Abstract

In this work we present a novel optical polymer system based on polyurethane elastomer components, which combines excellent UV transparency with high thermal stability, good hardness, high surface tension and long pot life. The material looks very promising for encapsulation and microlensing applications for chip-on-board (CoB) light-emitting diodes (LED). The extinction coefficient k, refractive index n, and bandgap parameters were derived from transmission and reflection measurements in a wavelength range of 200-890 nm. Thermogravimetry and differential scanning calorimetry were used to provide glass transition and degradation temperatures. The surface tension was determined by means of contact angle measurements. As proof of concept, a commercial InGaN-CoB-LED is used to demonstrate the suitability of the new material for the production of microlenses.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Preparation and properties of a high refractive index optical resin prepared via click chemistry method

Chaoyun Luo, Jiandong Zuo, Yanchao Yuan, Xuechun Lin, Feng Lin, and Jianqing Zhao
Opt. Mater. Express 5(3) 462-468 (2015)

Superlattice hole injection layers for UV LEDs grown on SiC

Christian J. Zollner, Abdullah S. Almogbel, Yifan Yao, Michael Wang, Michael Iza, James S. Speck, Steven P. DenBaars, and Shuji Nakamura
Opt. Mater. Express 10(9) 2171-2180 (2020)

Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components

Simon Ristok, Simon Thiele, Andrea Toulouse, Alois M. Herkommer, and Harald Giessen
Opt. Mater. Express 10(10) 2370-2378 (2020)

References

  • View by:
  • |
  • |
  • |

  1. P. Tollay, “Polymer optics gain respect,” Photon. Spectra 37, 76 (2003).
  2. K. Angermaier and P. H. Müller, “Zeit und Kosten sparen, UV-härtende Silicone,” Carl Hanser Verlag, München, Kunststoffe, 4 (2010).
  3. W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Biomed. Opt. Express 5(5), 1626 (2014).
    [Crossref]
  4. C. L. Chang Chien, Y. C. Huang, S. F. Hu, C. M. Chang, M. C. Yip, and W. Fang, “Polymer dispensing and embossing technology for the lens type LED packaging,” J. Micromech. Microeng. 23(6), 065019 (2013).
    [Crossref]
  5. H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “Active packaging method for light-emitting diode lamps with photosensitive epoxy resins,” IEEE Photonics Technol. Lett. 20(2), 87–89 (2008).
    [Crossref]
  6. J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, and D. W. Kim, “Improvement in the color uniformity of LED by microspheres generated from phase separation,” Opt. Mater. 34(9), 1614–1617 (2012).
    [Crossref]
  7. N. Gao, W. Q. Liu, Z. L. Yan, and Z. F. Wang, “Synthesis and properties of transparent cycloaliphatic epoxy-silicone resins for optoelectronic devices packaging,” Opt. Mater. 35(3), 567–575 (2013).
    [Crossref]
  8. P. Tao, A. Viswanath, L. S. Schadler, B. C. Benicewicz, and R. W. Siegel, “Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles,” ACS Appl. Mater. Interfaces 3(9), 3638–3645 (2011).
    [Crossref]
  9. W. S. Beich and N. Turnera, “Polymer Optics: A manufacturer’s perspective on the factors that contribute to successful programs in Polymer Optics Design, Fabrication, and Materials,” David H. Krevor and William S. Beich, eds. Proc. of SPIE Vol. 7788, 778805 (2010).
  10. G. Lu, M. Y. Mehr, W. D. van Driel, X. Fan, J. Fan, and K. M. B. Jansen, “Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA,” Opt. Mater. 45, 37–41 (2015).
    [Crossref]
  11. N. Niessner and D. Wagner, “Practical Guide to Structures, Properties and Applications of Styrenic Polymers,” Smithers Rapra Technology (14. März 2013).
  12. M. Y. Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, and G. Q. Zhang, “Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties,” Opt. Mater. 35(3), 504–508 (2013).
    [Crossref]
  13. C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators, A 147(2), 369–377 (2008).
    [Crossref]
  14. J.-M. Park, Z. Gan, W. Y. Leung, R. Liu, Z. Ye, K. Constant, J. Shinar, R. Shinar, and K.-M. Ho, “Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction,” Opt. Express 19(S4), A786 (2011).
    [Crossref]
  15. C. W. Hsu, C. C. M. Ma, C. S. Tan, H. T. Li, and S. C. Huang, “Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant,” Mater. Chem. Phys. 134(2-3), 789–796 (2012).
    [Crossref]
  16. W. Huang, Y. Zhang, Y. Z. Yu, and Y. X. Yuan, “Studies on UV-stable silicone–epoxy resins,” J. Appl. Polym. Sci. 104(6), 3954–3959 (2007).
    [Crossref]
  17. K. H. Wu, K. F. Cheng, C. R. Wang, C. C. Yang, and Y. S. Lai, “Study of thermal and optical properties of epoxy/organically modified silicate hybrids,” Mater. Express 6(1), 28–36 (2016).
    [Crossref]
  18. E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
    [Crossref]
  19. Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Technol. 33(4), 761–766 (2010).
    [Crossref]
  20. S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant,” J. Appl. Polym. Sci. 122(4), 2478–2485 (2011).
    [Crossref]
  21. S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. I. Seok, “Nonhydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins,” Mater. Chem. Phys. 112(3), 1008–1014 (2008).
    [Crossref]
  22. S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Thermal resistance of cycloaliphatic epoxy rybrimer based on sol-gel derived oligosiloxane for LED encapsulation,” J. Appl. Polym. Sci. 117(4), 2140–2145 (2010).
    [Crossref]
  23. J. S. Kim, S. C. Yang, and B. S. Bae, “Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation,” Chem. Mater. 22(11), 3549–3555 (2010).
    [Crossref]
  24. C. L. Chiang, R. C. Chang, and Y. C. Chiu, “Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method,” Thermochim. Acta 453(2), 97–104 (2007).
    [Crossref]
  25. C. H. Chen, S. C. Huang, and K. C. Chen, “Novel Siloxane-Modified Epoxy Resins as Promising Encapsulant for LEDs,” Polymers 12(1), 21 (2020).
    [Crossref]
  26. M. Lay, M. R. Ramli, R. Ramli, N. C. Mang, and Z. Ahmad, “Crosslink network and phenyl content on the optical, hardness, and thermal aging of PDMS LED encapsulant,” J. Appl. Polym. Sci. 136(34), 47895 (2019).
    [Crossref]
  27. J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
    [Crossref]
  28. M. Chanda, “Plastic Technology Handbook,” CRC Press Taylor & Francis Group (2018).
  29. E. Ayres, W. L. Vasconcelos, and R. L. Oréfice, “Attachment of in organic moieties onto aliphatic polyurethanes,” Mat. Res. 10(2), 119–1252007.
    [Crossref]
  30. P. A. Ykman, “Recent Developments in Aliphatic Thermoplastic Polyurethane,” ed. in Thermoplastic Elastomer III, palais des congress Brussels, Belgium, April 1991, ISBN 0 902348 52 3.
  31. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
    [Crossref]
  32. G. E. Jellison and F. A. Modine, “Erratum,” Appl. Phys. Lett. 69(14), 2137 (1996).
    [Crossref]
  33. M. Foldyna, K. Postava, J. Bouchala, J. Pitora, and T. Yamaguchi, “Model dielectric function of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2003).
    [Crossref]
  34. M. Cardona, “Modulation Spectroscopy Suppl. vol. 11 to Solid State Physics,” F. Seitz, D. Turnbull, and H. Ehrenreich, eds. Academic, New York (1969).
  35. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35(17), 9174–9189 (1987).
    [Crossref]
  36. D. E. Aspnes, “Modulation spectroscopy/electric field effects on the dielectric function of semiconductors,” in Handbook of Semiconductors, Vol. 2, M. Balkanski, ed. (North-Holland, 1980) pp. 109–154
  37. S. Wu, Polymer Interface and Adhesion (Marcel Dekker, 1982).
  38. J. Bauer, G. Drescher, and M. Illig, “Surface tension, adhesion and wetting of materials for photolithographic process,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(4), 2485 (1996).
    [Crossref]
  39. J. Bauer, G. Drescher, H. Silz, H. Frankenfeld, and M. Illig, “Surface Tension and Adhesion of Photo and Electron-Beam Resists,” SPIE Vol. 3049 Advances in Resist Technology and Processing XIV (1997).
  40. J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
    [Crossref]
  41. J. Bauer, “Bestimmung der optischen Konstanten, der Schichtdicke und der Oberflächenrauigkeit dünner Schichten,” Experimentelle Technik der Physik 25(2), 105 (1977).
  42. O. S. Heavens, The Optical Properties of Thin Solid Films (Butterworth, 1955).
  43. A. Köhler and H. Bässler, Electronic Processes in Organic Semiconductors (The Electronic Structure of Organic Semiconductors) (Wiley-VCH Verlag GmbH & Co, 2015), 25.
  44. A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications,” International Journal of Applied Science and Technology 3, 5 (2013).
  45. A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A: Pure Appl. Opt. 2(5), 458–464 (2000).
    [Crossref]
  46. D. K. Seo and R. Hofmann, “Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials,” Theor. Chem. Acc. 102(1-6), 23–32 (1999).
    [Crossref]
  47. N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, 1971).
  48. A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model,” Adv. Mater. Res. 488-489, 628–632 (2012).
    [Crossref]
  49. J. Tauc, “Optical Properties of Amorphous Semiconductor,” in Amorphous and Liquid Semiconductor (Plenum Publishing Company LTD, 1973).
  50. W. Brütting and W. Rieß, “Grundlagen der organischen Halbleiter,” Physik Journal 7, 33 (2008).
  51. D. A. Tahir, “Optical properties of polymer composite PS-PC thin films,” Journal of Kirkuk University –Scientific Studies 5(2), 87 (2010).
  52. A. S. Abed, K. M. Ziadan, and A. Q. Abdullah, “Some optical properties of polyurethane,” Iraqi J. of Polymers 17(1), 18 (2014).
  53. I. Filinski, “The effects of sample imperfections on optical spectra,” Phys. Status Solidi B 49(2), 577–588 (1972).
    [Crossref]

