Abstract

We demonstrate a novel approach for achieving rapid, consistent, and controllable micro-pore fabrication in single-crystalline quartz. These micro-pores are essential for applications in biology, i.e., studying ion channels in general and mechano-sensitive channels (MSC) in particular. The fabrication process consists of direct material ablation using pulsed UV light from a 193 nm excimer laser. These pulses ablate single-crystalline quartz chips by burning a laser-induced plasma in a tri-layer structure. Controllable plasma confinement and thus pore size is achieved by sandwiching a thin layer of a selected organic solution between the quartz chip and different substrates. This solution causes the confined micro-plasma to generate special ablation conditions, to create uniformly sized and shaped nanopores.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Chalfie, “Neurosensory mechanotransduction,” Nat. Rev. Mol. Cell Biol. 10(1), 44–52 (2009).
    [Crossref]
  2. B. Nilius and E. Honoré, “Sensing pressure with ion channels,” Trends Neurosci. 35(8), 477–486 (2012).
    [Crossref]
  3. S. Sukharev and F. Sachs, “Molecular force transduction by ion channels-diversity and unifying principles,” J. Cell Sci. 125(13), 3075–3083 (2012).
    [Crossref]
  4. C. E. Morris, “Mechanosensitive Ion Channels,” J. Membr. Biol. 113(2), 93–107 (1990).
    [Crossref]
  5. D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
    [Crossref]
  6. T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
    [Crossref]
  7. A. Diz-Muñoz, D. A. Fletcher, and O. D. Weiner, “Use the force: membrane tension as an organizer of cell shape and motility,” Trends Cell Biol. 23(2), 47–53 (2013).
    [Crossref]
  8. E. Stava, M. Yu, H. C. Shin, and R. H. Blick, “Single-Ion Channel Recordings on Quartz Substrates,” IEEE Trans.on Nanobioscience 9(4), 307–309 (2010).
    [Crossref]
  9. A. Bhat, P. V. Gwozdz, A Seshadri, M. Hoeft, and R. H. Blick, “Tank Circuit for Ultrafast Single-Particle Detection in Micropores,” Phys. Rev. Lett. 121(7), 078102 (2018).
    [Crossref]
  10. K. Benndorf, B. Sakmann, and E. Neher, Single-Channel Recording (Plenum Press, 1995), Chap. 5.
  11. J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys. 57(1), 105–146 (1985).
    [Crossref]
  12. M. Yu, H. S. Kim, and R. H. Blick, “Laser drilling of nano-pores in sandwiched thin glass membranes,” Opt. Express 17(12), 10044 (2009).
    [Crossref]
  13. K. Yin, J. Duan, C. Wang, X. Dong, Y. Song, and Z. Luo, “Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions,” Appl. Phys. Lett. 108(24), 241601 (2016).
    [Crossref]
  14. D. Chu, K. Yin, X. Dong, Z. Luo, Y. Song, and J. Duan, “Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy,” Chin. Opt. Lett. 16(1), 011401 (2018).
    [Crossref]
  15. Y. Hanada, K. Sugioka, and K. Midorikawa, “Laser-induced plasma-assisted ablation (LIPAA): fundamental and industrial applications,” Proc. SPIE 6261, 626111 (2006).
    [Crossref]
  16. G. Koptikovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser Induced Backside Wet Etching: Mechanisms and Fabrication of Miro-Optical Elements,” J. Phys.: Conf. Ser. 59, 526–532 (2007).
    [Crossref]
  17. B. Flem, A. Müller, J. Götze, and R. Möckel, Quartz: Deposits, Mineralogy and Analytics (Springer, 2012), Chap. 10.
  18. S. Z. Mortazavi, P. Parvin, A. Reyhani, A. N. Golikand, and S. Mirershadi, “Effect of Laser Wavelength at IR (1064 nm) and UV (193 nm) on the Structural Formation of Palladium Nanoparticles in Deionized Water,” J. Phys. Chem. C 115(12), 5049–5057 (2011).
    [Crossref]
  19. A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007), Chap. 3.
  20. Y. Qian, J. Lu, and X. Ni, “Study of laser-induced plasma shock waves by the probe beam deflection technique,” Chin. Opt. Lett. 7(5), 410–412 (2009).
    [Crossref]
  21. S. Pfalzner and P. Gibbon, “Direct calculation of inverse-bremsstrahlung absorption in strongly coupled, nonlinearly driven laser plasmas,” Phys. Rev. E 57(4), 4698–4705 (1998).
    [Crossref]
  22. Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
    [Crossref]
  23. S. Z. Shoursheini, P. Parvin, B. Sajad, and M. A. Bassam, “Dual-Laser-Beam-Induced Breakdown Spectroscopy of Copper Using Simultaneous Continuous Wave CO2 and Q-Switched Nd:YAG Lasers,” Appl. Spectrosc. 63(4), 423–429 (2009).
    [Crossref]
  24. S. C. Singh, R. K. Swarnkar, and R. Gopal, “Zn/ZnO core/shell nanoparticles synthesized by laser ablation in aqueous environment: Optical and structural characterization,” Bull. Mater. Sci. 33(1), 21–26 (2010).
    [Crossref]
  25. D. J. Donaldson and S. R. Leone, “Photofragmentation dynamics of acetone of 193 nm: State distributions of the CH3 and CO fragments by time and wavelength-resolved infrared emission,” J. Chem. Phys. 85(2), 817–824 (1986).
    [Crossref]
  26. C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355(1-2), 82–88 (2002).
    [Crossref]
  27. Y. Badr, S. Abd El-wanees, and M. A. Mahmoud, “Spectroscopic and dynamic studies of the photolysis reaction of acetone by 193 nm excimer laser,” J. Photochem. Photobiol., A 168(1-2), 31–38 (2004).
    [Crossref]
  28. Y. Badr and M. A. Mahmoud, “On interaction of 193 nm excimer laser with acetone (3s Rydberg state),” J. Mol. Struct. 748(1-3), 189–193 (2005).
    [Crossref]

