Abstract

Optical properties and ultraviolet laser damage of single-layer atomic layer deposition (ALD) SiO2 films were investigated. ALD SiO2 films of high transparency shows weak absorption at 355nm. The absorption at 355 nm measured by laser calorimeter varies linearly with the film thickness with absorption coefficient of ∼0.76 ppm/nm. Such absorption is considered originating from various point defects in ALD SiO2 film. Fourier transform infrared (FTIR) spectra confirm the presence of point defects in ALD SiO2 films including non-bridging oxygen atoms and residual OH groups. Nanosecond laser-induced damage of ALD SiO2 film at 355 nm was investigated. The damage threshold and damage morphology suggest that laser-induced damage of ALD film is associated with point defect clusters which can absorb enough laser energy to initiate micro-explosion in ALD films. Furthermore, the ALD films were conditioned with sub-nanosecond ultraviolet laser. Significant improvement in damage resistance has been demonstrated after sub-nanosecond laser conditioning. After laser conditioning to 3 J/cm2, the damage threshold of 535 nm thick ALD film increased from 5.5 J/cm2 to 14.9 J/cm2 and improved about 170%. Annealing of point defects by sub-nanosecond ultraviolet laser is supposed to be the reason for the improvement of the damage resistance.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
    [Crossref]
  2. V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
    [Crossref]
  3. K. Pfeiffer, U. Schulz, A. Tunnermann, and A. Szeghalmi, “Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition,” Coatings 7(2017).
  4. A. J. M. Mackus, A. A. Bol, and W. M. M. Kessels, “The use of atomic layer deposition in advanced nanopatterning,” Nanoscale 6(19), 10941–10960 (2014).
    [Crossref]
  5. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys. 89(10), 5243–5275 (2001).
    [Crossref]
  6. L. Ghazaryan, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching,” Nanotechnology 27(2016).
  7. L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).
  8. S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
    [Crossref]
  9. O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
    [Crossref]
  10. S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
    [Crossref]
  11. B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
    [Crossref]
  12. M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
    [Crossref]
  13. K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. T. Sanli, C. Grevent, G. Schutz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tunnermann, and A. Szeghalmi, “Comparative study of ALD SiO2 thin films for optical applications,” Opt. Mater. Express 6(2), 660–670 (2016).
    [Crossref]
  14. S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. Patzig, A. Tunnermann, and A. Szeghalmi, “Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications,” Appl. Opt. 56(4), C47–C59 (2017).
    [Crossref]
  15. S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).
  16. C. P. Li, Y. C. Sun, X. F. Song, X. Q. Zhang, Z. H. Shi, F. R. Wang, X. Ye, S. F. Chen, L. X. Sun, J. Huang, W. D. Wu, and X. D. Jiang, “Capping a glass thin layer on the etched surface via plasma chemical vapor deposition for improving the laser damage performance of fused silica,” Opt. Express 27(3), 2268–2280 (2019).
    [Crossref]
  17. M. J. Matthews, N. Shen, S. Elhadj, P. E. Miller, A. J. Nelson, T. A. Laurence, and J. Hamilton, “Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).
  18. N. Shen, M. J. Matthews, S. Elhadj, P. E. Miller, A. J. Nelson, and J. Hamilton, “Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature,” J. Phys. D: Appl. Phys. 46(16), 165305 (2013).
    [Crossref]
  19. Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
    [Crossref]
  20. S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
    [Crossref]
  21. Y. W. Wei, H. Liu, O. Y. Sheng, Z. C. Liu, S. L. Chen, and L. M. Yang, “Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition,” Appl. Opt. 50(24), 4720–4727 (2011).
    [Crossref]
  22. Z. C. Liu, S. L. Chen, P. Ma, Y. W. Wei, Y. Zheng, F. Pan, H. Liu, and G. Y. Tang, “Characterization of 1064nm nanosecond laser-induced damage on antireflection coatings grown by atomic layer deposition,” Opt. Express 20(2), 854–863 (2012).
    [Crossref]
  23. L. O. Jensen, H. Madebach, J. Maula, K. Gurtler, and D. Ristau, “Laser Induced Damage Threshold and Optical Properties of TiO2 and Al2O3 - Coatings Prepared by Atomic Layer Deposition,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).
  24. Y. W. Wei, F. Pan, Q. H. Zhang, and P. Ma, “Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds,” Nanoscale Research Letters 10(2015).
  25. Q. H. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang, and Y. W. Wei, “Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition,” J. Alloys Compd. 659, 288–294 (2016).
    [Crossref]
  26. H. Ye, Y. G. Li, Q. H. Zhang, W. Wang, Z. G. Yuan, J. Wang, and Q. Xu, “Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers,” Appl. Opt. 55(11), 3017–3025 (2016).
    [Crossref]
  27. G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
    [Crossref]
  28. S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
    [Crossref]
  29. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
    [Crossref]
  30. A. Melninkaitis, A. Vaninas, J. Mirauskas, K. Kuršelis, O. Balachninaite, and V. Sirutkaitis, “Laser conditioning of high reflectivity mirrors used in OPOs by 266 and 355 nm nanosecond pulses, “ Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers (SPIE, 2009), Vol. 7504.
  31. H. Bercegol, “What is laser conditioning: a review focused on dielectric multilayers,” Laser-Induced Damage in Optical Materials: 1998 (SPIE, 1999), Vol. 3578.
  32. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (2003), pp. 74–82.
  33. G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express 17(13), 10434–10456 (2009).
    [Crossref]
  34. S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, and B. Marozas, “Near-ultraviolet absorption-annealing effects in HfO2 thin films subjected to continuous-wave laser irradiation at 355 nm,” in Laser-Induced Damage in Optical Materials: 2013, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2013).