2020 (2)

C. H. Chen, S. C. Huang, and K. C. Chen, “Novel Siloxane-Modified Epoxy Resins as Promising Encapsulant for LEDs,” Polymers 12(1), 21 (2020).
[Crossref]

J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
[Crossref]

2019 (1)

M. Lay, M. R. Ramli, R. Ramli, N. C. Mang, and Z. Ahmad, “Crosslink network and phenyl content on the optical, hardness, and thermal aging of PDMS LED encapsulant,” J. Appl. Polym. Sci. 136(34), 47895 (2019).
[Crossref]

2017 (1)

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

2016 (1)

K. H. Wu, K. F. Cheng, C. R. Wang, C. C. Yang, and Y. S. Lai, “Study of thermal and optical properties of epoxy/organically modified silicate hybrids,” Mater. Express 6(1), 28–36 (2016).
[Crossref]

2015 (1)

G. Lu, M. Y. Mehr, W. D. van Driel, X. Fan, J. Fan, and K. M. B. Jansen, “Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA,” Opt. Mater. 45, 37–41 (2015).
[Crossref]

2014 (2)

W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Biomed. Opt. Express 5(5), 1626 (2014).
[Crossref]

A. S. Abed, K. M. Ziadan, and A. Q. Abdullah, “Some optical properties of polyurethane,” Iraqi J. of Polymers 17(1), 18 (2014).

2013 (4)

C. L. Chang Chien, Y. C. Huang, S. F. Hu, C. M. Chang, M. C. Yip, and W. Fang, “Polymer dispensing and embossing technology for the lens type LED packaging,” J. Micromech. Microeng. 23(6), 065019 (2013).
[Crossref]

M. Y. Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, and G. Q. Zhang, “Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties,” Opt. Mater. 35(3), 504–508 (2013).
[Crossref]

N. Gao, W. Q. Liu, Z. L. Yan, and Z. F. Wang, “Synthesis and properties of transparent cycloaliphatic epoxy-silicone resins for optoelectronic devices packaging,” Opt. Mater. 35(3), 567–575 (2013).
[Crossref]

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications,” International Journal of Applied Science and Technology 3, 5 (2013).

2012 (3)

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model,” Adv. Mater. Res. 488-489, 628–632 (2012).
[Crossref]

J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, and D. W. Kim, “Improvement in the color uniformity of LED by microspheres generated from phase separation,” Opt. Mater. 34(9), 1614–1617 (2012).
[Crossref]

C. W. Hsu, C. C. M. Ma, C. S. Tan, H. T. Li, and S. C. Huang, “Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant,” Mater. Chem. Phys. 134(2-3), 789–796 (2012).
[Crossref]

2011 (3)

J.-M. Park, Z. Gan, W. Y. Leung, R. Liu, Z. Ye, K. Constant, J. Shinar, R. Shinar, and K.-M. Ho, “Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction,” Opt. Express 19(S4), A786 (2011).
[Crossref]

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant,” J. Appl. Polym. Sci. 122(4), 2478–2485 (2011).
[Crossref]

P. Tao, A. Viswanath, L. S. Schadler, B. C. Benicewicz, and R. W. Siegel, “Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles,” ACS Appl. Mater. Interfaces 3(9), 3638–3645 (2011).
[Crossref]

2010 (4)

Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Technol. 33(4), 761–766 (2010).
[Crossref]

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Thermal resistance of cycloaliphatic epoxy rybrimer based on sol-gel derived oligosiloxane for LED encapsulation,” J. Appl. Polym. Sci. 117(4), 2140–2145 (2010).
[Crossref]

J. S. Kim, S. C. Yang, and B. S. Bae, “Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation,” Chem. Mater. 22(11), 3549–3555 (2010).
[Crossref]

D. A. Tahir, “Optical properties of polymer composite PS-PC thin films,” Journal of Kirkuk University –Scientific Studies 5(2), 87 (2010).

2008 (4)

W. Brütting and W. Rieß, “Grundlagen der organischen Halbleiter,” Physik Journal 7, 33 (2008).

S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. I. Seok, “Nonhydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins,” Mater. Chem. Phys. 112(3), 1008–1014 (2008).
[Crossref]

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators, A 147(2), 369–377 (2008).
[Crossref]

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “Active packaging method for light-emitting diode lamps with photosensitive epoxy resins,” IEEE Photonics Technol. Lett. 20(2), 87–89 (2008).
[Crossref]

2007 (3)

W. Huang, Y. Zhang, Y. Z. Yu, and Y. X. Yuan, “Studies on UV-stable silicone–epoxy resins,” J. Appl. Polym. Sci. 104(6), 3954–3959 (2007).
[Crossref]

C. L. Chiang, R. C. Chang, and Y. C. Chiu, “Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method,” Thermochim. Acta 453(2), 97–104 (2007).
[Crossref]

E. Ayres, W. L. Vasconcelos, and R. L. Oréfice, “Attachment of in organic moieties onto aliphatic polyurethanes,” Mat. Res. 10(2), 119–1252007.
[Crossref]

2006 (1)

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

2003 (2)

P. Tollay, “Polymer optics gain respect,” Photon. Spectra 37, 76 (2003).

M. Foldyna, K. Postava, J. Bouchala, J. Pitora, and T. Yamaguchi, “Model dielectric function of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2003).
[Crossref]

2000 (1)

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A: Pure Appl. Opt. 2(5), 458–464 (2000).
[Crossref]

1999 (1)

D. K. Seo and R. Hofmann, “Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials,” Theor. Chem. Acc. 102(1-6), 23–32 (1999).
[Crossref]

1996 (3)

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

G. E. Jellison and F. A. Modine, “Erratum,” Appl. Phys. Lett. 69(14), 2137 (1996).
[Crossref]

J. Bauer, G. Drescher, and M. Illig, “Surface tension, adhesion and wetting of materials for photolithographic process,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(4), 2485 (1996).
[Crossref]

1987 (1)

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35(17), 9174–9189 (1987).
[Crossref]

1977 (1)

J. Bauer, “Bestimmung der optischen Konstanten, der Schichtdicke und der Oberflächenrauigkeit dünner Schichten,” Experimentelle Technik der Physik 25(2), 105 (1977).