2018 (2)

A. Bhat, P. V. Gwozdz, A Seshadri, M. Hoeft, and R. H. Blick, “Tank Circuit for Ultrafast Single-Particle Detection in Micropores,” Phys. Rev. Lett. 121(7), 078102 (2018).
[Crossref]

D. Chu, K. Yin, X. Dong, Z. Luo, Y. Song, and J. Duan, “Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy,” Chin. Opt. Lett. 16(1), 011401 (2018).
[Crossref]

2016 (1)

K. Yin, J. Duan, C. Wang, X. Dong, Y. Song, and Z. Luo, “Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions,” Appl. Phys. Lett. 108(24), 241601 (2016).
[Crossref]

2013 (1)

A. Diz-Muñoz, D. A. Fletcher, and O. D. Weiner, “Use the force: membrane tension as an organizer of cell shape and motility,” Trends Cell Biol. 23(2), 47–53 (2013).
[Crossref]

2012 (2)

B. Nilius and E. Honoré, “Sensing pressure with ion channels,” Trends Neurosci. 35(8), 477–486 (2012).
[Crossref]

S. Sukharev and F. Sachs, “Molecular force transduction by ion channels-diversity and unifying principles,” J. Cell Sci. 125(13), 3075–3083 (2012).
[Crossref]

2011 (2)

S. Z. Mortazavi, P. Parvin, A. Reyhani, A. N. Golikand, and S. Mirershadi, “Effect of Laser Wavelength at IR (1064 nm) and UV (193 nm) on the Structural Formation of Palladium Nanoparticles in Deionized Water,” J. Phys. Chem. C 115(12), 5049–5057 (2011).
[Crossref]

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

2010 (2)

S. C. Singh, R. K. Swarnkar, and R. Gopal, “Zn/ZnO core/shell nanoparticles synthesized by laser ablation in aqueous environment: Optical and structural characterization,” Bull. Mater. Sci. 33(1), 21–26 (2010).
[Crossref]

E. Stava, M. Yu, H. C. Shin, and R. H. Blick, “Single-Ion Channel Recordings on Quartz Substrates,” IEEE Trans.on Nanobioscience 9(4), 307–309 (2010).
[Crossref]

2009 (4)

2007 (3)

G. Koptikovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser Induced Backside Wet Etching: Mechanisms and Fabrication of Miro-Optical Elements,” J. Phys.: Conf. Ser. 59, 526–532 (2007).
[Crossref]

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

2006 (1)

Y. Hanada, K. Sugioka, and K. Midorikawa, “Laser-induced plasma-assisted ablation (LIPAA): fundamental and industrial applications,” Proc. SPIE 6261, 626111 (2006).
[Crossref]

2005 (1)

Y. Badr and M. A. Mahmoud, “On interaction of 193 nm excimer laser with acetone (3s Rydberg state),” J. Mol. Struct. 748(1-3), 189–193 (2005).
[Crossref]

