Abstract

In this article the photoluminescence (PL) and cathodoluminescence (CL) of undoped BaAl2O4 and BaAl2O4 doped with 500 ppm and 3 mol% Eu2+ is described. The most important results from the CL measurements are: (1) Undoped BaAl2O4 manifested intrinsic CL at 460 nm, which increased at low temperature and did not change significantly upon exposure to the e-beam; (2) Doping BaAl2O4 with Eu2+ changed the character of the intrinsic luminescence band: it became more sensitive to temperature variations and the band experienced a blue shift to ∼425 nm; (3) electron beam (e-beam) exposure of Ba0.97Eu0.03Al2O4 at low temperature increased the 425 nm band strongly while the Eu2+ emission at ∼500 nm decreased by about 70%. The Eu2+ emission band was symmetric, indicating that BaAl2O4:Eu has changed to the P6322 phase upon e-beam exposure at low temperature; (4) We have identified the 460 nm band in undoped BaAl2O4 and the 425 nm band in BaAl2O4:Eu2+ with F-centre luminescence, corresponding to the F-centre emission in α-Al2O3. The evidence for the assignment of the 425 nm band in BaAl2O4:Eu2+ is the spectacular increase of the spectral radiance at 425 nm by e-beam exposure at 200 keV and low temperature. A preliminary model is presented that explains the results. The PL from BaAl2O4:Eu2+ quenched at the rather low temperature of 140°C; this observation is explained in terms of thermal ionization of the Eu2+ ion.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Silver, G. Fern, and R. Withnall, “Color Conversion Phosphors for Light Emitting Diodes,” In Materials for Solid State Lighting and Displays. A. Kitai, ed. Wiley Inc., New York (2017), pp. 91–134.
  2. R. Stone, “An investigation into novel red emitting phosphors and their applications”, Thesis, Brunel University, London (UK), (2011).
  3. J. Silver, G. Fern, and R. Withnall (the late), “Chemistry and Synthesis of Inorganic Light-Emitting Phosphors”, In Handbook of Visual Display Technology, (2015), pp. 1–13.
  4. L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
    [Crossref]
  5. M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.
  6. M. Volhard, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Bax-1CaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(10), 3895–3910 (2019).
    [Crossref]
  7. S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
    [Crossref]
  8. S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
    [Crossref]
  9. S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
    [Crossref]
  10. A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
    [Crossref]
  11. U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
    [Crossref]
  12. J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N. S. Suryanarayana, “Optical properties of rare Earth-doped barium aluminate synthesized by different methods – A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
    [Crossref]
  13. A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
    [Crossref]
  14. G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).
  15. S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
    [Crossref]
  16. M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
    [Crossref]
  17. B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
    [Crossref]
  18. B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
    [Crossref]
  19. R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
    [Crossref]
  20. Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Luminescence 30(2), 235–239 (2015).
    [Crossref]
  21. S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
    [Crossref]
  22. H. F. Brito, M. C. F. C. Felinto, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, P. Novák, L. C. V. Rodrigues, and R. Stefani, “DFT and synchrotron radiation study of Eu2+ doped BaAl2O4,” Opt. Mater. Express 2(4), 420–431 (2012).
    [Crossref]
  23. F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
    [Crossref]
  24. J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
    [Crossref]
  25. J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
    [Crossref]
  26. D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
    [Crossref]
  27. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [Crossref]
  28. J. Bierwagen, S. Yoon, N. Gartmann, B. Walfort, and H. Hagemann, “Thermal and concentration dependent energy transfer of Eu2+ in SrAl2O4,” Opt. Mater. Express 6(3), 793–803 (2016).
    [Crossref]
  29. J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
    [Crossref]
  30. L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
    [Crossref]
  31. M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
    [Crossref]
  32. V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
    [Crossref]
  33. L. Zhang, L. Wang, and Y. Zhu, “Synthesis and Performance of BaAl2O4 with a Wide Spectral Range of Optical Absorption,” Adv. Funct. Mater. 17(18), 3781–3790 (2007).
    [Crossref]
  34. A. Pandey and M. L. Chithambo, “Thermoluminescence of persistent-luminescence phosphor, BaAl2O4; A stuffed tridymite,” Radiat. Meas. 120(1), 73–77 (2018).
    [Crossref]
  35. S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
    [Crossref]
  36. M. Ayvacikli, “Characterization of a Green-Emitting Copper-Doped Barium Aluminate Phosphor,” Spectrosc. Lett. 47(7), 504–511 (2014).
    [Crossref]
  37. N. Suriyamurthy and B. S. Panigrahi, “Luminescence of BaAl2O4: Mn2+, Ce3+ phosphors,” J. Lumin. 127(2), 483–488 (2007).
    [Crossref]
  38. D. den Engelsen, G. R. Fern, T. Ireland, and J. Silver, “Laser-activated luminescence of BaAl2O4:Eu“, ECS J. Solid State Sci. Technol., submitted.
  39. A. I. Surdo, V. S. Kortov, and V. A. Pustovarov, “Luminescence of F and F+ centers in corundum upon excitation in the interval from 4 to 40 eV,” Radiat. Meas. 33(5), 587–591 (2001).
    [Crossref]
  40. J. Valbis and N. Itoh, “Electronic excitations, luminescence and lattice defect formation in α-Al2O3 crystals,” Radiat. Eff. Defects Solids 116(1-2), 171–189 (1991).
    [Crossref]
  41. M. Itou, A. Fujivara, and T. Uchino, “Reversible photoinduced interconversion of color centers in α - Al2O3 prepared under vacuum,” J. Phys. Chem. C 113(49), 20949–20957 (2009).
    [Crossref]
  42. B. G. Draeger and G. P. Summers, “Defects in unirradiated α-Al2O3,” Phys. Rev. B 19(2), 1172–1177 (1979).
    [Crossref]
  43. V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
    [Crossref]
  44. Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
    [Crossref]
  45. K. H. Lee and J. H. Crawford, “Luminescence of the F center in sapphire,” Phys. Rev. B 19(6), 3217–3221 (1979).
    [Crossref]
  46. B. D. Evans, G. J. Pogatshnik, and Y. Chen, “Optical properties of lattice defects in α-Al2O3,” Nucl. Instrum. Methods Phys. Res., Sect. B 91(1-4), 258–262 (1994).
    [Crossref]
  47. W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
    [Crossref]
  48. S. Lizzo, E. P. Klein Nagelvoort, R. Erens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
    [Crossref]
  49. D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
    [Crossref]
  50. J. Silver and R. Withnall, “Color Conversion Phosphors for LEDS,” in “Luminescent Materials and Applications”, Ed. A. Kitai, 2008, Wiley, Chichester, pp92.
  51. P. Jonnard, C. Bonnelle, G. Blaise, G. Rémond, and C. Roques-Carmes, “F+ and F centers in α-Al2O3 by electron-induced x-ray emission spectroscopy and cathodoluminescence,” J. Appl. Phys. 88(11), 6413–6417 (2000).
    [Crossref]
  52. K. J. Caulfield, R. Cooper, and J. F. Boas, “Luminescence from electron-irradiated sapphire,” Phys. Rev. B 47(1), 55–61 (1993).
    [Crossref]
  53. D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
    [Crossref]
  54. D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
    [Crossref]