1972 (1)

I. Filinski, “The effects of sample imperfections on optical spectra,” Phys. Status Solidi B 49(2), 577–588 (1972).
[Crossref]

Abdullah, A. Q.

A. S. Abed, K. M. Ziadan, and A. Q. Abdullah, “Some optical properties of polyurethane,” Iraqi J. of Polymers 17(1), 18 (2014).

Abed, A. S.

A. S. Abed, K. M. Ziadan, and A. Q. Abdullah, “Some optical properties of polyurethane,” Iraqi J. of Polymers 17(1), 18 (2014).

Ahmad, Z.

M. Lay, M. R. Ramli, R. Ramli, N. C. Mang, and Z. Ahmad, “Crosslink network and phenyl content on the optical, hardness, and thermal aging of PDMS LED encapsulant,” J. Appl. Polym. Sci. 136(34), 47895 (2019).
[Crossref]

Ali, A. M. M.

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications,” International Journal of Applied Science and Technology 3, 5 (2013).

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model,” Adv. Mater. Res. 488-489, 628–632 (2012).
[Crossref]

Alias, A. N.

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications,” International Journal of Applied Science and Technology 3, 5 (2013).

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model,” Adv. Mater. Res. 488-489, 628–632 (2012).
[Crossref]

Angermaier, K.

K. Angermaier and P. H. Müller, “Zeit und Kosten sparen, UV-härtende Silicone,” Carl Hanser Verlag, München, Kunststoffe, 4 (2010).

Aspnes, D. E.

D. E. Aspnes, “Modulation spectroscopy/electric field effects on the dielectric function of semiconductors,” in Handbook of Semiconductors, Vol. 2, M. Balkanski, ed. (North-Holland, 1980) pp. 109–154

Ayres, E.

E. Ayres, W. L. Vasconcelos, and R. L. Oréfice, “Attachment of in organic moieties onto aliphatic polyurethanes,” Mat. Res. 10(2), 119–1252007.
[Crossref]

Bae, B. S.

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant,” J. Appl. Polym. Sci. 122(4), 2478–2485 (2011).
[Crossref]

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Thermal resistance of cycloaliphatic epoxy rybrimer based on sol-gel derived oligosiloxane for LED encapsulation,” J. Appl. Polym. Sci. 117(4), 2140–2145 (2010).
[Crossref]

J. S. Kim, S. C. Yang, and B. S. Bae, “Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation,” Chem. Mater. 22(11), 3549–3555 (2010).
[Crossref]

Baek, I. C.

S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. I. Seok, “Nonhydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins,” Mater. Chem. Phys. 112(3), 1008–1014 (2008).
[Crossref]

Bahadur, M.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Bässler, H.

A. Köhler and H. Bässler, Electronic Processes in Organic Semiconductors (The Electronic Structure of Organic Semiconductors) (Wiley-VCH Verlag GmbH & Co, 2015), 25.

Bauer, J.

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

J. Bauer, G. Drescher, and M. Illig, “Surface tension, adhesion and wetting of materials for photolithographic process,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(4), 2485 (1996).
[Crossref]

J. Bauer, “Bestimmung der optischen Konstanten, der Schichtdicke und der Oberflächenrauigkeit dünner Schichten,” Experimentelle Technik der Physik 25(2), 105 (1977).

J. Bauer, G. Drescher, H. Silz, H. Frankenfeld, and M. Illig, “Surface Tension and Adhesion of Photo and Electron-Beam Resists,” SPIE Vol. 3049 Advances in Resist Technology and Processing XIV (1997).

Beich, W. S.

W. S. Beich and N. Turnera, “Polymer Optics: A manufacturer’s perspective on the factors that contribute to successful programs in Polymer Optics Design, Fabrication, and Materials,” David H. Krevor and William S. Beich, eds. Proc. of SPIE Vol. 7788, 778805 (2010).

Benicewicz, B. C.

P. Tao, A. Viswanath, L. S. Schadler, B. C. Benicewicz, and R. W. Siegel, “Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles,” ACS Appl. Mater. Interfaces 3(9), 3638–3645 (2011).
[Crossref]

Bouchala, J.

M. Foldyna, K. Postava, J. Bouchala, J. Pitora, and T. Yamaguchi, “Model dielectric function of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2003).
[Crossref]

Boutelje, M.

M. Y. Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, and G. Q. Zhang, “Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties,” Opt. Mater. 35(3), 504–508 (2013).
[Crossref]

Brütting, W.

W. Brütting and W. Rieß, “Grundlagen der organischen Halbleiter,” Physik Journal 7, 33 (2008).

Cardona, M.

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35(17), 9174–9189 (1987).
[Crossref]

M. Cardona, “Modulation Spectroscopy Suppl. vol. 11 to Solid State Physics,” F. Seitz, D. Turnbull, and H. Ehrenreich, eds. Academic, New York (1969).

Chanda, M.

M. Chanda, “Plastic Technology Handbook,” CRC Press Taylor & Francis Group (2018).

Chang, C. M.

C. L. Chang Chien, Y. C. Huang, S. F. Hu, C. M. Chang, M. C. Yip, and W. Fang, “Polymer dispensing and embossing technology for the lens type LED packaging,” J. Micromech. Microeng. 23(6), 065019 (2013).
[Crossref]

Chang, R. C.

C. L. Chiang, R. C. Chang, and Y. C. Chiu, “Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method,” Thermochim. Acta 453(2), 97–104 (2007).
[Crossref]

Chang Chien, C. L.

C. L. Chang Chien, Y. C. Huang, S. F. Hu, C. M. Chang, M. C. Yip, and W. Fang, “Polymer dispensing and embossing technology for the lens type LED packaging,” J. Micromech. Microeng. 23(6), 065019 (2013).
[Crossref]

Chen, C. H.

C. H. Chen, S. C. Huang, and K. C. Chen, “Novel Siloxane-Modified Epoxy Resins as Promising Encapsulant for LEDs,” Polymers 12(1), 21 (2020).
[Crossref]

Chen, C.-T.

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators, A 147(2), 369–377 (2008).
[Crossref]

Chen, K. C.

C. H. Chen, S. C. Huang, and K. C. Chen, “Novel Siloxane-Modified Epoxy Resins as Promising Encapsulant for LEDs,” Polymers 12(1), 21 (2020).
[Crossref]

Cheng, K. F.

K. H. Wu, K. F. Cheng, C. R. Wang, C. C. Yang, and Y. S. Lai, “Study of thermal and optical properties of epoxy/organically modified silicate hybrids,” Mater. Express 6(1), 28–36 (2016).
[Crossref]

Chiang, C. L.