2004 (1)

Y. Badr, S. Abd El-wanees, and M. A. Mahmoud, “Spectroscopic and dynamic studies of the photolysis reaction of acetone by 193 nm excimer laser,” J. Photochem. Photobiol., A 168(1-2), 31–38 (2004).
[Crossref]

2002 (1)

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355(1-2), 82–88 (2002).
[Crossref]

1998 (1)

S. Pfalzner and P. Gibbon, “Direct calculation of inverse-bremsstrahlung absorption in strongly coupled, nonlinearly driven laser plasmas,” Phys. Rev. E 57(4), 4698–4705 (1998).
[Crossref]

1990 (1)

C. E. Morris, “Mechanosensitive Ion Channels,” J. Membr. Biol. 113(2), 93–107 (1990).
[Crossref]

1986 (1)

D. J. Donaldson and S. R. Leone, “Photofragmentation dynamics of acetone of 193 nm: State distributions of the CH3 and CO fragments by time and wavelength-resolved infrared emission,” J. Chem. Phys. 85(2), 817–824 (1986).
[Crossref]

1985 (1)

J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys. 57(1), 105–146 (1985).
[Crossref]

Abd El-wanees, S.

Y. Badr, S. Abd El-wanees, and M. A. Mahmoud, “Spectroscopic and dynamic studies of the photolysis reaction of acetone by 193 nm excimer laser,” J. Photochem. Photobiol., A 168(1-2), 31–38 (2004).
[Crossref]

Anand, P.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Anand, U.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Badr, Y.

Y. Badr and M. A. Mahmoud, “On interaction of 193 nm excimer laser with acetone (3s Rydberg state),” J. Mol. Struct. 748(1-3), 189–193 (2005).
[Crossref]

Y. Badr, S. Abd El-wanees, and M. A. Mahmoud, “Spectroscopic and dynamic studies of the photolysis reaction of acetone by 193 nm excimer laser,” J. Photochem. Photobiol., A 168(1-2), 31–38 (2004).
[Crossref]

Bassam, M. A.

Benham, C.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Benndorf, K.

K. Benndorf, B. Sakmann, and E. Neher, Single-Channel Recording (Plenum Press, 1995), Chap. 5.

Bhat, A.

A. Bhat, P. V. Gwozdz, A Seshadri, M. Hoeft, and R. H. Blick, “Tank Circuit for Ultrafast Single-Particle Detection in Micropores,” Phys. Rev. Lett. 121(7), 078102 (2018).
[Crossref]

Birch, R.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Blick, R. H.

A. Bhat, P. V. Gwozdz, A Seshadri, M. Hoeft, and R. H. Blick, “Tank Circuit for Ultrafast Single-Particle Detection in Micropores,” Phys. Rev. Lett. 121(7), 078102 (2018).
[Crossref]

E. Stava, M. Yu, H. C. Shin, and R. H. Blick, “Single-Ion Channel Recordings on Quartz Substrates,” IEEE Trans.on Nanobioscience 9(4), 307–309 (2010).
[Crossref]

M. Yu, H. S. Kim, and R. H. Blick, “Laser drilling of nano-pores in sandwiched thin glass membranes,” Opt. Express 17(12), 10044 (2009).
[Crossref]

Bol’shakov, A. A.

A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007), Chap. 3.

Bountra, C.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Brice, J. C.

J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys. 57(1), 105–146 (1985).
[Crossref]

Chalfie, M.

M. Chalfie, “Neurosensory mechanotransduction,” Nat. Rev. Mol. Cell Biol. 10(1), 44–52 (2009).
[Crossref]

Chu, D.

David, C.

G. Koptikovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser Induced Backside Wet Etching: Mechanisms and Fabrication of Miro-Optical Elements,” J. Phys.: Conf. Ser. 59, 526–532 (2007).
[Crossref]

Davidson, D. F.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355(1-2), 82–88 (2002).
[Crossref]

Diz-Muñoz, A.

A. Diz-Muñoz, D. A. Fletcher, and O. D. Weiner, “Use the force: membrane tension as an organizer of cell shape and motility,” Trends Cell Biol. 23(2), 47–53 (2013).
[Crossref]

Donaldson, D. J.

D. J. Donaldson and S. R. Leone, “Photofragmentation dynamics of acetone of 193 nm: State distributions of the CH3 and CO fragments by time and wavelength-resolved infrared emission,” J. Chem. Phys. 85(2), 817–824 (1986).
[Crossref]

Dong, X.