2019 (1)

2017 (2)

S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. Patzig, A. Tunnermann, and A. Szeghalmi, “Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications,” Appl. Opt. 56(4), C47–C59 (2017).
[Crossref]

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (2)

A. J. M. Mackus, A. A. Bol, and W. M. M. Kessels, “The use of atomic layer deposition in advanced nanopatterning,” Nanoscale 6(19), 10941–10960 (2014).
[Crossref]

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

2013 (2)

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

N. Shen, M. J. Matthews, S. Elhadj, P. E. Miller, A. J. Nelson, and J. Hamilton, “Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature,” J. Phys. D: Appl. Phys. 46(16), 165305 (2013).
[Crossref]

2012 (2)

Z. C. Liu, S. L. Chen, P. Ma, Y. W. Wei, Y. Zheng, F. Pan, H. Liu, and G. Y. Tang, “Characterization of 1064nm nanosecond laser-induced damage on antireflection coatings grown by atomic layer deposition,” Opt. Express 20(2), 854–863 (2012).
[Crossref]

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

2011 (1)

2010 (1)

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref]

2009 (2)

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express 17(13), 10434–10456 (2009).
[Crossref]

2006 (2)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

2004 (1)

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[Crossref]

2001 (1)

G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys. 89(10), 5243–5275 (2001).
[Crossref]

1995 (1)

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

1994 (1)

S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
[Crossref]

Aghaee, M.

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

Ali, S.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Anthony, J. M.

G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys. 89(10), 5243–5275 (2001).
[Crossref]

Balachninaite, O.

A. Melninkaitis, A. Vaninas, J. Mirauskas, K. Kuršelis, O. Balachninaite, and V. Sirutkaitis, “Laser conditioning of high reflectivity mirrors used in OPOs by 266 and 355 nm nanosecond pulses, “ Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers (SPIE, 2009), Vol. 7504.

Bercegol, H.

H. Bercegol, “What is laser conditioning: a review focused on dielectric multilayers,” Laser-Induced Damage in Optical Materials: 1998 (SPIE, 1999), Vol. 3578.

Bingel, A.

Bol, A. A.

A. J. M. Mackus, A. A. Bol, and W. M. M. Kessels, “The use of atomic layer deposition in advanced nanopatterning,” Nanoscale 6(19), 10941–10960 (2014).
[Crossref]

Bosund, M.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Botha, R.

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

Buchanan, I.

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. T. Sanli, C. Grevent, G. Schutz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tunnermann, and A. Szeghalmi, “Comparative study of ALD SiO2 thin films for optical applications,” Opt. Mater. Express 6(2), 660–670 (2016).
[Crossref]

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Burton, B. B.

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

Chen, J.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Chen, S. F.

Chen, S. L.

Creatore, M.

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

Demos, S. G.

Dillon, A. C.

S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
[Crossref]

Dingemans, G.