2019 (3)

2018 (5)

A. Pandey and M. L. Chithambo, “Thermoluminescence of persistent-luminescence phosphor, BaAl2O4; A stuffed tridymite,” Radiat. Meas. 120(1), 73–77 (2018).
[Crossref]

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

2016 (3)

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

J. Bierwagen, S. Yoon, N. Gartmann, B. Walfort, and H. Hagemann, “Thermal and concentration dependent energy transfer of Eu2+ in SrAl2O4,” Opt. Mater. Express 6(3), 793–803 (2016).
[Crossref]

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

2015 (3)

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N. S. Suryanarayana, “Optical properties of rare Earth-doped barium aluminate synthesized by different methods – A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Luminescence 30(2), 235–239 (2015).
[Crossref]

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

2014 (3)

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

M. Ayvacikli, “Characterization of a Green-Emitting Copper-Doped Barium Aluminate Phosphor,” Spectrosc. Lett. 47(7), 504–511 (2014).
[Crossref]

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

2013 (1)

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

2012 (2)

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

H. F. Brito, M. C. F. C. Felinto, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, P. Novák, L. C. V. Rodrigues, and R. Stefani, “DFT and synchrotron radiation study of Eu2+ doped BaAl2O4,” Opt. Mater. Express 2(4), 420–431 (2012).
[Crossref]

2010 (1)

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

2009 (3)

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

M. Itou, A. Fujivara, and T. Uchino, “Reversible photoinduced interconversion of color centers in α - Al2O3 prepared under vacuum,” J. Phys. Chem. C 113(49), 20949–20957 (2009).
[Crossref]

2008 (3)

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
[Crossref]

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

2007 (3)

M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[Crossref]

L. Zhang, L. Wang, and Y. Zhu, “Synthesis and Performance of BaAl2O4 with a Wide Spectral Range of Optical Absorption,” Adv. Funct. Mater. 17(18), 3781–3790 (2007).
[Crossref]

N. Suriyamurthy and B. S. Panigrahi, “Luminescence of BaAl2O4: Mn2+, Ce3+ phosphors,” J. Lumin. 127(2), 483–488 (2007).
[Crossref]

2005 (1)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

2003 (1)

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

2001 (1)

A. I. Surdo, V. S. Kortov, and V. A. Pustovarov, “Luminescence of F and F+ centers in corundum upon excitation in the interval from 4 to 40 eV,” Radiat. Meas. 33(5), 587–591 (2001).
[Crossref]

2000 (3)

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

P. Jonnard, C. Bonnelle, G. Blaise, G. Rémond, and C. Roques-Carmes, “F+ and F centers in α-Al2O3 by electron-induced x-ray emission spectroscopy and cathodoluminescence,” J. Appl. Phys. 88(11), 6413–6417 (2000).
[Crossref]

