Abstract

Herein we describe the synthesis, crystal structures, photoluminescence (PL) and cathodoluminescence (CL) spectra of phosphors in the Sr0.97-xBaxEu0.03Al2O4 system between x = 0 and x = 0.97. The syntheses of these phosphors were carried out by solid state reactions at 1350°C in mixed gas (H2/N2). The molar fractions of the alkaline earth elements were varied in steps of 0.1. The Sr1-xBaxAl2O4 series manifested solid solutions of a monoclinic phase (at the Sr-rich side) and a hexagonal phase (at the Ba-rich side). At the Ba-rich side of Srx-1BaxAl2O4:Eu2+ we found evidence in the PL spectra that the hexagonal phase differed as the xBa fraction changed: it changed at room temperature from the ferroelectric P63 structure at xBa=1 to the paraelectric P6322 phase at xBa≈0.9 and at xBa≈0.8 it went back to P63. Unlike the PL spectra, the CL spectra of the hexagonal phase of Sr0.97-xBaxEu0.03Al2O4 at x ≥ 0.5 indicated only the paraelectric P6322 phase at room temperature.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
    [Crossref]
  2. A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
    [Crossref]
  3. M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
    [Crossref]
  4. W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
    [Crossref]
  5. S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
    [Crossref]
  6. A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
    [Crossref]
  7. A. Shukla, “Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides,” Thesis, University of Montreal, (2012).
  8. P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Application, (InTech, 2014), Chapter 1.
  9. R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Elsevier, 2013), Chapter 6.
  10. U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
    [Crossref]
  11. S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
    [Crossref]
  12. E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
    [Crossref]
  13. M. V. d. S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
    [Crossref]
  14. G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).
  15. S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
    [Crossref]
  16. H. Ryu, B. K. Singh, and K. S. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Phys. B 403(1), 126–130 (2008).
    [Crossref]
  17. Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors,” Materials 10(10), 1198–1210 (2017).
    [Crossref]
  18. J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
    [Crossref]
  19. J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
    [Crossref]
  20. D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
    [Crossref]
  21. D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
    [Crossref]
  22. D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
    [Crossref]

2019 (1)

2018 (1)

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

2017 (1)

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors,” Materials 10(10), 1198–1210 (2017).
[Crossref]

2016 (1)

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

2015 (3)

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

2014 (2)

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

M. V. d. S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

2012 (1)

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

2008 (1)

H. Ryu, B. K. Singh, and K. S. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Phys. B 403(1), 126–130 (2008).
[Crossref]

2007 (1)

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

2003 (1)

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

2000 (1)

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

1995 (1)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

1994 (1)

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

1981 (1)

A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

1979 (1)

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

1968 (1)

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Abakumov, A. M.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Amelinkx, S.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Andrade, A. B.

M. V. d. S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

Avdeev, M.

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Bartwal, K. S.

H. Ryu, B. K. Singh, and K. S. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Phys. B 403(1), 126–130 (2008).
[Crossref]

Blasse, G.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Blokpoel, W. P.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Botterman, J.

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Bril, A.

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Carpenter, M. A.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Chen, Y.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors,” Materials 10(10), 1198–1210 (2017).
[Crossref]

Couzi, M.

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

den Engelsen, D.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

Fern, G.

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

Fern, G. R.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

Frampton, C.

Gorobez, J.

Harris, P. G.

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

He, X.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors,” Materials 10(10), 1198–1210 (2017).
[Crossref]

Henderson, C. M.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Hörkner, W.

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

Huang, S. Y.

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

Ireland, T. G.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

Ishii, Y.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

Joos, J.

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Katayama, Y.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Kawaguchi, S.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Kharton, V. V.

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Kubota, Y.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

Lebedev, O. I.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Li, B.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors,” Materials 10(10), 1198–1210 (2017).
[Crossref]

Marion, S.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Montes, P. J. R.

M. V. d. S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

Mori, S.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

Müller-Buschbaum, H.

A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

Nakanishi, T.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Nistor, L.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Osada, M.

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

Poort, S. H. M.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Ptácek, P.

P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Application, (InTech, 2014), Chapter 1.

Ravez, J.

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

Rezende, M. V. d. S.

M. V. d. S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

Rodehorst, U.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Ropp, R. C.

R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Elsevier, 2013), Chapter 6.

Ryu, H.

H. Ryu, B. K. Singh, and K. S. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Phys. B 403(1), 126–130 (2008).
[Crossref]

Sato, Y.

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

Schulze, A.-R.

A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

Shukla, A.

A. Shukla, “Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides,” Thesis, University of Montreal, (2012).

Silver, J.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

Singh, B. K.

H. Ryu, B. K. Singh, and K. S. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Phys. B 403(1), 126–130 (2008).
[Crossref]

Smet, P. F.

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Tanabe, S.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Tanaka, E.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

Taniguchi, H.

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

Tsukasaki, H.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

Ueda, J.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Valerio, M. E. G.

M. V. d. S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

Van Tendeloo, G.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Von Der Muehll, R.

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

Xie, Q.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors,” Materials 10(10), 1198–1210 (2017).
[Crossref]

Yakovlev, S.