C. L. Chiang, R. C. Chang, and Y. C. Chiu, “Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method,” Thermochim. Acta 453(2), 97–104 (2007).
[Crossref]

Chiu, C.-L.

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators, A 147(2), 369–377 (2008).
[Crossref]

Chiu, Y. C.

C. L. Chiang, R. C. Chang, and Y. C. Chiu, “Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method,” Thermochim. Acta 453(2), 97–104 (2007).
[Crossref]

Cho, J. H.

J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, and D. W. Kim, “Improvement in the color uniformity of LED by microspheres generated from phase separation,” Opt. Mater. 34(9), 1614–1617 (2012).
[Crossref]

Cho, Y. H.

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “Active packaging method for light-emitting diode lamps with photosensitive epoxy resins,” IEEE Photonics Technol. Lett. 20(2), 87–89 (2008).
[Crossref]

Chuang, C.-T.

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators, A 147(2), 369–377 (2008).
[Crossref]

Constant, K.

Davis, E. A.

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, 1971).

Deeben, P.

M. Y. Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, and G. Q. Zhang, “Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties,” Opt. Mater. 35(3), 504–508 (2013).
[Crossref]

DeGroot, J.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Djurisic, A. B.

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A: Pure Appl. Opt. 2(5), 458–464 (2000).
[Crossref]

Drescher, G.

J. Bauer, G. Drescher, and M. Illig, “Surface tension, adhesion and wetting of materials for photolithographic process,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(4), 2485 (1996).
[Crossref]

J. Bauer, G. Drescher, H. Silz, H. Frankenfeld, and M. Illig, “Surface Tension and Adhesion of Photo and Electron-Beam Resists,” SPIE Vol. 3049 Advances in Resist Technology and Processing XIV (1997).

Fan, J.

G. Lu, M. Y. Mehr, W. D. van Driel, X. Fan, J. Fan, and K. M. B. Jansen, “Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA,” Opt. Mater. 45, 37–41 (2015).
[Crossref]

Fan, X.

G. Lu, M. Y. Mehr, W. D. van Driel, X. Fan, J. Fan, and K. M. B. Jansen, “Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA,” Opt. Mater. 45, 37–41 (2015).
[Crossref]

Fang, W.

C. L. Chang Chien, Y. C. Huang, S. F. Hu, C. M. Chang, M. C. Yip, and W. Fang, “Polymer dispensing and embossing technology for the lens type LED packaging,” J. Micromech. Microeng. 23(6), 065019 (2013).
[Crossref]

Filinski, I.

I. Filinski, “The effects of sample imperfections on optical spectra,” Phys. Status Solidi B 49(2), 577–588 (1972).
[Crossref]

Foldyna, M.

M. Foldyna, K. Postava, J. Bouchala, J. Pitora, and T. Yamaguchi, “Model dielectric function of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2003).
[Crossref]

Frankenfeld, H.

J. Bauer, G. Drescher, H. Silz, H. Frankenfeld, and M. Illig, “Surface Tension and Adhesion of Photo and Electron-Beam Resists,” SPIE Vol. 3049 Advances in Resist Technology and Processing XIV (1997).

Fritz, T.

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A: Pure Appl. Opt. 2(5), 458–464 (2000).
[Crossref]

Fu, S.

J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
[Crossref]

Fursenko, O.

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

Gan, Z.

Gao, N.

N. Gao, W. Q. Liu, Z. L. Yan, and Z. F. Wang, “Synthesis and properties of transparent cycloaliphatic epoxy-silicone resins for optoelectronic devices packaging,” Opt. Mater. 35(3), 567–575 (2013).
[Crossref]

Garriga, M.

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35(17), 9174–9189 (1987).
[Crossref]

Harun, M. K.

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications,” International Journal of Applied Science and Technology 3, 5 (2013).

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model,” Adv. Mater. Res. 488-489, 628–632 (2012).
[Crossref]

He, X.

J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
[Crossref]

Heavens, O. S.

O. S. Heavens, The Optical Properties of Thin Solid Films (Butterworth, 1955).

Heinrich, F.

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

Ho, K.-M.

Hofmann, R.

D. K. Seo and R. Hofmann, “Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials,” Theor. Chem. Acc. 102(1-6), 23–32 (1999).
[Crossref]

Hong, C. H.

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “Active packaging method for light-emitting diode lamps with photosensitive epoxy resins,” IEEE Photonics Technol. Lett. 20(2), 87–89 (2008).
[Crossref]

Hsu, C. W.

C. W. Hsu, C. C. M. Ma, C. S. Tan, H. T. Li, and S. C. Huang, “Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant,” Mater. Chem. Phys. 134(2-3), 789–796 (2012).
[Crossref]

Hu, S. F.

C. L. Chang Chien, Y. C. Huang, S. F. Hu, C. M. Chang, M. C. Yip, and W. Fang, “Polymer dispensing and embossing technology for the lens type LED packaging,” J. Micromech. Microeng. 23(6), 065019 (2013).
[Crossref]

Huang, S. C.

C. H. Chen, S. C. Huang, and K. C. Chen, “Novel Siloxane-Modified Epoxy Resins as Promising Encapsulant for LEDs,” Polymers 12(1), 21 (2020).
[Crossref]

C. W. Hsu, C. C. M. Ma, C. S. Tan, H. T. Li, and S. C. Huang, “Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant,” Mater. Chem. Phys. 134(2-3), 789–796 (2012).
[Crossref]

Huang, W.

W. Huang, Y. Zhang, Y. Z. Yu, and Y. X. Yuan, “Studies on UV-stable silicone–epoxy resins,” J. Appl. Polym. Sci. 104(6), 3954–3959 (2007).
[Crossref]

Huang, Y. C.

C. L. Chang Chien, Y. C. Huang, S. F. Hu, C. M. Chang, M. C. Yip, and W. Fang, “Polymer dispensing and embossing technology for the lens type LED packaging,” J. Micromech. Microeng. 23(6), 065019 (2013).
[Crossref]

Illig, M.

J. Bauer, G. Drescher, and M. Illig, “Surface tension, adhesion and wetting of materials for photolithographic process,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(4), 2485 (1996).
[Crossref]

J. Bauer, G. Drescher, H. Silz, H. Frankenfeld, and M. Illig, “Surface Tension and Adhesion of Photo and Electron-Beam Resists,” SPIE Vol. 3049 Advances in Resist Technology and Processing XIV (1997).

Jana, S.

S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. I. Seok, “Nonhydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins,” Mater. Chem. Phys. 112(3), 1008–1014 (2008).
[Crossref]

Jang, M. S.

J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, and D. W. Kim, “Improvement in the color uniformity of LED by microspheres generated from phase separation,” Opt. Mater. 34(9), 1614–1617 (2012).
[Crossref]

Jansen, K. M. B.

G. Lu, M. Y. Mehr, W. D. van Driel, X. Fan, J. Fan, and K. M. B. Jansen, “Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA,” Opt. Mater. 45, 37–41 (2015).
[Crossref]

M. Y. Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, and G. Q. Zhang, “Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties,” Opt. Mater. 35(3), 504–508 (2013).
[Crossref]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

G. E. Jellison and F. A. Modine, “Erratum,” Appl. Phys. Lett. 69(14), 2137 (1996).
[Crossref]

Jin, J. H.

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant,” J. Appl. Polym. Sci. 122(4), 2478–2485 (2011).
[Crossref]

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Thermal resistance of cycloaliphatic epoxy rybrimer based on sol-gel derived oligosiloxane for LED encapsulation,” J. Appl. Polym. Sci. 117(4), 2140–2145 (2010).
[Crossref]

Joo, J. Y.