D. Chu, K. Yin, X. Dong, Z. Luo, Y. Song, and J. Duan, “Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy,” Chin. Opt. Lett. 16(1), 011401 (2018).
[Crossref]

K. Yin, J. Duan, C. Wang, X. Dong, Y. Song, and Z. Luo, “Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions,” Appl. Phys. Lett. 108(24), 241601 (2016).
[Crossref]

Duan, J.

D. Chu, K. Yin, X. Dong, Z. Luo, Y. Song, and J. Duan, “Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy,” Chin. Opt. Lett. 16(1), 011401 (2018).
[Crossref]

K. Yin, J. Duan, C. Wang, X. Dong, Y. Song, and Z. Luo, “Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions,” Appl. Phys. Lett. 108(24), 241601 (2016).
[Crossref]

Flem, B.

B. Flem, A. Müller, J. Götze, and R. Möckel, Quartz: Deposits, Mineralogy and Analytics (Springer, 2012), Chap. 10.

Fletcher, D. A.

A. Diz-Muñoz, D. A. Fletcher, and O. D. Weiner, “Use the force: membrane tension as an organizer of cell shape and motility,” Trends Cell Biol. 23(2), 47–53 (2013).
[Crossref]

Gibbon, P.

S. Pfalzner and P. Gibbon, “Direct calculation of inverse-bremsstrahlung absorption in strongly coupled, nonlinearly driven laser plasmas,” Phys. Rev. E 57(4), 4698–4705 (1998).
[Crossref]

Golikand, A. N.

S. Z. Mortazavi, P. Parvin, A. Reyhani, A. N. Golikand, and S. Mirershadi, “Effect of Laser Wavelength at IR (1064 nm) and UV (193 nm) on the Structural Formation of Palladium Nanoparticles in Deionized Water,” J. Phys. Chem. C 115(12), 5049–5057 (2011).
[Crossref]

Gopal, R.

S. C. Singh, R. K. Swarnkar, and R. Gopal, “Zn/ZnO core/shell nanoparticles synthesized by laser ablation in aqueous environment: Optical and structural characterization,” Bull. Mater. Sci. 33(1), 21–26 (2010).
[Crossref]

Gorelik, J.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Götze, J.

B. Flem, A. Müller, J. Götze, and R. Möckel, Quartz: Deposits, Mineralogy and Analytics (Springer, 2012), Chap. 10.

Gwozdz, P. V.

A. Bhat, P. V. Gwozdz, A Seshadri, M. Hoeft, and R. H. Blick, “Tank Circuit for Ultrafast Single-Particle Detection in Micropores,” Phys. Rev. Lett. 121(7), 078102 (2018).
[Crossref]

Hanada, Y.

Y. Hanada, K. Sugioka, and K. Midorikawa, “Laser-induced plasma-assisted ablation (LIPAA): fundamental and industrial applications,” Proc. SPIE 6261, 626111 (2006).
[Crossref]

Hanson, R. K.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355(1-2), 82–88 (2002).
[Crossref]

Hoeft, M.

A. Bhat, P. V. Gwozdz, A Seshadri, M. Hoeft, and R. H. Blick, “Tank Circuit for Ultrafast Single-Particle Detection in Micropores,” Phys. Rev. Lett. 121(7), 078102 (2018).
[Crossref]

Honoré, E.

B. Nilius and E. Honoré, “Sensing pressure with ion channels,” Trends Neurosci. 35(8), 477–486 (2012).
[Crossref]

Ingber, D. E.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Jeffries, J. B.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355(1-2), 82–88 (2002).
[Crossref]

Jiang, L.

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

Kim, H. S.

Klenerman, D.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Koch, J. D.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355(1-2), 82–88 (2002).
[Crossref]

Koptikovas, G.

G. Koptikovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser Induced Backside Wet Etching: Mechanisms and Fabrication of Miro-Optical Elements,” J. Phys.: Conf. Ser. 59, 526–532 (2007).
[Crossref]

Korchev, Y.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Kumar, S.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Lab, M.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Lele, T. P.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Leone, S. R.

D. J. Donaldson and S. R. Leone, “Photofragmentation dynamics of acetone of 193 nm: State distributions of the CH3 and CO fragments by time and wavelength-resolved infrared emission,” J. Chem. Phys. 85(2), 817–824 (1986).
[Crossref]

Lippert, T.

G. Koptikovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser Induced Backside Wet Etching: Mechanisms and Fabrication of Miro-Optical Elements,” J. Phys.: Conf. Ser. 59, 526–532 (2007).
[Crossref]

Liu, C.