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

Duchateau, G.

Elhadj, S.

N. Shen, M. J. Matthews, S. Elhadj, P. E. Miller, A. J. Nelson, and J. Hamilton, “Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature,” J. Phys. D: Appl. Phys. 46(16), 165305 (2013).
[Crossref]

M. J. Matthews, N. Shen, S. Elhadj, P. E. Miller, A. J. Nelson, T. A. Laurence, and J. Hamilton, “Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Feit, M. D.

S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (2003), pp. 74–82.

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

George, S. M.

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref]

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
[Crossref]

Ghazaryan, L.

S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. Patzig, A. Tunnermann, and A. Szeghalmi, “Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications,” Appl. Opt. 56(4), C47–C59 (2017).
[Crossref]

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. T. Sanli, C. Grevent, G. Schutz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tunnermann, and A. Szeghalmi, “Comparative study of ALD SiO2 thin films for optical applications,” Opt. Mater. Express 6(2), 660–670 (2016).
[Crossref]

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

L. Ghazaryan, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching,” Nanotechnology 27(2016).

Grevent, C.

Gunster, S.

S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).

Gurtler, K.

L. O. Jensen, H. Madebach, J. Maula, K. Gurtler, and D. Ristau, “Laser Induced Damage Threshold and Optical Properties of TiO2 and Al2O3 - Coatings Prepared by Atomic Layer Deposition,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Haimi, E.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Hamilton, J.

N. Shen, M. J. Matthews, S. Elhadj, P. E. Miller, A. J. Nelson, and J. Hamilton, “Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature,” J. Phys. D: Appl. Phys. 46(16), 165305 (2013).
[Crossref]

M. J. Matthews, N. Shen, S. Elhadj, P. E. Miller, A. J. Nelson, T. A. Laurence, and J. Hamilton, “Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Hannula, S. P.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Huang, J.

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Jensen, L.

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. T. Sanli, C. Grevent, G. Schutz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tunnermann, and A. Szeghalmi, “Comparative study of ALD SiO2 thin films for optical applications,” Opt. Mater. Express 6(2), 660–670 (2016).
[Crossref]

S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).

Jensen, L. O.

L. O. Jensen, H. Madebach, J. Maula, K. Gurtler, and D. Ristau, “Laser Induced Damage Threshold and Optical Properties of TiO2 and Al2O3 - Coatings Prepared by Atomic Layer Deposition,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Jiang, X. D.

Jiang, X. L.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Jiang, Y.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Jiang, Y. L.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Jitsuno, T.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[Crossref]

Kamiyama, S.

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

Kang, S. W.

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

Karwacki, E.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Kessels, W. M. M.

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. T. Sanli, C. Grevent, G. Schutz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tunnermann, and A. Szeghalmi, “Comparative study of ALD SiO2 thin films for optical applications,” Opt. Mater. Express 6(2), 660–670 (2016).
[Crossref]

A. J. M. Mackus, A. A. Bol, and W. M. M. Kessels, “The use of atomic layer deposition in advanced nanopatterning,” Nanoscale 6(19), 10941–10960 (2014).
[Crossref]

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

Kessler, T. J.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, and B. Marozas, “Near-ultraviolet absorption-annealing effects in HfO2 thin films subjected to continuous-wave laser irradiation at 355 nm,” in Laser-Induced Damage in Optical Materials: 2013, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2013).

Keuning, W.

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

Kilpi, L.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Kley, E. B.

L. Ghazaryan, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching,” Nanotechnology 27(2016).

Kozlov, A. A.

S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, and B. Marozas, “Near-ultraviolet absorption-annealing effects in HfO2 thin films subjected to continuous-wave laser irradiation at 355 nm,” in Laser-Induced Damage in Optical Materials: 2013, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2013).

Kuršelis, K.

A. Melninkaitis, A. Vaninas, J. Mirauskas, K. Kuršelis, O. Balachninaite, and V. Sirutkaitis, “Laser conditioning of high reflectivity mirrors used in OPOs by 266 and 355 nm nanosecond pulses, “ Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers (SPIE, 2009), Vol. 7504.

Laurence, T. A.

M. J. Matthews, N. Shen, S. Elhadj, P. E. Miller, A. J. Nelson, T. A. Laurence, and J. Hamilton, “Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Leskela, M.

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

Li, C. P.