1997 (1)

S. Lizzo, E. P. Klein Nagelvoort, R. Erens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[Crossref]

1995 (1)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

1994 (3)

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

B. D. Evans, G. J. Pogatshnik, and Y. Chen, “Optical properties of lattice defects in α-Al2O3,” Nucl. Instrum. Methods Phys. Res., Sect. B 91(1-4), 258–262 (1994).
[Crossref]

1993 (1)

K. J. Caulfield, R. Cooper, and J. F. Boas, “Luminescence from electron-irradiated sapphire,” Phys. Rev. B 47(1), 55–61 (1993).
[Crossref]

1991 (1)

J. Valbis and N. Itoh, “Electronic excitations, luminescence and lattice defect formation in α-Al2O3 crystals,” Radiat. Eff. Defects Solids 116(1-2), 171–189 (1991).
[Crossref]

1979 (3)

B. G. Draeger and G. P. Summers, “Defects in unirradiated α-Al2O3,” Phys. Rev. B 19(2), 1172–1177 (1979).
[Crossref]

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

K. H. Lee and J. H. Crawford, “Luminescence of the F center in sapphire,” Phys. Rev. B 19(6), 3217–3221 (1979).
[Crossref]

1968 (2)

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Abakumov, A. M.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Ahmad-Fauzi, M. N.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Aleksanyan, E.

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

Amelinkx, S.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Ayvacikli, M.

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

M. Ayvacikli, “Characterization of a Green-Emitting Copper-Doped Barium Aluminate Phosphor,” Spectrosc. Lett. 47(7), 504–511 (2014).
[Crossref]

Batentschuk, M.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Benourdja, S.

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

Bierwagen, J.

Bite, I.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Blaise, G.

P. Jonnard, C. Bonnelle, G. Blaise, G. Rémond, and C. Roques-Carmes, “F+ and F centers in α-Al2O3 by electron-induced x-ray emission spectroscopy and cathodoluminescence,” J. Appl. Phys. 88(11), 6413–6417 (2000).
[Crossref]

Blasse, G.

S. Lizzo, E. P. Klein Nagelvoort, R. Erens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[Crossref]

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Blokpoel, W. P.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Boas, J. F.

K. J. Caulfield, R. Cooper, and J. F. Boas, “Luminescence from electron-irradiated sapphire,” Phys. Rev. B 47(1), 55–61 (1993).
[Crossref]

Bonnelle, C.

P. Jonnard, C. Bonnelle, G. Blaise, G. Rémond, and C. Roques-Carmes, “F+ and F centers in α-Al2O3 by electron-induced x-ray emission spectroscopy and cathodoluminescence,” J. Appl. Phys. 88(11), 6413–6417 (2000).
[Crossref]

Botha, J. R.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Botterman, J.

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Brik, M. G.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Bril, A.

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Brito, H. F.

H. F. Brito, M. C. F. C. Felinto, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, P. Novák, L. C. V. Rodrigues, and R. Stefani, “DFT and synchrotron radiation study of Eu2+ doped BaAl2O4,” Opt. Mater. Express 2(4), 420–431 (2012).
[Crossref]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Can, N.

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

Canimoglu, A.

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

Carpenter, M. A.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Carvalho, C. A. A.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Caulfield, K. J.

K. J. Caulfield, R. Cooper, and J. F. Boas, “Luminescence from electron-irradiated sapphire,” Phys. Rev. B 47(1), 55–61 (1993).
[Crossref]

Chahed, L.

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

Chaminade, J. P.

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Chen, Y.

B. D. Evans, G. J. Pogatshnik, and Y. Chen, “Optical properties of lattice defects in α-Al2O3,” Nucl. Instrum. Methods Phys. Res., Sect. B 91(1-4), 258–262 (1994).
[Crossref]

Chithambo, M. L.

A. Pandey and M. L. Chithambo, “Thermoluminescence of persistent-luminescence phosphor, BaAl2O4; A stuffed tridymite,” Radiat. Meas. 120(1), 73–77 (2018).
[Crossref]

Choi, J. C.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Cooper, R.

K. J. Caulfield, R. Cooper, and J. F. Boas, “Luminescence from electron-irradiated sapphire,” Phys. Rev. B 47(1), 55–61 (1993).
[Crossref]

Couzi, M.

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

Crawford, J. H.

K. H. Lee and J. H. Crawford, “Luminescence of the F center in sapphire,” Phys. Rev. B 19(6), 3217–3221 (1979).
[Crossref]

den Engelsen, D.

M. Volhard, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Bax-1CaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(10), 3895–3910 (2019).
[Crossref]

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

D. den Engelsen, G. R. Fern, T. Ireland, and J. Silver, “Laser-activated luminescence of BaAl2O4:Eu“, ECS J. Solid State Sci. Technol., submitted.

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Dhillon, R.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Doble, N. S.

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

Doble, S. J.

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

Draeger, B. G.