J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, and D. W. Kim, “Improvement in the color uniformity of LED by microspheres generated from phase separation,” Opt. Mater. 34(9), 1614–1617 (2012).
[Crossref]

Kim, C. H.

S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. I. Seok, “Nonhydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins,” Mater. Chem. Phys. 112(3), 1008–1014 (2008).
[Crossref]

Kim, D. W.

J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, and D. W. Kim, “Improvement in the color uniformity of LED by microspheres generated from phase separation,” Opt. Mater. 34(9), 1614–1617 (2012).
[Crossref]

Kim, J. P.

J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, and D. W. Kim, “Improvement in the color uniformity of LED by microspheres generated from phase separation,” Opt. Mater. 34(9), 1614–1617 (2012).
[Crossref]

Kim, J. S.

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant,” J. Appl. Polym. Sci. 122(4), 2478–2485 (2011).
[Crossref]

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Thermal resistance of cycloaliphatic epoxy rybrimer based on sol-gel derived oligosiloxane for LED encapsulation,” J. Appl. Polym. Sci. 117(4), 2140–2145 (2010).
[Crossref]

J. S. Kim, S. C. Yang, and B. S. Bae, “Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation,” Chem. Mater. 22(11), 3549–3555 (2010).
[Crossref]

Kim, W. H.

J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, and D. W. Kim, “Improvement in the color uniformity of LED by microspheres generated from phase separation,” Opt. Mater. 34(9), 1614–1617 (2012).
[Crossref]

Köhler, A.

A. Köhler and H. Bässler, Electronic Processes in Organic Semiconductors (The Electronic Structure of Organic Semiconductors) (Wiley-VCH Verlag GmbH & Co, 2015), 25.

Kwak, S. Y.

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant,” J. Appl. Polym. Sci. 122(4), 2478–2485 (2011).
[Crossref]

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Thermal resistance of cycloaliphatic epoxy rybrimer based on sol-gel derived oligosiloxane for LED encapsulation,” J. Appl. Polym. Sci. 117(4), 2140–2145 (2010).
[Crossref]

Lai, Y. S.

K. H. Wu, K. F. Cheng, C. R. Wang, C. C. Yang, and Y. S. Lai, “Study of thermal and optical properties of epoxy/organically modified silicate hybrids,” Mater. Express 6(1), 28–36 (2016).
[Crossref]

Lautenschlager, P.

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35(17), 9174–9189 (1987).
[Crossref]

Lay, M.

M. Lay, M. R. Ramli, R. Ramli, N. C. Mang, and Z. Ahmad, “Crosslink network and phenyl content on the optical, hardness, and thermal aging of PDMS LED encapsulant,” J. Appl. Polym. Sci. 136(34), 47895 (2019).
[Crossref]

Lee, K. S.

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “Active packaging method for light-emitting diode lamps with photosensitive epoxy resins,” IEEE Photonics Technol. Lett. 20(2), 87–89 (2008).
[Crossref]

Lee, W. M.

Leo, K.

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A: Pure Appl. Opt. 2(5), 458–464 (2000).
[Crossref]

Leung, W. Y.

Li, H. T.

C. W. Hsu, C. C. M. Ma, C. S. Tan, H. T. Li, and S. C. Huang, “Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant,” Mater. Chem. Phys. 134(2-3), 789–796 (2012).
[Crossref]

Lim, M. A.

S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. I. Seok, “Nonhydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins,” Mater. Chem. Phys. 112(3), 1008–1014 (2008).
[Crossref]

Lin, P.

J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
[Crossref]

Lin, Y. C.

Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Technol. 33(4), 761–766 (2010).
[Crossref]

Lin, Y. H.

Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Technol. 33(4), 761–766 (2010).
[Crossref]

Liu, R.

Liu, W. Q.

N. Gao, W. Q. Liu, Z. L. Yan, and Z. F. Wang, “Synthesis and properties of transparent cycloaliphatic epoxy-silicone resins for optoelectronic devices packaging,” Opt. Mater. 35(3), 567–575 (2013).
[Crossref]

Liu, X.

J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
[Crossref]

Logothetidis, S.

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35(17), 9174–9189 (1987).
[Crossref]

Lu, G.

G. Lu, M. Y. Mehr, W. D. van Driel, X. Fan, J. Fan, and K. M. B. Jansen, “Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA,” Opt. Mater. 45, 37–41 (2015).
[Crossref]

Ma, C. C. M.

C. W. Hsu, C. C. M. Ma, C. S. Tan, H. T. Li, and S. C. Huang, “Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant,” Mater. Chem. Phys. 134(2-3), 789–796 (2012).
[Crossref]

Mai, A.

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

Mang, N. C.

M. Lay, M. R. Ramli, R. Ramli, N. C. Mang, and Z. Ahmad, “Crosslink network and phenyl content on the optical, hardness, and thermal aging of PDMS LED encapsulant,” J. Appl. Polym. Sci. 136(34), 47895 (2019).
[Crossref]

Marschmeyer, S.

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

Mehr, M. Y.

G. Lu, M. Y. Mehr, W. D. van Driel, X. Fan, J. Fan, and K. M. B. Jansen, “Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA,” Opt. Mater. 45, 37–41 (2015).
[Crossref]

M. Y. Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, and G. Q. Zhang, “Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties,” Opt. Mater. 35(3), 504–508 (2013).
[Crossref]

Modine, F. A.

G. E. Jellison and F. A. Modine, “Erratum,” Appl. Phys. Lett. 69(14), 2137 (1996).
[Crossref]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

Mott, N. F.

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, 1971).

Müller, P. H.

K. Angermaier and P. H. Müller, “Zeit und Kosten sparen, UV-härtende Silicone,” Carl Hanser Verlag, München, Kunststoffe, 4 (2010).

Niessner, N.

N. Niessner and D. Wagner, “Practical Guide to Structures, Properties and Applications of Styrenic Polymers,” Smithers Rapra Technology (14. März 2013).

Norris, A. W.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Oréfice, R. L.

E. Ayres, W. L. Vasconcelos, and R. L. Oréfice, “Attachment of in organic moieties onto aliphatic polyurethanes,” Mat. Res. 10(2), 119–1252007.
[Crossref]

Park, J.-M.

Phan, T. G.

Pitora, J.

M. Foldyna, K. Postava, J. Bouchala, J. Pitora, and T. Yamaguchi, “Model dielectric function of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2003).
[Crossref]

Postava, K.

M. Foldyna, K. Postava, J. Bouchala, J. Pitora, and T. Yamaguchi, “Model dielectric function of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2003).
[Crossref]

Pulwer, S.

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

Ramli, M. R.

M. Lay, M. R. Ramli, R. Ramli, N. C. Mang, and Z. Ahmad, “Crosslink network and phenyl content on the optical, hardness, and thermal aging of PDMS LED encapsulant,” J. Appl. Polym. Sci. 136(34), 47895 (2019).
[Crossref]

Ramli, R.

M. Lay, M. R. Ramli, R. Ramli, N. C. Mang, and Z. Ahmad, “Crosslink network and phenyl content on the optical, hardness, and thermal aging of PDMS LED encapsulant,” J. Appl. Polym. Sci. 136(34), 47895 (2019).
[Crossref]

Reece, P. J.

Rieß, W.

W. Brütting and W. Rieß, “Grundlagen der organischen Halbleiter,” Physik Journal 7, 33 (2008).

Ryu, J. H.

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “Active packaging method for light-emitting diode lamps with photosensitive epoxy resins,” IEEE Photonics Technol. Lett. 20(2), 87–89 (2008).
[Crossref]

Schadler, L. S.