Li, Y. G.

Liao, W.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Lipsanen, H.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Liu, H.

Liu, X. W.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Liu, Z. C.

Luan, X. Y.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Luo, J.

Q. H. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang, and Y. W. Wei, “Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition,” J. Alloys Compd. 659, 288–294 (2016).
[Crossref]

Ma, P.

Z. C. Liu, S. L. Chen, P. Ma, Y. W. Wei, Y. Zheng, F. Pan, H. Liu, and G. Y. Tang, “Characterization of 1064nm nanosecond laser-induced damage on antireflection coatings grown by atomic layer deposition,” Opt. Express 20(2), 854–863 (2012).
[Crossref]

Y. W. Wei, F. Pan, Q. H. Zhang, and P. Ma, “Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds,” Nanoscale Research Letters 10(2015).

Mackus, A. J. M.

A. J. M. Mackus, A. A. Bol, and W. M. M. Kessels, “The use of atomic layer deposition in advanced nanopatterning,” Nanoscale 6(19), 10941–10960 (2014).
[Crossref]

Madebach, H.

S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).

L. O. Jensen, H. Madebach, J. Maula, K. Gurtler, and D. Ristau, “Laser Induced Damage Threshold and Optical Properties of TiO2 and Al2O3 - Coatings Prepared by Atomic Layer Deposition,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Manes, K. R.

Marozas, B.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, and B. Marozas, “Near-ultraviolet absorption-annealing effects in HfO2 thin films subjected to continuous-wave laser irradiation at 355 nm,” in Laser-Induced Damage in Optical Materials: 2013, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2013).

Matthews, M. J.

N. Shen, M. J. Matthews, S. Elhadj, P. E. Miller, A. J. Nelson, and J. Hamilton, “Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature,” J. Phys. D: Appl. Phys. 46(16), 165305 (2013).
[Crossref]

M. J. Matthews, N. Shen, S. Elhadj, P. E. Miller, A. J. Nelson, T. A. Laurence, and J. Hamilton, “Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Maula, J.

L. O. Jensen, H. Madebach, J. Maula, K. Gurtler, and D. Ristau, “Laser Induced Damage Threshold and Optical Properties of TiO2 and Al2O3 - Coatings Prepared by Atomic Layer Deposition,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Melninkaitis, A.

A. Melninkaitis, A. Vaninas, J. Mirauskas, K. Kuršelis, O. Balachninaite, and V. Sirutkaitis, “Laser conditioning of high reflectivity mirrors used in OPOs by 266 and 355 nm nanosecond pulses, “ Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers (SPIE, 2009), Vol. 7504.

Miikkulainen, V.

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

Miller, P. E.

N. Shen, M. J. Matthews, S. Elhadj, P. E. Miller, A. J. Nelson, and J. Hamilton, “Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature,” J. Phys. D: Appl. Phys. 46(16), 165305 (2013).
[Crossref]

M. J. Matthews, N. Shen, S. Elhadj, P. E. Miller, A. J. Nelson, T. A. Laurence, and J. Hamilton, “Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Mirauskas, J.

A. Melninkaitis, A. Vaninas, J. Mirauskas, K. Kuršelis, O. Balachninaite, and V. Sirutkaitis, “Laser conditioning of high reflectivity mirrors used in OPOs by 266 and 355 nm nanosecond pulses, “ Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers (SPIE, 2009), Vol. 7504.

Miura, T.

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

Motokoshi, S.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[Crossref]

Muhlig, C.

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

Munzert, P.

Nakatsuka, M.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[Crossref]

Nara, Y.

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

Negres, R. A.

Nelson, A. J.

N. Shen, M. J. Matthews, S. Elhadj, P. E. Miller, A. J. Nelson, and J. Hamilton, “Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature,” J. Phys. D: Appl. Phys. 46(16), 165305 (2013).
[Crossref]

M. J. Matthews, N. Shen, S. Elhadj, P. E. Miller, A. J. Nelson, T. A. Laurence, and J. Hamilton, “Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Okada, L. A.

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
[Crossref]

Oliver, J. B.

S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, and B. Marozas, “Near-ultraviolet absorption-annealing effects in HfO2 thin films subjected to continuous-wave laser irradiation at 355 nm,” in Laser-Induced Damage in Optical Materials: 2013, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2013).

Ott, A. W.