B. G. Draeger and G. P. Summers, “Defects in unirradiated α-Al2O3,” Phys. Rev. B 19(2), 1172–1177 (1979).
[Crossref]

Dubey, V.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N. S. Suryanarayana, “Optical properties of rare Earth-doped barium aluminate synthesized by different methods – A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Dutczak, D.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

Erens, R.

S. Lizzo, E. P. Klein Nagelvoort, R. Erens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[Crossref]

Evans, B. D.

B. D. Evans, G. J. Pogatshnik, and Y. Chen, “Optical properties of lattice defects in α-Al2O3,” Nucl. Instrum. Methods Phys. Res., Sect. B 91(1-4), 258–262 (1994).
[Crossref]

Felinto, M. C. F. C.

H. F. Brito, M. C. F. C. Felinto, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, P. Novák, L. C. V. Rodrigues, and R. Stefani, “DFT and synchrotron radiation study of Eu2+ doped BaAl2O4,” Opt. Mater. Express 2(4), 420–431 (2012).
[Crossref]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Fern, G.

M. Volhard, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Bax-1CaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(10), 3895–3910 (2019).
[Crossref]

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

J. Silver, G. Fern, and R. Withnall (the late), “Chemistry and Synthesis of Inorganic Light-Emitting Phosphors”, In Handbook of Visual Display Technology, (2015), pp. 1–13.

J. Silver, G. Fern, and R. Withnall, “Color Conversion Phosphors for Light Emitting Diodes,” In Materials for Solid State Lighting and Displays. A. Kitai, ed. Wiley Inc., New York (2017), pp. 91–134.

Fern, G. R.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

D. den Engelsen, G. R. Fern, T. Ireland, and J. Silver, “Laser-activated luminescence of BaAl2O4:Eu“, ECS J. Solid State Sci. Technol., submitted.

Fitz Gerald, J. D.

A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
[Crossref]

Frampton, C.

Friedrich, J.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Fujivara, A.

M. Itou, A. Fujivara, and T. Uchino, “Reversible photoinduced interconversion of color centers in α - Al2O3 prepared under vacuum,” J. Phys. Chem. C 113(49), 20949–20957 (2009).
[Crossref]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Garcia Guinea, J.

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

Gartmann, N.

Gorobez, J.

Hagemann, H.

Hagenmuller, P.

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Harris, P. G.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Harutunyan, V. V.

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

He, Q.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Luminescence 30(2), 235–239 (2015).
[Crossref]

Henderson, C. M.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Hobson, P. R.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Hölsä, J.

H. F. Brito, M. C. F. C. Felinto, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, P. Novák, L. C. V. Rodrigues, and R. Stefani, “DFT and synchrotron radiation study of Eu2+ doped BaAl2O4,” Opt. Mater. Express 2(4), 420–431 (2012).
[Crossref]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Hong, G.

M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[Crossref]

Hörkner, W.

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

Huang, S. Y.

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

Huang, X.

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

Huang, Y.

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

Ireland, T.

M. Volhard, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Bax-1CaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(10), 3895–3910 (2019).
[Crossref]

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

D. den Engelsen, G. R. Fern, T. Ireland, and J. Silver, “Laser-activated luminescence of BaAl2O4:Eu“, ECS J. Solid State Sci. Technol., submitted.

Ireland, T. G.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Ishii, Y.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Itoh, N.

J. Valbis and N. Itoh, “Electronic excitations, luminescence and lattice defect formation in α-Al2O3 crystals,” Radiat. Eff. Defects Solids 116(1-2), 171–189 (1991).
[Crossref]

Itou, M.

M. Itou, A. Fujivara, and T. Uchino, “Reversible photoinduced interconversion of color centers in α - Al2O3 prepared under vacuum,” J. Phys. Chem. C 113(49), 20949–20957 (2009).
[Crossref]

Jaykumar, B.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N. S. Suryanarayana, “Optical properties of rare Earth-doped barium aluminate synthesized by different methods – A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Jonnard, P.

P. Jonnard, C. Bonnelle, G. Blaise, G. Rémond, and C. Roques-Carmes, “F+ and F centers in α-Al2O3 by electron-induced x-ray emission spectroscopy and cathodoluminescence,” J. Appl. Phys. 88(11), 6413–6417 (2000).
[Crossref]

Joos, J.

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Ju, S. H.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Jüstel, T.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

Karabulut, Y.

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

Katayama, Y.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Kaur, J.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N. S. Suryanarayana, “Optical properties of rare Earth-doped barium aluminate synthesized by different methods – A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Kawaguchi, S.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Kaynar, ÜH

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

Kennedy, B. J.

A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
[Crossref]

Kim, C. D.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Kim, T. W.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Kirm, M.

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

Klein Nagelvoort, E. P.

S. Lizzo, E. P. Klein Nagelvoort, R. Erens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[Crossref]

Kore, B. P.

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

Kortov, V. S.