P. Tao, A. Viswanath, L. S. Schadler, B. C. Benicewicz, and R. W. Siegel, “Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles,” ACS Appl. Mater. Interfaces 3(9), 3638–3645 (2011).
[Crossref]

Schrader, S.

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

Seo, D. K.

D. K. Seo and R. Hofmann, “Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials,” Theor. Chem. Acc. 102(1-6), 23–32 (1999).
[Crossref]

Seok, S. I.

S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. I. Seok, “Nonhydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins,” Mater. Chem. Phys. 112(3), 1008–1014 (2008).
[Crossref]

Shi, F. G.

Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Technol. 33(4), 761–766 (2010).
[Crossref]

Shinar, J.

Shinar, R.

Siegel, R. W.

P. Tao, A. Viswanath, L. S. Schadler, B. C. Benicewicz, and R. W. Siegel, “Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles,” ACS Appl. Mater. Interfaces 3(9), 3638–3645 (2011).
[Crossref]

Silz, H.

J. Bauer, G. Drescher, H. Silz, H. Frankenfeld, and M. Illig, “Surface Tension and Adhesion of Photo and Electron-Beam Resists,” SPIE Vol. 3049 Advances in Resist Technology and Processing XIV (1997).

Steglich, P.

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

Tahir, D. A.

D. A. Tahir, “Optical properties of polymer composite PS-PC thin films,” Journal of Kirkuk University –Scientific Studies 5(2), 87 (2010).

Tan, C. S.

C. W. Hsu, C. C. M. Ma, C. S. Tan, H. T. Li, and S. C. Huang, “Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant,” Mater. Chem. Phys. 134(2-3), 789–796 (2012).
[Crossref]

Tao, P.

P. Tao, A. Viswanath, L. S. Schadler, B. C. Benicewicz, and R. W. Siegel, “Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles,” ACS Appl. Mater. Interfaces 3(9), 3638–3645 (2011).
[Crossref]

Tauc, J.

J. Tauc, “Optical Properties of Amorphous Semiconductor,” in Amorphous and Liquid Semiconductor (Plenum Publishing Company LTD, 1973).

Tollay, P.

P. Tollay, “Polymer optics gain respect,” Photon. Spectra 37, 76 (2003).

Tran, N. T.

Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Technol. 33(4), 761–766 (2010).
[Crossref]

Tseng, Z.-F.

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators, A 147(2), 369–377 (2008).
[Crossref]

Turnera, N.

W. S. Beich and N. Turnera, “Polymer Optics: A manufacturer’s perspective on the factors that contribute to successful programs in Polymer Optics Design, Fabrication, and Materials,” David H. Krevor and William S. Beich, eds. Proc. of SPIE Vol. 7788, 778805 (2010).

Upadhya, A.

van Driel, W. D.

G. Lu, M. Y. Mehr, W. D. van Driel, X. Fan, J. Fan, and K. M. B. Jansen, “Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA,” Opt. Mater. 45, 37–41 (2015).
[Crossref]

M. Y. Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, and G. Q. Zhang, “Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties,” Opt. Mater. 35(3), 504–508 (2013).
[Crossref]

Vanlathem, E.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Vasconcelos, W. L.

E. Ayres, W. L. Vasconcelos, and R. L. Oréfice, “Attachment of in organic moieties onto aliphatic polyurethanes,” Mat. Res. 10(2), 119–1252007.
[Crossref]

Villringer, C.

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

Viswanath, A.

P. Tao, A. Viswanath, L. S. Schadler, B. C. Benicewicz, and R. W. Siegel, “Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles,” ACS Appl. Mater. Interfaces 3(9), 3638–3645 (2011).
[Crossref]

Wagner, D.

N. Niessner and D. Wagner, “Practical Guide to Structures, Properties and Applications of Styrenic Polymers,” Smithers Rapra Technology (14. März 2013).

Wang, C. R.

K. H. Wu, K. F. Cheng, C. R. Wang, C. C. Yang, and Y. S. Lai, “Study of thermal and optical properties of epoxy/organically modified silicate hybrids,” Mater. Express 6(1), 28–36 (2016).
[Crossref]

Wang, H.

J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
[Crossref]

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “Active packaging method for light-emitting diode lamps with photosensitive epoxy resins,” IEEE Photonics Technol. Lett. 20(2), 87–89 (2008).
[Crossref]

Wang, Z. F.

N. Gao, W. Q. Liu, Z. L. Yan, and Z. F. Wang, “Synthesis and properties of transparent cycloaliphatic epoxy-silicone resins for optoelectronic devices packaging,” Opt. Mater. 35(3), 567–575 (2013).
[Crossref]

Wu, K. H.

K. H. Wu, K. F. Cheng, C. R. Wang, C. C. Yang, and Y. S. Lai, “Study of thermal and optical properties of epoxy/organically modified silicate hybrids,” Mater. Express 6(1), 28–36 (2016).
[Crossref]

Wu, S.

S. Wu, Polymer Interface and Adhesion (Marcel Dekker, 1982).

Yahya, M. Z. A.

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications,” International Journal of Applied Science and Technology 3, 5 (2013).

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model,” Adv. Mater. Res. 488-489, 628–632 (2012).
[Crossref]

Yamaguchi, T.

M. Foldyna, K. Postava, J. Bouchala, J. Pitora, and T. Yamaguchi, “Model dielectric function of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2003).
[Crossref]

Yan, Z. L.

N. Gao, W. Q. Liu, Z. L. Yan, and Z. F. Wang, “Synthesis and properties of transparent cycloaliphatic epoxy-silicone resins for optoelectronic devices packaging,” Opt. Mater. 35(3), 567–575 (2013).
[Crossref]

Yang, C. C.

K. H. Wu, K. F. Cheng, C. R. Wang, C. C. Yang, and Y. S. Lai, “Study of thermal and optical properties of epoxy/organically modified silicate hybrids,” Mater. Express 6(1), 28–36 (2016).
[Crossref]

Yang, J.

J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
[Crossref]

Yang, S.

J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
[Crossref]

Yang, S. C.

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant,” J. Appl. Polym. Sci. 122(4), 2478–2485 (2011).
[Crossref]

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Thermal resistance of cycloaliphatic epoxy rybrimer based on sol-gel derived oligosiloxane for LED encapsulation,” J. Appl. Polym. Sci. 117(4), 2140–2145 (2010).
[Crossref]

J. S. Kim, S. C. Yang, and B. S. Bae, “Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation,” Chem. Mater. 22(11), 3549–3555 (2010).
[Crossref]

Ye, Z.

Yip, M. C.

C. L. Chang Chien, Y. C. Huang, S. F. Hu, C. M. Chang, M. C. Yip, and W. Fang, “Polymer dispensing and embossing technology for the lens type LED packaging,” J. Micromech. Microeng. 23(6), 065019 (2013).
[Crossref]

Ykman, P. A.

P. A. Ykman, “Recent Developments in Aliphatic Thermoplastic Polyurethane,” ed. in Thermoplastic Elastomer III, palais des congress Brussels, Belgium, April 1991, ISBN 0 902348 52 3.

Yoshitake, M.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

You, J. P.

Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Technol. 33(4), 761–766 (2010).
[Crossref]

Yu, Y. Z.

W. Huang, Y. Zhang, Y. Z. Yu, and Y. X. Yuan, “Studies on UV-stable silicone–epoxy resins,” J. Appl. Polym. Sci. 104(6), 3954–3959 (2007).
[Crossref]

Yuan, Y. X.

W. Huang, Y. Zhang, Y. Z. Yu, and Y. X. Yuan, “Studies on UV-stable silicone–epoxy resins,” J. Appl. Polym. Sci. 104(6), 3954–3959 (2007).
[Crossref]

Zabidi, Z. M.