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
[Crossref]

Pan, F.

Q. H. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang, and Y. W. Wei, “Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition,” J. Alloys Compd. 659, 288–294 (2016).
[Crossref]

Z. C. Liu, S. L. Chen, P. Ma, Y. W. Wei, Y. Zheng, F. Pan, H. Liu, and G. Y. Tang, “Characterization of 1064nm nanosecond laser-induced damage on antireflection coatings grown by atomic layer deposition,” Opt. Express 20(2), 854–863 (2012).
[Crossref]

Y. W. Wei, F. Pan, Q. H. Zhang, and P. Ma, “Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds,” Nanoscale Research Letters 10(2015).

Papernov, S.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, and B. Marozas, “Near-ultraviolet absorption-annealing effects in HfO2 thin films subjected to continuous-wave laser irradiation at 355 nm,” in Laser-Induced Damage in Optical Materials: 2013, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2013).

S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).

Patzig, C.

Pfeiffer, K.

Pierreux, D.

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

Putkonen, M.

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. T. Sanli, C. Grevent, G. Schutz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tunnermann, and A. Szeghalmi, “Comparative study of ALD SiO2 thin films for optical applications,” Opt. Mater. Express 6(2), 660–670 (2016).
[Crossref]

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Puurunen, R. L.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

Raman, R. N.

Rhee, S. W.

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

Ristau, D.

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. T. Sanli, C. Grevent, G. Schutz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tunnermann, and A. Szeghalmi, “Comparative study of ALD SiO2 thin films for optical applications,” Opt. Mater. Express 6(2), 660–670 (2016).
[Crossref]

S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).

L. O. Jensen, H. Madebach, J. Maula, K. Gurtler, and D. Ristau, “Laser Induced Damage Threshold and Optical Properties of TiO2 and Al2O3 - Coatings Prepared by Atomic Layer Deposition,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Ritala, M.

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

Ronkainen, H.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Rubenchik, A. M.

S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (2003), pp. 74–82.

Sajavaara, T.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Sanli, U. T.

Schroder, S.

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

Schulz, U.

K. Pfeiffer, U. Schulz, A. Tunnermann, and A. Szeghalmi, “Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition,” Coatings 7(2017).

Schutz, G.

Sekman, Y.

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

Shen, N.

N. Shen, M. J. Matthews, S. Elhadj, P. E. Miller, A. J. Nelson, and J. Hamilton, “Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature,” J. Phys. D: Appl. Phys. 46(16), 165305 (2013).
[Crossref]

M. J. Matthews, N. Shen, S. Elhadj, P. E. Miller, A. J. Nelson, T. A. Laurence, and J. Hamilton, “Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Sheng, O. Y.

Shestaeva, S.

Shi, Z. H.

Sintonen, S.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Sirutkaitis, V.

A. Melninkaitis, A. Vaninas, J. Mirauskas, K. Kuršelis, O. Balachninaite, and V. Sirutkaitis, “Laser conditioning of high reflectivity mirrors used in OPOs by 266 and 355 nm nanosecond pulses, “ Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers (SPIE, 2009), Vol. 7504.

Smith, C.

S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).

Sneh, O.

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
[Crossref]

Song, X. F.

Stevanovic, I.

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

Sun, L. X.

Sun, Y. C.

Szeghalmi, A.

S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. Patzig, A. Tunnermann, and A. Szeghalmi, “Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications,” Appl. Opt. 56(4), C47–C59 (2017).
[Crossref]

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. T. Sanli, C. Grevent, G. Schutz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tunnermann, and A. Szeghalmi, “Comparative study of ALD SiO2 thin films for optical applications,” Opt. Mater. Express 6(2), 660–670 (2016).
[Crossref]

L. Ghazaryan, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching,” Nanotechnology 27(2016).

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

K. Pfeiffer, U. Schulz, A. Tunnermann, and A. Szeghalmi, “Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition,” Coatings 7(2017).

Tang, G. Y.

Tunnermann, A.

S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. Patzig, A. Tunnermann, and A. Szeghalmi, “Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications,” Appl. Opt. 56(4), C47–C59 (2017).
[Crossref]

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. T. Sanli, C. Grevent, G. Schutz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tunnermann, and A. Szeghalmi, “Comparative study of ALD SiO2 thin films for optical applications,” Opt. Mater. Express 6(2), 660–670 (2016).
[Crossref]

K. Pfeiffer, U. Schulz, A. Tunnermann, and A. Szeghalmi, “Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition,” Coatings 7(2017).