A. I. Surdo, V. S. Kortov, and V. A. Pustovarov, “Luminescence of F and F+ centers in corundum upon excitation in the interval from 4 to 40 eV,” Radiat. Meas. 33(5), 587–591 (2001).
[Crossref]

Kubota, Y.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Laamanen, T.

Larsson, A.-K.

A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
[Crossref]

Lastusaari, M.

H. F. Brito, M. C. F. C. Felinto, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, P. Novák, L. C. V. Rodrigues, and R. Stefani, “DFT and synchrotron radiation study of Eu2+ doped BaAl2O4,” Opt. Mater. Express 2(4), 420–431 (2012).
[Crossref]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Lebedev, O. I.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Lee, K. H.

K. H. Lee and J. H. Crawford, “Luminescence of the F center in sapphire,” Phys. Rev. B 19(6), 3217–3221 (1979).
[Crossref]

Levine, A. K.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Lipman, A.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Liu, Y.

A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
[Crossref]

Lizzo, S.

S. Lizzo, E. P. Klein Nagelvoort, R. Erens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[Crossref]

Lushchik, A.

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

Lushchik, C. B.

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

Makhov, V. N.

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

Malkamäki, M.

Mandowski, A.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Marion, S.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Marsh, P. J.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Meijerink, A.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

S. Lizzo, E. P. Klein Nagelvoort, R. Erens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[Crossref]

Millers, D.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Mori, S.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Mothudi, B. M.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Müller-Buschbaum, H. K.

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

Nakanishi, T.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Nazarov, M.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Ngaruiya, J. M.

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Nieuwoudt, S.

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Ning, L.

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

Nistor, L.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Nor Nazida, A.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Novák, P.

Ntwaeaborwa, O. M.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Oh, U. S.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Palilla, F. C.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Pandey, A.

A. Pandey and M. L. Chithambo, “Thermoluminescence of persistent-luminescence phosphor, BaAl2O4; A stuffed tridymite,” Radiat. Meas. 120(1), 73–77 (2018).
[Crossref]

Panigrahi, B. S.

N. Suriyamurthy and B. S. Panigrahi, “Luminescence of BaAl2O4: Mn2+, Ce3+ phosphors,” J. Lumin. 127(2), 483–488 (2007).
[Crossref]

Park, H. L.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Peng, M.

M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[Crossref]

Perez-Mato, J. M.

A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
[Crossref]

Pogatshnik, G. J.

B. D. Evans, G. J. Pogatshnik, and Y. Chen, “Optical properties of lattice defects in α-Al2O3,” Nucl. Instrum. Methods Phys. Res., Sect. B 91(1-4), 258–262 (1994).
[Crossref]

Poort, S. H. M.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Pustovarov, V. A.

A. I. Surdo, V. S. Kortov, and V. A. Pustovarov, “Luminescence of F and F+ centers in corundum upon excitation in the interval from 4 to 40 eV,” Radiat. Meas. 33(5), 587–591 (2001).
[Crossref]

Qiu, G.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Luminescence 30(2), 235–239 (2015).
[Crossref]

Qiu, J.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Luminescence 30(2), 235–239 (2015).
[Crossref]

Ravez, J.

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Rémond, G.

P. Jonnard, C. Bonnelle, G. Blaise, G. Rémond, and C. Roques-Carmes, “F+ and F centers in α-Al2O3 by electron-induced x-ray emission spectroscopy and cathodoluminescence,” J. Appl. Phys. 88(11), 6413–6417 (2000).
[Crossref]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Rodehorst, U.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Rodrigues, L. C. V.

H. F. Brito, M. C. F. C. Felinto, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, P. Novák, L. C. V. Rodrigues, and R. Stefani, “DFT and synchrotron radiation study of Eu2+ doped BaAl2O4,” Opt. Mater. Express 2(4), 420–431 (2012).
[Crossref]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Ronda, C.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

Roques-Carmes, C.

P. Jonnard, C. Bonnelle, G. Blaise, G. Rémond, and C. Roques-Carmes, “F+ and F centers in α-Al2O3 by electron-induced x-ray emission spectroscopy and cathodoluminescence,” J. Appl. Phys. 88(11), 6413–6417 (2000).
[Crossref]

Saines, P. J.

A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
[Crossref]

Shrivastava, R.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N. S. Suryanarayana, “Optical properties of rare Earth-doped barium aluminate synthesized by different methods – A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Silver, J.

M. Volhard, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Bax-1CaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(10), 3895–3910 (2019).
[Crossref]

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

J. Silver and R. Withnall, “Color Conversion Phosphors for LEDS,” in “Luminescent Materials and Applications”, Ed. A. Kitai, 2008, Wiley, Chichester, pp92.

D. den Engelsen, G. R. Fern, T. Ireland, and J. Silver, “Laser-activated luminescence of BaAl2O4:Eu“, ECS J. Solid State Sci. Technol., submitted.

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

J. Silver, G. Fern, and R. Withnall, “Color Conversion Phosphors for Light Emitting Diodes,” In Materials for Solid State Lighting and Displays. A. Kitai, ed. Wiley Inc., New York (2017), pp. 91–134.