A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007), Chap. 3.

Liu, Y.

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

Lu, J.

Luo, Z.

D. Chu, K. Yin, X. Dong, Z. Luo, Y. Song, and J. Duan, “Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy,” Chin. Opt. Lett. 16(1), 011401 (2018).
[Crossref]

K. Yin, J. Duan, C. Wang, X. Dong, Y. Song, and Z. Luo, “Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions,” Appl. Phys. Lett. 108(24), 241601 (2016).
[Crossref]

Mahmoud, M. A.

Y. Badr and M. A. Mahmoud, “On interaction of 193 nm excimer laser with acetone (3s Rydberg state),” J. Mol. Struct. 748(1-3), 189–193 (2005).
[Crossref]

Y. Badr, S. Abd El-wanees, and M. A. Mahmoud, “Spectroscopic and dynamic studies of the photolysis reaction of acetone by 193 nm excimer laser,” J. Photochem. Photobiol., A 168(1-2), 31–38 (2004).
[Crossref]

Matthews, B. D.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Midorikawa, K.

Y. Hanada, K. Sugioka, and K. Midorikawa, “Laser-induced plasma-assisted ablation (LIPAA): fundamental and industrial applications,” Proc. SPIE 6261, 626111 (2006).
[Crossref]

Mirershadi, S.

S. Z. Mortazavi, P. Parvin, A. Reyhani, A. N. Golikand, and S. Mirershadi, “Effect of Laser Wavelength at IR (1064 nm) and UV (193 nm) on the Structural Formation of Palladium Nanoparticles in Deionized Water,” J. Phys. Chem. C 115(12), 5049–5057 (2011).
[Crossref]

Möckel, R.

B. Flem, A. Müller, J. Götze, and R. Möckel, Quartz: Deposits, Mineralogy and Analytics (Springer, 2012), Chap. 10.

Montoya-Zavala, M.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Morris, C. E.

C. E. Morris, “Mechanosensitive Ion Channels,” J. Membr. Biol. 113(2), 93–107 (1990).
[Crossref]

Mortazavi, S. Z.

S. Z. Mortazavi, P. Parvin, A. Reyhani, A. N. Golikand, and S. Mirershadi, “Effect of Laser Wavelength at IR (1064 nm) and UV (193 nm) on the Structural Formation of Palladium Nanoparticles in Deionized Water,” J. Phys. Chem. C 115(12), 5049–5057 (2011).
[Crossref]

Müller, A.

B. Flem, A. Müller, J. Götze, and R. Möckel, Quartz: Deposits, Mineralogy and Analytics (Springer, 2012), Chap. 10.

Neher, E.

K. Benndorf, B. Sakmann, and E. Neher, Single-Channel Recording (Plenum Press, 1995), Chap. 5.

Ni, X.

Nilius, B.

B. Nilius and E. Honoré, “Sensing pressure with ion channels,” Trends Neurosci. 35(8), 477–486 (2012).
[Crossref]

Overby, D.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Parvin, P.

S. Z. Mortazavi, P. Parvin, A. Reyhani, A. N. Golikand, and S. Mirershadi, “Effect of Laser Wavelength at IR (1064 nm) and UV (193 nm) on the Structural Formation of Palladium Nanoparticles in Deionized Water,” J. Phys. Chem. C 115(12), 5049–5057 (2011).
[Crossref]

S. Z. Shoursheini, P. Parvin, B. Sajad, and M. A. Bassam, “Dual-Laser-Beam-Induced Breakdown Spectroscopy of Copper Using Simultaneous Continuous Wave CO2 and Q-Switched Nd:YAG Lasers,” Appl. Spectrosc. 63(4), 423–429 (2009).
[Crossref]

Pfalzner, S.

S. Pfalzner and P. Gibbon, “Direct calculation of inverse-bremsstrahlung absorption in strongly coupled, nonlinearly driven laser plasmas,” Phys. Rev. E 57(4), 4698–4705 (1998).
[Crossref]

Plumer, J. R.

A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007), Chap. 3.

Polte, T.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Qian, Y.

Reyhani, A.

S. Z. Mortazavi, P. Parvin, A. Reyhani, A. N. Golikand, and S. Mirershadi, “Effect of Laser Wavelength at IR (1064 nm) and UV (193 nm) on the Structural Formation of Palladium Nanoparticles in Deionized Water,” J. Phys. Chem. C 115(12), 5049–5057 (2011).
[Crossref]

Russo, R. E.