L. Ghazaryan, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching,” Nanotechnology 27(2016).

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

Vaha-Nissi, M.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

van Helvoirt, C.

van Helvoirt, C. A. A.

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

Vaninas, A.

A. Melninkaitis, A. Vaninas, J. Mirauskas, K. Kuršelis, O. Balachninaite, and V. Sirutkaitis, “Laser conditioning of high reflectivity mirrors used in OPOs by 266 and 355 nm nanosecond pulses, “ Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers (SPIE, 2009), Vol. 7504.

Wallace, R. M.

G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys. 89(10), 5243–5275 (2001).
[Crossref]

Wang, F. R.

Wang, H. J.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Wang, J.

Wang, W.

Wang, Z.

Q. H. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang, and Y. W. Wei, “Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition,” J. Alloys Compd. 659, 288–294 (2016).
[Crossref]

Way, J. D.

S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
[Crossref]

Wei, Y. W.

Q. H. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang, and Y. W. Wei, “Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition,” J. Alloys Compd. 659, 288–294 (2016).
[Crossref]

Z. C. Liu, S. L. Chen, P. Ma, Y. W. Wei, Y. Zheng, F. Pan, H. Liu, and G. Y. Tang, “Characterization of 1064nm nanosecond laser-induced damage on antireflection coatings grown by atomic layer deposition,” Opt. Express 20(2), 854–863 (2012).
[Crossref]

Y. W. Wei, H. Liu, O. Y. Sheng, Z. C. Liu, S. L. Chen, and L. M. Yang, “Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition,” Appl. Opt. 50(24), 4720–4727 (2011).
[Crossref]

Y. W. Wei, F. Pan, Q. H. Zhang, and P. Ma, “Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds,” Nanoscale Research Letters 10(2015).

Wilk, G. D.

G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys. 89(10), 5243–5275 (2001).
[Crossref]

Wise, M. L.

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
[Crossref]

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Wu, Q.

Q. H. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang, and Y. W. Wei, “Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition,” J. Alloys Compd. 659, 288–294 (2016).
[Crossref]

Wu, W. D.

Xu, Q.

Yamanaka, T.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[Crossref]

Yang, K.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Yang, L. M.

Ye, H.

Ye, X.

Ye, Y. Y.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Ylivaara, O. M. E.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Yuan, X. D.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Yuan, Z. G.

Zaitsu, S.

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[Crossref]

Zhang, C. C.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Zhang, L. J.

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Zhang, Q. H.

Q. H. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang, and Y. W. Wei, “Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition,” J. Alloys Compd. 659, 288–294 (2016).
[Crossref]

H. Ye, Y. G. Li, Q. H. Zhang, W. Wang, Z. G. Yuan, J. Wang, and Q. Xu, “Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers,” Appl. Opt. 55(11), 3017–3025 (2016).
[Crossref]

Y. W. Wei, F. Pan, Q. H. Zhang, and P. Ma, “Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds,” Nanoscale Research Letters 10(2015).

Zhang, X. Q.

Zheng, Y.

Appl. Opt. (3)

Appl. Surf. Sci. (1)

S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, “Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB - binary reaction sequence chemistry,” Appl. Surf. Sci. 82-83, 460–467 (1994).
[Crossref]

Chem. Rev. (1)

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref]

J. Alloys Compd. (1)

Q. H. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang, and Y. W. Wei, “Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition,” J. Alloys Compd. 659, 288–294 (2016).
[Crossref]

J. Appl. Phys. (2)

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys. 89(10), 5243–5275 (2001).
[Crossref]

J. Electrochem. Soc. (1)

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

J. Phys. Chem. C (1)

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (1)

N. Shen, M. J. Matthews, S. Elhadj, P. E. Miller, A. J. Nelson, and J. Hamilton, “Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature,” J. Phys. D: Appl. Phys. 46(16), 165305 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43(3), 1034–1035 (2004).
[Crossref]

Nanoscale (1)

A. J. M. Mackus, A. A. Bol, and W. M. M. Kessels, “The use of atomic layer deposition in advanced nanopatterning,” Nanoscale 6(19), 10941–10960 (2014).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Optica (1)