J. Silver, G. Fern, and R. Withnall (the late), “Chemistry and Synthesis of Inorganic Light-Emitting Phosphors”, In Handbook of Visual Display Technology, (2015), pp. 1–13.

Smet, P. F.

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Smits, K.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Spassky, D.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Stefani, R.

H. F. Brito, M. C. F. C. Felinto, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, P. Novák, L. C. V. Rodrigues, and R. Stefani, “DFT and synchrotron radiation study of Eu2+ doped BaAl2O4,” Opt. Mater. Express 2(4), 420–431 (2012).
[Crossref]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Stone, R.

R. Stone, “An investigation into novel red emitting phosphors and their applications”, Thesis, Brunel University, London (UK), (2011).

Summers, G. P.

B. G. Draeger and G. P. Summers, “Defects in unirradiated α-Al2O3,” Phys. Rev. B 19(2), 1172–1177 (1979).
[Crossref]

Surdo, A. I.

A. I. Surdo, V. S. Kortov, and V. A. Pustovarov, “Luminescence of F and F+ centers in corundum upon excitation in the interval from 4 to 40 eV,” Radiat. Meas. 33(5), 587–591 (2001).
[Crossref]

Suriyamurthy, N.

N. Suriyamurthy and B. S. Panigrahi, “Luminescence of BaAl2O4: Mn2+, Ce3+ phosphors,” J. Lumin. 127(2), 483–488 (2007).
[Crossref]

Suryanarayana, N. S.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N. S. Suryanarayana, “Optical properties of rare Earth-doped barium aluminate synthesized by different methods – A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Swart, H. C.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Tanabe, S.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Tanaka, E.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Tanner, P. A.

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

Terblans, J. J.

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Tomkus, M. R.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Tsukasaki, H.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Tsukerblat, B.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Uchino, T.

M. Itou, A. Fujivara, and T. Uchino, “Reversible photoinduced interconversion of color centers in α - Al2O3 prepared under vacuum,” J. Phys. Chem. C 113(49), 20949–20957 (2009).
[Crossref]

Ueda, J.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Valbis, J.

J. Valbis and N. Itoh, “Electronic excitations, luminescence and lattice defect formation in α-Al2O3 crystals,” Radiat. Eff. Defects Solids 116(1-2), 171–189 (1991).
[Crossref]

Van Tendeloo, G.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Vasil’chenko, E.

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

Vielhauer, S.

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

Vitola, V.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Volhard, M.

M. Volhard, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Bax-1CaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(10), 3895–3910 (2019).
[Crossref]

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Von Der Mühll, R.

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Voznyak, T.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Walfort, B.

Wang, L.

L. Zhang, L. Wang, and Y. Zhu, “Synthesis and Performance of BaAl2O4 with a Wide Spectral Range of Optical Absorption,” Adv. Funct. Mater. 17(18), 3781–3790 (2007).
[Crossref]

Whangbo, M.-H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Withers, R. L.

A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
[Crossref]

Withnall, R.

J. Silver, G. Fern, and R. Withnall, “Color Conversion Phosphors for Light Emitting Diodes,” In Materials for Solid State Lighting and Displays. A. Kitai, ed. Wiley Inc., New York (2017), pp. 91–134.

J. Silver, G. Fern, and R. Withnall (the late), “Chemistry and Synthesis of Inorganic Light-Emitting Phosphors”, In Handbook of Visual Display Technology, (2015), pp. 1–13.

J. Silver and R. Withnall, “Color Conversion Phosphors for LEDS,” in “Luminescent Materials and Applications”, Ed. A. Kitai, 2008, Wiley, Chichester, pp92.

Xia, Q.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Xu, X.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Luminescence 30(2), 235–239 (2015).
[Crossref]

Yoon, S.

Yu, L.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Yu, X.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Luminescence 30(2), 235–239 (2015).
[Crossref]

Zhang, L.

L. Zhang, L. Wang, and Y. Zhu, “Synthesis and Performance of BaAl2O4 with a Wide Spectral Range of Optical Absorption,” Adv. Funct. Mater. 17(18), 3781–3790 (2007).
[Crossref]

Zhu, Y.

L. Zhang, L. Wang, and Y. Zhu, “Synthesis and Performance of BaAl2O4 with a Wide Spectral Range of Optical Absorption,” Adv. Funct. Mater. 17(18), 3781–3790 (2007).
[Crossref]

Zolotarjovs, A.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Zorenko, T.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Zorenko, Y.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Adv. Funct. Mater. (1)

L. Zhang, L. Wang, and Y. Zhu, “Synthesis and Performance of BaAl2O4 with a Wide Spectral Range of Optical Absorption,” Adv. Funct. Mater. 17(18), 3781–3790 (2007).
[Crossref]

Appl. Radiat. Isot. (1)

S. Benourdja, ÜH Kaynar, M. Ayvacikli, Y. Karabulut, J. Garcia Guinea, A. Canimoglu, L. Chahed, and N. Can, “Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors,” Appl. Radiat. Isot. 139, 34–39 (2018).
[Crossref]