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Yaremchenko, A. A.

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Yu, L.

Zeng, Q.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors,” Materials 10(10), 1198–1210 (2017).
[Crossref]

Zhang, M.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors,” Materials 10(10), 1198–1210 (2017).
[Crossref]

Chem. Mater. (1)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

ECS J. Solid State Sci. Technol. (2)

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

Ferroelectrics (1)

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

J. Appl. Phys. (1)

M. V. d. S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

J. Korean Phys. Soc. (1)

E. Tanaka, Y. Ishii, H. Tsukasaki, S. Mori, M. Osada, H. Taniguchi, Y. Sato, and Y. Kubota, “Structural changes and microstructures of Ba1−xSrxAl2O4 for 0 < x < 0.4,” J. Korean Phys. Soc. 66(9), 1355–1358 (2015).
[Crossref]

J. Lumin. (1)

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+,” J. Lumin. 196, 337–346 (2018).
[Crossref]

J. Solid State Chem. (1)

M. Avdeev, S. Yakovlev, A. A. Yaremchenko, and V. V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Materials (1)

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors,” Materials 10(10), 1198–1210 (2017).
[Crossref]

Mineral. Mag. (1)

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Opt. Mater. Express (1)

Phase Transitions (1)

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Philips Res. Rep. (1)

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Phys. B (1)

H. Ryu, B. K. Singh, and K. S. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Phys. B 403(1), 126–130 (2008).
[Crossref]

Phys. Rev. B (1)

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Phys. Status Solidi C (1)

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Z. Anorg. Allg. Chem. (2)

A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

Other (3)

A. Shukla, “Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides,” Thesis, University of Montreal, (2012).

P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Application, (InTech, 2014), Chapter 1.

R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Elsevier, 2013), Chapter 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Composition diagram of BaO-SrO-Al2O3. The cement chemistry notation has been adopted to denote the compounds in this ternary system. The red line indicates the compositions that were studied.
Fig. 2.
Fig. 2. (a) SEM image at 7 keV of BaAl2O4:3%Eu2+ annealed at 1350°C. (b) SEM image at 7 keV of Sr0.37Ba 0.6Al2O4:3%Eu2+.
Fig. 3.
Fig. 3. Powder XRD patterns of Sr0.99-xBaxEu0.01Al2O4 for 0 ≤ x ≤ 0.99. (a) 5° ≤ 2θ ≤ 80°. (b) Enlarged pattern for the range 28° ≤ 2θ ≤ 36°.
Fig. 4.
Fig. 4. Vegard plot of the cell volumes of the hexagonal BA phase and MCSr in Ba0.97-xSrxEu0.03Al2O4 and Ba0.99-xSrxEu0.01Al2O4. The straight lines have been fitted to the experimental data points.
Fig. 5.
Fig. 5. Photoluminescence spectra of Sr0.97-xBaxAl2O4:3%Eu2+ at various values of xBa. (a) Emission spectra. (b) Excitation spectra. For clarity reasons only a limited number of spectra are shown. The kink at 400 nm in the excitation spectra is due to a filter change of the spectrometer.
Fig. 6.
Fig. 6. Quenching temperature Tq versus mole fraction of Ba in Sr0.97-xBaxEu0.03Al2O4. Curves have been fitted to the experimental data.
Fig. 7.
Fig. 7. Deconvolution of PL spectra of Sr0.97-xBaxAl2O4:3%Eu2+ with two (or one) Gaussian profiles. (a) Ba0.97 Eu0.03Al2O4, exc.: 341 nm. (b) Sr0.07Ba0.9Eu0.03Al2O4, exc.: 345 nm. (c) Sr0.07Ba0.9Eu0.03Al2O4, exc.: 345 nm, deconvoluted with only one Gaussian profile. (d) Sr0.17Ba0.8Eu0.03Al2O4, exc.: 355 nm.
Fig. 8.
Fig. 8. (a) ν0 of the two profiles p1 and p2 versus xBa of the BSA series. The values at xBa=0.9 cannot be considered to be outliers, since all deconvolutions were performed with more than 200 data points. (b) FWHM of p1 and p2 versus xBa. The data indicate clearly the phase transition at xBa≈0.4.
Fig. 9.
Fig. 9. (a) CL spectra of Sr0.27Ba0.7Eu0.03Al2O4 recorded at 200  keV and various temperatures. The insert is an Arrhenius plot of the maximum spectral radiance. (b) Deconvolution with one Gaussian profile of the CL spectrum of Sr0.27Ba0.7Eu0.03Al2O4 recorded at 13°C. (c) CL spectra of Sr0.07Ba0.9Eu0.03Al2O4 recorded at 200  keV and various temperatures. (d) Deconvolution with one Gaussian profile of the CL spectrum of Sr0.07Ba09Eu0.03Al2O4 recorded at 25°C.

Tables (2)

Tables Icon

Table 1. Hexagonal BA in Ba0.97-xSrxEu0.03Al2O4

Tables Icon

Table 2. Monoclinic SA in Ba0.97-xSrxEu0.03Al2O4