Optik (1)

Y. L. Jiang, J. Chen, K. Yang, Y. Jiang, W. Liao, C. C. Zhang, Y. Y. Ye, X. Y. Luan, H. J. Wang, X. L. Jiang, X. D. Yuan, and L. J. Zhang, “UV laser conditioning of the sol-gel SiO2 film coated fused silica optics,” Optik 139, 178–184 (2017).
[Crossref]

Surf. Sci. (1)

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

Thin Solid Films (2)

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Other (11)

M. J. Matthews, N. Shen, S. Elhadj, P. E. Miller, A. J. Nelson, T. A. Laurence, and J. Hamilton, “Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

L. Ghazaryan, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching,” Nanotechnology 27(2016).

L. Ghazaryan, Y. Sekman, S. Schroder, C. Muhlig, I. Stevanovic, R. Botha, M. Aghaee, M. Creatore, A. Tunnermann, and A. Szeghalmi, “On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating,” Adv. Eng. Mater. 21(2019).

K. Pfeiffer, U. Schulz, A. Tunnermann, and A. Szeghalmi, “Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition,” Coatings 7(2017).

L. O. Jensen, H. Madebach, J. Maula, K. Gurtler, and D. Ristau, “Laser Induced Damage Threshold and Optical Properties of TiO2 and Al2O3 - Coatings Prepared by Atomic Layer Deposition,” in Laser-Induced Damage in Optical Materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2012).

Y. W. Wei, F. Pan, Q. H. Zhang, and P. Ma, “Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds,” Nanoscale Research Letters 10(2015).

A. Melninkaitis, A. Vaninas, J. Mirauskas, K. Kuršelis, O. Balachninaite, and V. Sirutkaitis, “Laser conditioning of high reflectivity mirrors used in OPOs by 266 and 355 nm nanosecond pulses, “ Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers (SPIE, 2009), Vol. 7504.

H. Bercegol, “What is laser conditioning: a review focused on dielectric multilayers,” Laser-Induced Damage in Optical Materials: 1998 (SPIE, 1999), Vol. 3578.

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (2003), pp. 74–82.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, and B. Marozas, “Near-ultraviolet absorption-annealing effects in HfO2 thin films subjected to continuous-wave laser irradiation at 355 nm,” in Laser-Induced Damage in Optical Materials: 2013, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2013).

S. Papernov, A. A. Kozlov, J. B. Oliver, C. Smith, L. Jensen, S. Gunster, H. Madebach, and D. Ristau, “Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage,” Optical Engineering 56(2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Transmission spectra from 200 nm to 1000 nm on bare fused silica and ALD samples with different thicknesses.
Fig. 2.
Fig. 2. The relationship between film thickness and measured absorption at laser wavelength of 355 nm.
Fig. 3.
Fig. 3. (a) FTIR absorption spectra (400 cm−1–1300 cm−1) of ALD SiO2 with different film thicknesses. (b) Peak positions of the Si-O-Si rocking mode and stretching mode in ALD SiO2 films with different thickness. (c) Enlarged FTIR spectra (700 cm−1–1000 cm−1) in the dashed rectangle shown in Fig. 3(a). (d) FTIR absorption spectra (2000cm−1–4000 cm−1) of ALD SiO2 with different film thicknesses.
Fig. 4.
Fig. 4. (a) Damage probability curves of ALD SiO2 films and bare fused silica. (b) The relationship between laser absorption and damage threshold of ALD films. The red fitting curve is a guide for eyes.
Fig. 5.
Fig. 5. (a) Nomarski microscope photograph of damage initiated at 9.1 J/cm2 on 108 nm film; (b) Nomarski microscope photograph of damage initiated at 6.7 J/cm2 on 404 nm film; (c) Nomarski microscope photograph of damage initiated at 6.1 J/cm2 on 535 nm film; (d) AFM image and height profile of the film damage shown in the red square in (c). (e) AFM image and height profile of the damage crater shown in the blue square in (c).
Fig. 6.
Fig. 6. (a) Damage probability curves of ALD film with different LC conditions (solid lines). A damage probability curve of fused silica substrate is presented for comparison (dashed line). (b) The FTIR spectra on ALD film with different LC conditions (solid lines). The dashed curve is the FTIR spectrum on fused silica substrate for comparison.