A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007), Chap. 3.

Sachs, F.

S. Sukharev and F. Sachs, “Molecular force transduction by ion channels-diversity and unifying principles,” J. Cell Sci. 125(13), 3075–3083 (2012).
[Crossref]

Sajad, B.

Sakmann, B.

K. Benndorf, B. Sakmann, and E. Neher, Single-Channel Recording (Plenum Press, 1995), Chap. 5.

Sánchez, D.

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

Schulz, C.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355(1-2), 82–88 (2002).
[Crossref]

Sero, J.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Seshadri, A

A. Bhat, P. V. Gwozdz, A Seshadri, M. Hoeft, and R. H. Blick, “Tank Circuit for Ultrafast Single-Particle Detection in Micropores,” Phys. Rev. Lett. 121(7), 078102 (2018).
[Crossref]

Shin, H. C.

E. Stava, M. Yu, H. C. Shin, and R. H. Blick, “Single-Ion Channel Recordings on Quartz Substrates,” IEEE Trans.on Nanobioscience 9(4), 307–309 (2010).
[Crossref]

Shoursheini, S. Z.

Singh, S. C.

S. C. Singh, R. K. Swarnkar, and R. Gopal, “Zn/ZnO core/shell nanoparticles synthesized by laser ablation in aqueous environment: Optical and structural characterization,” Bull. Mater. Sci. 33(1), 21–26 (2010).
[Crossref]

Song, Y.

D. Chu, K. Yin, X. Dong, Z. Luo, Y. Song, and J. Duan, “Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy,” Chin. Opt. Lett. 16(1), 011401 (2018).
[Crossref]

K. Yin, J. Duan, C. Wang, X. Dong, Y. Song, and Z. Luo, “Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions,” Appl. Phys. Lett. 108(24), 241601 (2016).
[Crossref]

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

Stava, E.

E. Stava, M. Yu, H. C. Shin, and R. H. Blick, “Single-Ion Channel Recordings on Quartz Substrates,” IEEE Trans.on Nanobioscience 9(4), 307–309 (2010).
[Crossref]

Sugioka, K.

Y. Hanada, K. Sugioka, and K. Midorikawa, “Laser-induced plasma-assisted ablation (LIPAA): fundamental and industrial applications,” Proc. SPIE 6261, 626111 (2006).
[Crossref]

Sukharev, S.

S. Sukharev and F. Sachs, “Molecular force transduction by ion channels-diversity and unifying principles,” J. Cell Sci. 125(13), 3075–3083 (2012).
[Crossref]

Swarnkar, R. K.

S. C. Singh, R. K. Swarnkar, and R. Gopal, “Zn/ZnO core/shell nanoparticles synthesized by laser ablation in aqueous environment: Optical and structural characterization,” Bull. Mater. Sci. 33(1), 21–26 (2010).
[Crossref]

Venturini, J.

G. Koptikovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser Induced Backside Wet Etching: Mechanisms and Fabrication of Miro-Optical Elements,” J. Phys.: Conf. Ser. 59, 526–532 (2007).
[Crossref]

Wang, C.

K. Yin, J. Duan, C. Wang, X. Dong, Y. Song, and Z. Luo, “Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions,” Appl. Phys. Lett. 108(24), 241601 (2016).
[Crossref]

Wang, N.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Weiner, O. D.

A. Diz-Muñoz, D. A. Fletcher, and O. D. Weiner, “Use the force: membrane tension as an organizer of cell shape and motility,” Trends Cell Biol. 23(2), 47–53 (2013).
[Crossref]

Wokaun, A.

G. Koptikovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser Induced Backside Wet Etching: Mechanisms and Fabrication of Miro-Optical Elements,” J. Phys.: Conf. Ser. 59, 526–532 (2007).
[Crossref]

Xia, S.

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Yang, B.

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

Yang, Y.

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

Yin, K.

D. Chu, K. Yin, X. Dong, Z. Luo, Y. Song, and J. Duan, “Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy,” Chin. Opt. Lett. 16(1), 011401 (2018).
[Crossref]

K. Yin, J. Duan, C. Wang, X. Dong, Y. Song, and Z. Luo, “Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions,” Appl. Phys. Lett. 108(24), 241601 (2016).
[Crossref]

Yoo, J. H.

A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007), Chap. 3.

Yu, G.

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

Yu, M.