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications,” International Journal of Applied Science and Technology 3, 5 (2013).

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model,” Adv. Mater. Res. 488-489, 628–632 (2012).
[Crossref]

Zhang, G. Q.

M. Y. Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, and G. Q. Zhang, “Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties,” Opt. Mater. 35(3), 504–508 (2013).
[Crossref]

Zhang, Y.

W. Huang, Y. Zhang, Y. Z. Yu, and Y. X. Yuan, “Studies on UV-stable silicone–epoxy resins,” J. Appl. Polym. Sci. 104(6), 3954–3959 (2007).
[Crossref]

Ziadan, K. M.

A. S. Abed, K. M. Ziadan, and A. Q. Abdullah, “Some optical properties of polyurethane,” Iraqi J. of Polymers 17(1), 18 (2014).

ACS Appl. Mater. Interfaces (1)

P. Tao, A. Viswanath, L. S. Schadler, B. C. Benicewicz, and R. W. Siegel, “Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles,” ACS Appl. Mater. Interfaces 3(9), 3638–3645 (2011).
[Crossref]

Adv. Mater. Res. (1)

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model,” Adv. Mater. Res. 488-489, 628–632 (2012).
[Crossref]

Appl. Phys. Lett. (2)

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

G. E. Jellison and F. A. Modine, “Erratum,” Appl. Phys. Lett. 69(14), 2137 (1996).
[Crossref]

Biomed. Opt. Express (1)

Chem. Mater. (1)

J. S. Kim, S. C. Yang, and B. S. Bae, “Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation,” Chem. Mater. 22(11), 3549–3555 (2010).
[Crossref]

Experimentelle Technik der Physik (1)

J. Bauer, “Bestimmung der optischen Konstanten, der Schichtdicke und der Oberflächenrauigkeit dünner Schichten,” Experimentelle Technik der Physik 25(2), 105 (1977).

IEEE Photonics Technol. Lett. (1)

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “Active packaging method for light-emitting diode lamps with photosensitive epoxy resins,” IEEE Photonics Technol. Lett. 20(2), 87–89 (2008).
[Crossref]

IEEE Trans. Compon. Packag. Technol. (1)

Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Technol. 33(4), 761–766 (2010).
[Crossref]

International Journal of Applied Science and Technology (1)

A. N. Alias, Z. M. Zabidi, A. M. M. Ali, M. K. Harun, and M. Z. A. Yahya, “Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications,” International Journal of Applied Science and Technology 3, 5 (2013).

Iraqi J. of Polymers (1)

A. S. Abed, K. M. Ziadan, and A. Q. Abdullah, “Some optical properties of polyurethane,” Iraqi J. of Polymers 17(1), 18 (2014).

J. Appl. Polym. Sci. (5)

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant,” J. Appl. Polym. Sci. 122(4), 2478–2485 (2011).
[Crossref]

S. C. Yang, J. S. Kim, J. H. Jin, S. Y. Kwak, and B. S. Bae, “Thermal resistance of cycloaliphatic epoxy rybrimer based on sol-gel derived oligosiloxane for LED encapsulation,” J. Appl. Polym. Sci. 117(4), 2140–2145 (2010).
[Crossref]

M. Lay, M. R. Ramli, R. Ramli, N. C. Mang, and Z. Ahmad, “Crosslink network and phenyl content on the optical, hardness, and thermal aging of PDMS LED encapsulant,” J. Appl. Polym. Sci. 136(34), 47895 (2019).
[Crossref]

J. Yang, X. He, H. Wang, X. Liu, P. Lin, S. Yang, and S. Fu, “High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behaviour, and thermal properties,” J. Appl. Polym. Sci. 137(17), 48596 (2020).
[Crossref]

W. Huang, Y. Zhang, Y. Z. Yu, and Y. X. Yuan, “Studies on UV-stable silicone–epoxy resins,” J. Appl. Polym. Sci. 104(6), 3954–3959 (2007).
[Crossref]

J. Micromech. Microeng. (1)

C. L. Chang Chien, Y. C. Huang, S. F. Hu, C. M. Chang, M. C. Yip, and W. Fang, “Polymer dispensing and embossing technology for the lens type LED packaging,” J. Micromech. Microeng. 23(6), 065019 (2013).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A: Pure Appl. Opt. 2(5), 458–464 (2000).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. (1)

J. Bauer, G. Drescher, and M. Illig, “Surface tension, adhesion and wetting of materials for photolithographic process,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(4), 2485 (1996).
[Crossref]

Journal of Kirkuk University –Scientific Studies (1)

D. A. Tahir, “Optical properties of polymer composite PS-PC thin films,” Journal of Kirkuk University –Scientific Studies 5(2), 87 (2010).

Mat. Res. (1)

E. Ayres, W. L. Vasconcelos, and R. L. Oréfice, “Attachment of in organic moieties onto aliphatic polyurethanes,” Mat. Res. 10(2), 119–1252007.
[Crossref]

Mater. Chem. Phys. (2)

S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. I. Seok, “Nonhydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins,” Mater. Chem. Phys. 112(3), 1008–1014 (2008).
[Crossref]

C. W. Hsu, C. C. M. Ma, C. S. Tan, H. T. Li, and S. C. Huang, “Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant,” Mater. Chem. Phys. 134(2-3), 789–796 (2012).
[Crossref]

Mater. Express (1)

K. H. Wu, K. F. Cheng, C. R. Wang, C. C. Yang, and Y. S. Lai, “Study of thermal and optical properties of epoxy/organically modified silicate hybrids,” Mater. Express 6(1), 28–36 (2016).
[Crossref]

Opt. Express (1)

Opt. Mater. (4)

G. Lu, M. Y. Mehr, W. D. van Driel, X. Fan, J. Fan, and K. M. B. Jansen, “Color Shift Investigations for LED Secondary Optical Designs: Comparison between BPA-PC and PMMA,” Opt. Mater. 45, 37–41 (2015).
[Crossref]

M. Y. Mehr, W. D. van Driel, K. M. B. Jansen, P. Deeben, M. Boutelje, and G. Q. Zhang, “Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties,” Opt. Mater. 35(3), 504–508 (2013).
[Crossref]

J. P. Kim, M. S. Jang, W. H. Kim, J. Y. Joo, J. H. Cho, and D. W. Kim, “Improvement in the color uniformity of LED by microspheres generated from phase separation,” Opt. Mater. 34(9), 1614–1617 (2012).
[Crossref]

N. Gao, W. Q. Liu, Z. L. Yan, and Z. F. Wang, “Synthesis and properties of transparent cycloaliphatic epoxy-silicone resins for optoelectronic devices packaging,” Opt. Mater. 35(3), 567–575 (2013).
[Crossref]

Photon. Spectra (1)

P. Tollay, “Polymer optics gain respect,” Photon. Spectra 37, 76 (2003).

Phys. Rev. B (1)

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35(17), 9174–9189 (1987).
[Crossref]

Phys. Status Solidi B (1)

I. Filinski, “The effects of sample imperfections on optical spectra,” Phys. Status Solidi B 49(2), 577–588 (1972).
[Crossref]

Physik Journal (1)

W. Brütting and W. Rieß, “Grundlagen der organischen Halbleiter,” Physik Journal 7, 33 (2008).

Polymers (1)

C. H. Chen, S. C. Huang, and K. C. Chen, “Novel Siloxane-Modified Epoxy Resins as Promising Encapsulant for LEDs,” Polymers 12(1), 21 (2020).
[Crossref]

Proc. SPIE (3)

M. Foldyna, K. Postava, J. Bouchala, J. Pitora, and T. Yamaguchi, “Model dielectric function of amorphous materials including Urbach tail,” Proc. SPIE 5445, 301–305 (2003).
[Crossref]

