DCM2 10% w/w in PPQ; b) SRG of ca 380nm period, ca 50nm amplitude, active material is DCM 10%w/w in PPQ; c) SRG of ca 345nm period, ca 50nm amplitude, active material is pyromethene 580 6%w/w in PPQ. Active layer thickness is ca 500 nm. Dotted line represents ASE spectra obtained for the same systems but without DFB structure. Dashed line (in Fig. c) represents laser generation for an active layer thickness of 600 nm.

Fig. 6
Fig. 6

Calculated dependencies of laser wavelength on the active layer thickness (solid line); squares – experimental data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ L = 2 n eff Λ m ,
n eff =nsin( θ ),
2π λ L nhcos( θ )lπ=δ( θ, n AZO n )+δ( θ, 1 n ),
δ( θ, n r )=arctan( sin 2 θ n r 2 cosθ ).

Metrics