E. Stava, M. Yu, H. C. Shin, and R. H. Blick, “Single-Ion Channel Recordings on Quartz Substrates,” IEEE Trans.on Nanobioscience 9(4), 307–309 (2010).
[Crossref]

M. Yu, H. S. Kim, and R. H. Blick, “Laser drilling of nano-pores in sandwiched thin glass membranes,” Opt. Express 17(12), 10044 (2009).
[Crossref]

Zhao, J.

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

Zheng, X.

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

Appl. Phys. Lett. (1)

K. Yin, J. Duan, C. Wang, X. Dong, Y. Song, and Z. Luo, “Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions,” Appl. Phys. Lett. 108(24), 241601 (2016).
[Crossref]

Appl. Spectrosc. (1)

Bull. Mater. Sci. (1)

S. C. Singh, R. K. Swarnkar, and R. Gopal, “Zn/ZnO core/shell nanoparticles synthesized by laser ablation in aqueous environment: Optical and structural characterization,” Bull. Mater. Sci. 33(1), 21–26 (2010).
[Crossref]

Chem. Phys. Lett. (1)

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355(1-2), 82–88 (2002).
[Crossref]

Chin. Opt. Lett. (2)

IEEE Trans.on Nanobioscience (1)

E. Stava, M. Yu, H. C. Shin, and R. H. Blick, “Single-Ion Channel Recordings on Quartz Substrates,” IEEE Trans.on Nanobioscience 9(4), 307–309 (2010).
[Crossref]

J. Cell Sci. (1)

S. Sukharev and F. Sachs, “Molecular force transduction by ion channels-diversity and unifying principles,” J. Cell Sci. 125(13), 3075–3083 (2012).
[Crossref]

J. Chem. Phys. (1)

D. J. Donaldson and S. R. Leone, “Photofragmentation dynamics of acetone of 193 nm: State distributions of the CH3 and CO fragments by time and wavelength-resolved infrared emission,” J. Chem. Phys. 85(2), 817–824 (1986).
[Crossref]

J. Membr. Biol. (1)

C. E. Morris, “Mechanosensitive Ion Channels,” J. Membr. Biol. 113(2), 93–107 (1990).
[Crossref]

J. Mol. Struct. (1)

Y. Badr and M. A. Mahmoud, “On interaction of 193 nm excimer laser with acetone (3s Rydberg state),” J. Mol. Struct. 748(1-3), 189–193 (2005).
[Crossref]

J. Neurosci. Methods (1)

D. Sánchez, U. Anand, J. Gorelik, C. Benham, C. Bountra, M. Lab, D. Klenerman, R. Birch, P. Anand, and Y. Korchev, “Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy,” J. Neurosci. Methods 159(1), 26–34 (2007).
[Crossref]

J. Photochem. Photobiol., A (1)

Y. Badr, S. Abd El-wanees, and M. A. Mahmoud, “Spectroscopic and dynamic studies of the photolysis reaction of acetone by 193 nm excimer laser,” J. Photochem. Photobiol., A 168(1-2), 31–38 (2004).
[Crossref]

J. Phys. Chem. C (1)

S. Z. Mortazavi, P. Parvin, A. Reyhani, A. N. Golikand, and S. Mirershadi, “Effect of Laser Wavelength at IR (1064 nm) and UV (193 nm) on the Structural Formation of Palladium Nanoparticles in Deionized Water,” J. Phys. Chem. C 115(12), 5049–5057 (2011).
[Crossref]

J. Phys.: Conf. Ser. (1)

G. Koptikovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser Induced Backside Wet Etching: Mechanisms and Fabrication of Miro-Optical Elements,” J. Phys.: Conf. Ser. 59, 526–532 (2007).
[Crossref]

J. Raman Spectrosc. (1)

Y. Song, X. Zheng, G. Yu, J. Zhao, L. Jiang, Y. Liu, B. Yang, and Y. Yang, “The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy,” J. Raman Spectrosc. 42(3), 345–348 (2011).
[Crossref]

Methods Cell Biol. (1)

T. P. Lele, J. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, “Tools to Study Cell Mechanics and Mechanotransduction,” Methods Cell Biol. 83, 441–472 (2007).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

M. Chalfie, “Neurosensory mechanotransduction,” Nat. Rev. Mol. Cell Biol. 10(1), 44–52 (2009).
[Crossref]

Opt. Express (1)

Phys. Rev. E (1)

S. Pfalzner and P. Gibbon, “Direct calculation of inverse-bremsstrahlung absorption in strongly coupled, nonlinearly driven laser plasmas,” Phys. Rev. E 57(4), 4698–4705 (1998).
[Crossref]