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

J. Bauer, O. Fursenko, S. Marschmeyer, F. Heinrich, S. Pulwer, P. Steglich, C. Villringer, A. Mai, and S. Schrader, “Very high aspect ratio through silicon via reflectometry,” Proc. SPIE 10329, 103293J (2017).
[Crossref]

Sens. Actuators, A (1)

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators, A 147(2), 369–377 (2008).
[Crossref]

Theor. Chem. Acc. (1)

D. K. Seo and R. Hofmann, “Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials,” Theor. Chem. Acc. 102(1-6), 23–32 (1999).
[Crossref]

Thermochim. Acta (1)

C. L. Chiang, R. C. Chang, and Y. C. Chiu, “Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method,” Thermochim. Acta 453(2), 97–104 (2007).
[Crossref]

Other (13)

M. Chanda, “Plastic Technology Handbook,” CRC Press Taylor & Francis Group (2018).

M. Cardona, “Modulation Spectroscopy Suppl. vol. 11 to Solid State Physics,” F. Seitz, D. Turnbull, and H. Ehrenreich, eds. Academic, New York (1969).

D. E. Aspnes, “Modulation spectroscopy/electric field effects on the dielectric function of semiconductors,” in Handbook of Semiconductors, Vol. 2, M. Balkanski, ed. (North-Holland, 1980) pp. 109–154

S. Wu, Polymer Interface and Adhesion (Marcel Dekker, 1982).

P. A. Ykman, “Recent Developments in Aliphatic Thermoplastic Polyurethane,” ed. in Thermoplastic Elastomer III, palais des congress Brussels, Belgium, April 1991, ISBN 0 902348 52 3.

N. Niessner and D. Wagner, “Practical Guide to Structures, Properties and Applications of Styrenic Polymers,” Smithers Rapra Technology (14. März 2013).

K. Angermaier and P. H. Müller, “Zeit und Kosten sparen, UV-härtende Silicone,” Carl Hanser Verlag, München, Kunststoffe, 4 (2010).

W. S. Beich and N. Turnera, “Polymer Optics: A manufacturer’s perspective on the factors that contribute to successful programs in Polymer Optics Design, Fabrication, and Materials,” David H. Krevor and William S. Beich, eds. Proc. of SPIE Vol. 7788, 778805 (2010).

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, 1971).

J. Bauer, G. Drescher, H. Silz, H. Frankenfeld, and M. Illig, “Surface Tension and Adhesion of Photo and Electron-Beam Resists,” SPIE Vol. 3049 Advances in Resist Technology and Processing XIV (1997).

O. S. Heavens, The Optical Properties of Thin Solid Films (Butterworth, 1955).

A. Köhler and H. Bässler, Electronic Processes in Organic Semiconductors (The Electronic Structure of Organic Semiconductors) (Wiley-VCH Verlag GmbH & Co, 2015), 25.

J. Tauc, “Optical Properties of Amorphous Semiconductor,” in Amorphous and Liquid Semiconductor (Plenum Publishing Company LTD, 1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic representation of the simulation of reflection Rsim and transmission Tsim considering the multiple incoherent reflections within the substrate and coherent interference effects within the thin film [41]. R0 is the air side and R1 the substrate side reflection from the thin film, T0 is the air to substrate side and T1 the substrate to air side light transmission through the thin film, R2 is the substrate/air reflection and T2 the transmission, respectively, and Tsub is the substrate transmission (for quartz Tsub = 1).
Fig. 2.
Fig. 2. TGA curve of the Polyurethane, Temperature Program: Heat from 20 °C to 600 °C with a heating rate of 10 °C/min, in Nitrogen atmosphere with a purge rate of 10 mL/minute. The 5% weight loss temperatures Td5% are marked by circles (o).
Fig. 3.
Fig. 3. DSC measurements at temperatures from -150 to 500 °C. The marked points indicate the glass transition temperatures Tg and the degradation temperatures Td of the polyurethanes. The polymer shows an exothermic reaction at 150 °C for resPUR-OT-3000 and 220 °C for resPUR-OT-T24000 and resPUR-OT polyurethane, probably caused by a crystallization process or postreaction (secondary reaction of isocyanates).
Fig. 4.
Fig. 4. Contact angles of polyurethane resPUR-OT on different modified substrates: (left) glass with the surface tension of σ d = 35 dyn/cm and σ p = 31 dyn/cm and (right) polytetrafluorethylene (PTFE) modified glass substrate with the surface tension of σ d = 14 dyn/cm and σ p = 2 dyn/cm, measured by contact angle measurements with water and methylene iodide. Both surfaces are used for the determination of the surface tension of the liquid polyurethane according to [3840].
Fig. 5.
Fig. 5. Experimental and simulated (red) reflection spectra of polyurethane thin films. High-resolution spectra in a wavelength range of 400 - 600 nm were normalized to the low-resolution spectra (200-890 nm) and show typical thin-film interferences, from which the film thicknesses d was determined in the fitting procedure resulting in d = 13.86 µm (resPUR OT-T24000), d = 4.88 µm (resPUR-OT-3000) and d = 6.87 µm (resPUR-OT).
Fig. 6.
Fig. 6. Experimental and simulated (red) transmission spectra of the PU thin films as shown in Fig. 5 measured with the spectrometer in the spectral range of 200–890 nm. resPUR-OT has the maximum band gap energy of 5,02 eV corresponding to ∼ 247 nm.
Fig. 7.
Fig. 7. Optical constants of Polyurethane, (a) refractive index, and (b) extinction coefficient by R&T measurement of thin films and thick PU rods. The relatively high k in the long wavelength region of resPUR-OT-T24000 is caused by the exciton absorption effect.
Fig. 8.
Fig. 8. Frequency doubled 532 nm Nd:YAG laser beam transmitted through the 8 mm thick PU rods of resPUR-OT-3000 (a), resPUR-OT-T24000 (b) and resPUR-OT (c). Photographs taken at right angle to beam direction demonstrate fluorescence (a), strong (b) and weak (c) scattering.
Fig. 9.
Fig. 9. Experimental transmission spectra of 8 mm thick PU rods. The deviation from the maximum transmission in the long wavelength range can mainly be explained by scattering, which is quite high with resPUR-OT-T24000 and resPUR-OT-3000. In contrast, the optimized material resPUR-OT shows very low scattering.
Fig. 10.
Fig. 10. Transmission of optical polymers [9] compared to polyurethane resPUR-OT at a film thickness of 3.174 mm. The transmission was calculated using the optical constants n and k from Fig. 7(a) and (b).
Fig. 11.
Fig. 11. Dome-Type package of InGaN-CoB-LED with Polyurethane resPUR-OT lens (a), (b) together with measured and simulated (red) light distributions at λ = 525 nm (c).

Tables (4)

Tables Icon

Table 1. Polyurethane material and component specification.

Tables Icon

Table 2. Thermal characteristics of polyurethane resPUR.

Tables Icon

Table 3. Surface tension of liquid polyurethanes resPUR.

Tables Icon

Table 4. Summary of some key characteristics of optical properties of polyurethane resPUR.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( n , k ) = λ 1 λ m { [ R s i m ( n ( λ ) , k ( λ ) , d ) R e x p ( λ ) ] 2 + [ T s i m ( n ( λ ) , k ( λ ) , d ) T e x p ( λ ) ] 2 } .
T s i m = T 0 T 2 T s u b 1 R 1 R 2 T s u b 2
R s i m = R 0 R 2 T s u b 2 ( R 1 R 0 T 1 T 0 ) 1 R 1 R 2 T s u b 2 .

Metrics