Chem. Mater. (2)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Ferroelectrics (1)

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

IOP Conf. Ser.: Mater. Sci. Eng. (1)

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

J. Alloys Compd. (1)

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

J. Appl. Phys. (1)

P. Jonnard, C. Bonnelle, G. Blaise, G. Rémond, and C. Roques-Carmes, “F+ and F centers in α-Al2O3 by electron-induced x-ray emission spectroscopy and cathodoluminescence,” J. Appl. Phys. 88(11), 6413–6417 (2000).
[Crossref]

J. Electrochem. Soc. (1)

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

J. Lumin. (4)

N. Suriyamurthy and B. S. Panigrahi, “Luminescence of BaAl2O4: Mn2+, Ce3+ phosphors,” J. Lumin. 127(2), 483–488 (2007).
[Crossref]

M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[Crossref]

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

J. Mater. Chem. C (2)

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

J. Phys. Chem. C (1)

M. Itou, A. Fujivara, and T. Uchino, “Reversible photoinduced interconversion of color centers in α - Al2O3 prepared under vacuum,” J. Phys. Chem. C 113(49), 20949–20957 (2009).
[Crossref]

J. Phys. Chem. Solids (1)

S. Lizzo, E. P. Klein Nagelvoort, R. Erens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[Crossref]

J. Solid State Chem. (2)

A.-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy, and Y. Liu, “On the microstructure and symmetry of apparently hexagonal BaAl2O4,” J. Solid State Chem. 181(8), 1816–1823 (2008).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Luminescence (1)

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Luminescence 30(2), 235–239 (2015).
[Crossref]

Mater. Lett. (1)

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Mater. Res. Bull. (1)

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Mineral. Mag. (1)

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (2)

V. N. Makhov, A. Lushchik, C. B. Lushchik, M. Kirm, E. Vasil’chenko, S. Vielhauer, V. V. Harutunyan, and E. Aleksanyan, “Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr,” Nucl. Instrum. Methods Phys. Res., Sect. B 266(12-13), 2949–2952 (2008).
[Crossref]

B. D. Evans, G. J. Pogatshnik, and Y. Chen, “Optical properties of lattice defects in α-Al2O3,” Nucl. Instrum. Methods Phys. Res., Sect. B 91(1-4), 258–262 (1994).
[Crossref]

Opt. Mater. (2)

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Opt. Mater. Express (4)

Phase Transitions (1)

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Philips Res. Rep. (1)

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Phys. B (1)

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Phys. Chem. Chem. Phys. (1)

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

Phys. Rev. B (4)

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

K. H. Lee and J. H. Crawford, “Luminescence of the F center in sapphire,” Phys. Rev. B 19(6), 3217–3221 (1979).
[Crossref]

B. G. Draeger and G. P. Summers, “Defects in unirradiated α-Al2O3,” Phys. Rev. B 19(2), 1172–1177 (1979).
[Crossref]

K. J. Caulfield, R. Cooper, and J. F. Boas, “Luminescence from electron-irradiated sapphire,” Phys. Rev. B 47(1), 55–61 (1993).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Phys. Status Solidi C (1)

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Radiat. Eff. Defects Solids (1)

J. Valbis and N. Itoh, “Electronic excitations, luminescence and lattice defect formation in α-Al2O3 crystals,” Radiat. Eff. Defects Solids 116(1-2), 171–189 (1991).
[Crossref]

Radiat. Meas. (2)

A. I. Surdo, V. S. Kortov, and V. A. Pustovarov, “Luminescence of F and F+ centers in corundum upon excitation in the interval from 4 to 40 eV,” Radiat. Meas. 33(5), 587–591 (2001).
[Crossref]

A. Pandey and M. L. Chithambo, “Thermoluminescence of persistent-luminescence phosphor, BaAl2O4; A stuffed tridymite,” Radiat. Meas. 120(1), 73–77 (2018).
[Crossref]

Res. Chem. Intermed. (1)

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N. S. Suryanarayana, “Optical properties of rare Earth-doped barium aluminate synthesized by different methods – A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

RSC Adv. (1)

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

Spectrosc. Lett. (1)

M. Ayvacikli, “Characterization of a Green-Emitting Copper-Doped Barium Aluminate Phosphor,” Spectrosc. Lett. 47(7), 504–511 (2014).
[Crossref]

Z. Anorg. Allg. Chem. (1)

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

Other (6)

J. Silver and R. Withnall, “Color Conversion Phosphors for LEDS,” in “Luminescent Materials and Applications”, Ed. A. Kitai, 2008, Wiley, Chichester, pp92.

D. den Engelsen, G. R. Fern, T. Ireland, and J. Silver, “Laser-activated luminescence of BaAl2O4:Eu“, ECS J. Solid State Sci. Technol., submitted.

J. Silver, G. Fern, and R. Withnall, “Color Conversion Phosphors for Light Emitting Diodes,” In Materials for Solid State Lighting and Displays. A. Kitai, ed. Wiley Inc., New York (2017), pp. 91–134.