Phys. Rev. Lett. (1)

A. Bhat, P. V. Gwozdz, A Seshadri, M. Hoeft, and R. H. Blick, “Tank Circuit for Ultrafast Single-Particle Detection in Micropores,” Phys. Rev. Lett. 121(7), 078102 (2018).
[Crossref]

Proc. SPIE (1)

Y. Hanada, K. Sugioka, and K. Midorikawa, “Laser-induced plasma-assisted ablation (LIPAA): fundamental and industrial applications,” Proc. SPIE 6261, 626111 (2006).
[Crossref]

Rev. Mod. Phys. (1)

J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys. 57(1), 105–146 (1985).
[Crossref]

Trends Cell Biol. (1)

A. Diz-Muñoz, D. A. Fletcher, and O. D. Weiner, “Use the force: membrane tension as an organizer of cell shape and motility,” Trends Cell Biol. 23(2), 47–53 (2013).
[Crossref]

Trends Neurosci. (1)

B. Nilius and E. Honoré, “Sensing pressure with ion channels,” Trends Neurosci. 35(8), 477–486 (2012).
[Crossref]

Other (3)

K. Benndorf, B. Sakmann, and E. Neher, Single-Channel Recording (Plenum Press, 1995), Chap. 5.

B. Flem, A. Müller, J. Götze, and R. Möckel, Quartz: Deposits, Mineralogy and Analytics (Springer, 2012), Chap. 10.

A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Preparation of pores in crystalline quartz (a) An exploded view of the quartz chip setup with direct capillary-force contact between a solution painted on the back of a quartz chip and a substrate during laser ablation. The top layer represents the quartz substrate, while the different support layers (Au, Si, and GaP) are shown as the bottom layers. (b) Similarly assembled setup as in (a) but with the addition of a silicone spacer to allow attenuation of resonance and to lessen the plasma’s strength, resulting in micro-pore formation. (c) Raman spectra excited with 532 nm laser light with a diameter of 50µm: data were obtained from three different sets of samples of painted acetone on quartz, painted methanol on quartz, or non-painted quartz chips after laser-drilling of pores and piranha treatment were complete. All three data sets are superimposed to verify that the final material remaining is indeed quartz (more details in text).
Fig. 2.
Fig. 2. SEM micrographs of dependence of pore formation on power and solution: (a) image of power dependence without spacer solution where the first image results at a laser power of 5W and alternating pulses (2000 pulses at 50 Hz and 1000 pulses at 100 Hz). The second image shows the effect of a laser beam with 6W power and a set of 2000 pulses at 100 Hz. The final image is obtained at 7W with an alternating pulse sequence, as in the first example. (b) An SEM image of a pore resulting from acetone painted on the backside of the quartz chip and a gold substrate. Alternate pulses at 50 Hz and 100 Hz impact the quartz at a power level of 6–7W. (c) An SEM image of laser-drilling results with methanol painted on quartz and a gold substrate, and a constant pulse sequence at 100 Hz ablating the material at a power level of 5–6W. (d) A patterned pore ablated with IPA solution. The damage in this image is due to the dehydrating and viscous properties of this particular solution (scale bars: 1µm). All pores are drilled through the entire substrate, as this is required by our application.
Fig. 3.
Fig. 3. Nanoscale pore formation and diameter statistics: (a) respective SEM images of 362 resp. 576 nm diameter pores drilled with painted methanol on quartz, silicone spacer, and Al foil substrate using alternating pulse rates of 1000 pulses at 50 Hz and 2000 pulses at 100 Hz (scale bars: 200 nm). (b) Respective SEM images of 805 and 893 nm pores drilled with painted methanol on quartz, silicon spacer, and GaP substrates using constant pulses of 2000 pulses at 100 Hz (scale bars: 1µm). (c) Summary of data plotted with respect to pore diameters. The alternating pulse sequence (Alt.) is ablated at 2000 pulses at 50 Hz and 1000 pulses at 100 Hz. The constant pulse sequence (Const.) is ablated at 2000 pulses at 100 Hz. The last three bars instead visibly smaller pore diameter. This reduction is caused by the silicone spacer layer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α i B = 1.89 × 10 6 T e 1 / 2 Z 2 N e N i v 3 × ( 1 exp ( h v k B T e ) ) × ( 1 ω p 2 / ω 2 ) 1 / 2 ln Λ  c m 1