Abstract

The dual-wavelength-driven shrinkage of metal microstructures and hydrogel actuation are demonstrated by the fabrication of multi-metal microstructures in hydrogels by multiphoton photoreduction. Silver and gold microstructures were fabricated in a poly-N-isopropylacrylamide (PNIPAm) hydrogel. Because of the different optical resonances of the metals, wavelength-dependent shrinkage of metal microstructures was demonstrated concurrently with the volume change of the supporting hydrogel by light stimulation. Furthermore, the direction of actuation of the hydrogel was controlled by switching the wavelength of light stimulation. The results indicate the potential of multiphoton photoreduction for applications in light-driven optical components and micro-robots fabricated with soft materials.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
    [Crossref]
  2. H. Ko and A. Javey, “Smart actuators and adhesives for reconfigurable matter,” Acc. Chem. Res. 50(4), 691–702 (2017).
    [Crossref]
  3. M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
    [Crossref]
  4. S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, “Photoresponsive polymer gel microvalves controlled by local light irradiation,” Sens. Actuators, A 140(2), 176–184 (2007).
    [Crossref]
  5. C. H. Zhu, Y. Lu, J. Peng, J. F. Chen, and S. H. Yu, “Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves,” Adv. Funct. Mater. 22(19), 4017–4022 (2012).
    [Crossref]
  6. A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
    [Crossref]
  7. M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
    [Crossref]
  8. Z. Liu, R. Tang, D. Xu, J. Liu, and H. Yu, “Precise actuation of bilayer photomechanical films coated with molecular azobenzene chromophores,” Macromol. Rapid Commun. 36(12), 1171–1176 (2015).
    [Crossref]
  9. Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
    [Crossref]
  10. Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
    [Crossref]
  11. B. Zuo, M. Wang, B.-P. Lin, and H. Yang, “Visible and infrared three-wavelength modulated multi-directional actuators,” Nat. Commun. 10(1), 4539 (2019).
    [Crossref]
  12. K. Kalayci, H. Frisch, C. Barner-Kowollik, and V. X. Truong, “Wavelength-dependent stiffening of hydrogel matrices via redshifted [2 + 2] photocycloadditions,” Adv. Funct. Mater. 30(15), 1908171 (2020).
    [Crossref]
  13. T. Fujigaya, T. Morimoto, Y. Niidome, and N. Nakashima, “NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/ poly(N-isopropylacrylamide) composite gels,” Adv. Mater. 20(19), 3610–3614 (2008).
    [Crossref]
  14. T. Wang, J. Huang, Y. Yang, E. Zhang, W. Sun, and Z. Tong, “Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels,” ACS Appl. Mater. Interfaces 7(42), 23423–23430 (2015).
    [Crossref]
  15. T. Shen, M. G. Font, S. Jung, M. L. Gabriel, M. P. Stoykovich, and F. J. Vernerey, “Remotely triggered locomotion of hydrogel mag-bots in confined spaces,” Sci. Rep. 7(1), 16178 (2017).
    [Crossref]
  16. Z. Zhu, E. Senses, P. Akcora, and S. A. Sukhishvili, “Programmable light-controlled shape changes in layered polymer nanocomposites,” ACS Nano 6(4), 3152–3162 (2012).
    [Crossref]
  17. S. Chen, H. Wang, J. Zhou, L. Fang, C. Lu, and Z. Xu, “Photoresponsive hydrogels with high wavelength selectivity for near-infrared light,” Mater. Lett. 219, 163–165 (2018).
    [Crossref]
  18. S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Adv. Mater. 17(11), 1366–1368 (2005).
    [Crossref]
  19. S. Watanabe, H. Era, and M. Kunitake, “Two-wavelength infrared responsive hydrogel actuators containing rare-earth photothermal conversion particles,” Sci. Rep. 8(1), 13528 (2018).
    [Crossref]
  20. A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
    [Crossref]
  21. Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
    [Crossref]
  22. T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
    [Crossref]
  23. S. Kang, K. Vora, and E. Mazur, “One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix,” Nanotechnology 26(12), 121001 (2015).
    [Crossref]
  24. M. Terakawa, M. L. T-Mapa, A. Takami, D. Heinemann, N. N. Nedyalkov, Y. Nakajima, A. Hördt, T. Ripken, and A. Heisterkamp, “Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethyelene glycol) diacrylate (PEGDA) hydrogel,” Opt. Lett. 41(7), 1392–1395 (2016).
    [Crossref]
  25. M. Machida, Y. Nakajima, M. L. T-Mapa, D. Heinemann, A. Heisterkamp, and M. Terakawa, “Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser,” Sci. Rep. 8(1), 187 (2018).
    [Crossref]
  26. M. Machida, T. Niidome, H. Onoe, A. Heisterkamp, and M. Terakawa, “Spatially-targeted laser fabrication of multi-metal microstructures inside a hydrogel,” Opt. Express 27(10), 14657–14666 (2019).
    [Crossref]
  27. H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Prog. Polym. Sci. 17(2), 163–249 (1992).
    [Crossref]