R. Stone, “An investigation into novel red emitting phosphors and their applications”, Thesis, Brunel University, London (UK), (2011).

J. Silver, G. Fern, and R. Withnall (the late), “Chemistry and Synthesis of Inorganic Light-Emitting Phosphors”, In Handbook of Visual Display Technology, (2015), pp. 1–13.

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. TEM and STEM images recorded at 200 keV and -169°C. (a) TEM image of BA5 (Ba0.97Eu0.03Al2O4). (b) HAADF image of BA5. (c) Pan chomatic image of the same area shown in b.”Beam” indicates a position, where the crystal was hit by the e-beam for some time before measuring the CL spectrum (in STEM mode). (d) TEM image of BA1 (ABCR’s undoped BaAl2O4 after annealing for 60 hrs. in air).
Fig. 2.
Fig. 2. CL spectra of BA1 (undoped BaAl2O4 annealed at 950°C in air for 60 hrs). The spectra were recorded from the same crystal cluster in TEM-mode. Thermal drift was corrected manually: this caused some spread in the spectral radiance.
Fig. 3.
Fig. 3. Deconvolution of 103 K spectrum of Fig. 2. The spectrum can be well represented by two Gaussian profiles in a wavenumber base. The insert indicates the peak wavenumber (ν0), peak wavelength (λ0) and full width at half maximum (FWHM) of the two profiles p3 and p4.
Fig. 4.
Fig. 4. CL spectra of BA3 (BaAl2O4 with 500 ppm Eu) recorded in TEM-mode at 200 keV and various temperatures. The spectral radiance at -90°C was low (likely due to slightly wrong positioning of the e-beam): for better comparison the ordinate has been normalised.
Fig. 5.
Fig. 5. PL (a) and CL (b) spectra of Ba0.97Eu0.03Al2O4 (BA5) at room temperature. The CL spectrum was recorded with the Gatan spectrometer at 200 keV. For deconvolution, see legend of Fig. 3. The profile indications p1 and p2 have been reserved for the Eu2+ emission band.
Fig. 6.
Fig. 6. PL spectra of BaAl2O4:Eu2+ (Exc. 363 nm) recorded at various temperatures. The insert shows an Arrhenius analysis of the maximal spectral radiances of BaAl2O4:Eu2+ and SrAl2O4:Eu2+ (both with 3 mol% Eu2+). The curves were fitted to the experimental points with the Fermi-Dirac equation.
Fig. 7.
Fig. 7. CL spectra of BA5 recorded at -169.8°C and 200 keV. The eight spectra were recorded after various time periods (from 1 minute to 1 hour) of bombarding the specimen in TEM-mode with a current density of about 7 mA/cm2.
Fig. 8.
Fig. 8. (a): Comparison of CL spectra of BaAl2O4 with various Eu concentrations recorded at -170°C. (b): F-centre wavelength in BaAl2O4:Eu2+ versus Eu molar fraction. 1 = Ba0.9Sr0.07Eu0.03Al2O4, 2 = BA1 (undoped BaAl2O4), which is assumed to have a Eu2+ concentration of ∼1 ppm. The dashed line has been fitted through the experimental points.
Fig. 9.
Fig. 9. (a): Deconvolution of spectrum 1 of Fig. 7 with 3 Gaussian profiles. (b): Deconvolution of spectrum 3 of Fig. 7 with 3 Gaussian profiles. (c): Deconvolution of spectrum 5 of Fig. 7 with 3 Gaussian profiles. (d): Deconvolution with 4 Gaussian profiles of CL spectrum of BA3 (BaAl2O4 with 500 ppm Eu) recorded at -170°C. The inserted Tables indicate the amplitude (A), the peak wavenumber (ν0), peak wavelength (λ0), full width at half maximum (FWHM) and the radiance (R, integrated intensity) of the profiles.
Fig. 10.
Fig. 10. F-centre and Eu2+ radiance of Ba0.97Eu0.03Al2O4 at -170°C versus time of e-beam exposure. The radiances have been calculated from the profiles after deconvolution of the spectra as illustrated in Fig. 9. The dashed curve that has been fitted through the F-centre points represents a first order reaction, whereas the dashed lines through the Eu points are guiding the eye.
Fig. 11.
Fig. 11. Simplified energy diagram of Eu2+, F-centre and F+-centre in BaAl2O4. VB = valence band, CB = conduction band, Eg = band gap, F+G is ground level of F+- centre, F+* refers to a simplified (non-split) representation of excited states of F+-centre. The arrows are explained in the text.

Tables (2)

Tables Icon

Table 1. Ratio between spectral radiances at 430 nm and 500 nm of BaAl2O4:Eu2+.

Tables Icon

Table 2. Sample definition of doped and undoped BaAl2O4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S R ( T ) = C 1 + B e E q / k T ,
F + +   e F .
d N F d t = k ( N u N F ) ,
N F = N u ( 1 e k t ) ( R p 3 + R p 4 ) .