2020 (1)

K. Kalayci, H. Frisch, C. Barner-Kowollik, and V. X. Truong, “Wavelength-dependent stiffening of hydrogel matrices via redshifted [2 + 2] photocycloadditions,” Adv. Funct. Mater. 30(15), 1908171 (2020).
[Crossref]

2019 (3)

B. Zuo, M. Wang, B.-P. Lin, and H. Yang, “Visible and infrared three-wavelength modulated multi-directional actuators,” Nat. Commun. 10(1), 4539 (2019).
[Crossref]

M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
[Crossref]

M. Machida, T. Niidome, H. Onoe, A. Heisterkamp, and M. Terakawa, “Spatially-targeted laser fabrication of multi-metal microstructures inside a hydrogel,” Opt. Express 27(10), 14657–14666 (2019).
[Crossref]

2018 (4)

S. Watanabe, H. Era, and M. Kunitake, “Two-wavelength infrared responsive hydrogel actuators containing rare-earth photothermal conversion particles,” Sci. Rep. 8(1), 13528 (2018).
[Crossref]

M. Machida, Y. Nakajima, M. L. T-Mapa, D. Heinemann, A. Heisterkamp, and M. Terakawa, “Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser,” Sci. Rep. 8(1), 187 (2018).
[Crossref]

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

S. Chen, H. Wang, J. Zhou, L. Fang, C. Lu, and Z. Xu, “Photoresponsive hydrogels with high wavelength selectivity for near-infrared light,” Mater. Lett. 219, 163–165 (2018).
[Crossref]

2017 (3)

T. Shen, M. G. Font, S. Jung, M. L. Gabriel, M. P. Stoykovich, and F. J. Vernerey, “Remotely triggered locomotion of hydrogel mag-bots in confined spaces,” Sci. Rep. 7(1), 16178 (2017).
[Crossref]

H. Ko and A. Javey, “Smart actuators and adhesives for reconfigurable matter,” Acc. Chem. Res. 50(4), 691–702 (2017).
[Crossref]

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

2016 (1)

2015 (3)

S. Kang, K. Vora, and E. Mazur, “One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix,” Nanotechnology 26(12), 121001 (2015).
[Crossref]

Z. Liu, R. Tang, D. Xu, J. Liu, and H. Yu, “Precise actuation of bilayer photomechanical films coated with molecular azobenzene chromophores,” Macromol. Rapid Commun. 36(12), 1171–1176 (2015).
[Crossref]

T. Wang, J. Huang, Y. Yang, E. Zhang, W. Sun, and Z. Tong, “Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels,” ACS Appl. Mater. Interfaces 7(42), 23423–23430 (2015).
[Crossref]

2014 (1)

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

2013 (1)

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

2012 (3)

Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
[Crossref]

C. H. Zhu, Y. Lu, J. Peng, J. F. Chen, and S. H. Yu, “Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves,” Adv. Funct. Mater. 22(19), 4017–4022 (2012).
[Crossref]

Z. Zhu, E. Senses, P. Akcora, and S. A. Sukhishvili, “Programmable light-controlled shape changes in layered polymer nanocomposites,” ACS Nano 6(4), 3152–3162 (2012).
[Crossref]

2009 (1)

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

2008 (1)

T. Fujigaya, T. Morimoto, Y. Niidome, and N. Nakashima, “NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/ poly(N-isopropylacrylamide) composite gels,” Adv. Mater. 20(19), 3610–3614 (2008).
[Crossref]

2007 (1)

S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, “Photoresponsive polymer gel microvalves controlled by local light irradiation,” Sens. Actuators, A 140(2), 176–184 (2007).
[Crossref]

2006 (2)

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

2005 (1)

S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Adv. Mater. 17(11), 1366–1368 (2005).
[Crossref]

1992 (1)

H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Prog. Polym. Sci. 17(2), 163–249 (1992).
[Crossref]

Akcora, P.

Z. Zhu, E. Senses, P. Akcora, and S. A. Sukhishvili, “Programmable light-controlled shape changes in layered polymer nanocomposites,” ACS Nano 6(4), 3152–3162 (2012).
[Crossref]

Baker, A. B.

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

Barner-Kowollik, C.

K. Kalayci, H. Frisch, C. Barner-Kowollik, and V. X. Truong, “Wavelength-dependent stiffening of hydrogel matrices via redshifted [2 + 2] photocycloadditions,” Adv. Funct. Mater. 30(15), 1908171 (2020).
[Crossref]

M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
[Crossref]

Bastmeyer, M.

M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
[Crossref]

Beebe, D. J.

S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Adv. Mater. 17(11), 1366–1368 (2005).
[Crossref]

Blasco, E.

M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
[Crossref]

Bond, I. P.

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

Cao, Y.-Y.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

Chan, Y. H.

Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
[Crossref]

Chen, J. F.

C. H. Zhu, Y. Lu, J. Peng, J. F. Chen, and S. H. Yu, “Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves,” Adv. Funct. Mater. 22(19), 4017–4022 (2012).
[Crossref]

Chen, S.

S. Chen, H. Wang, J. Zhou, L. Fang, C. Lu, and Z. Xu, “Photoresponsive hydrogels with high wavelength selectivity for near-infrared light,” Mater. Lett. 219, 163–165 (2018).
[Crossref]

Chiu, D. T.

Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
[Crossref]

Curto, V. F.

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

Delaney, C.

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

Diamond, D.

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

Dicker, M. P. M.

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

Duan, X.-M.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

Era, H.

S. Watanabe, H. Era, and M. Kunitake, “Two-wavelength infrared responsive hydrogel actuators containing rare-earth photothermal conversion particles,” Sci. Rep. 8(1), 13528 (2018).
[Crossref]

Fang, L.

S. Chen, H. Wang, J. Zhou, L. Fang, C. Lu, and Z. Xu, “Photoresponsive hydrogels with high wavelength selectivity for near-infrared light,” Mater. Lett. 219, 163–165 (2018).
[Crossref]

Faul, C. F. J.

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

Florea, L.

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

Font, M. G.

T. Shen, M. G. Font, S. Jung, M. L. Gabriel, M. P. Stoykovich, and F. J. Vernerey, “Remotely triggered locomotion of hydrogel mag-bots in confined spaces,” Sci. Rep. 7(1), 16178 (2017).
[Crossref]

Fourkas, J. T.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Frisch, H.

K. Kalayci, H. Frisch, C. Barner-Kowollik, and V. X. Truong, “Wavelength-dependent stiffening of hydrogel matrices via redshifted [2 + 2] photocycloadditions,” Adv. Funct. Mater. 30(15), 1908171 (2020).
[Crossref]

Fujigaya, T.

T. Fujigaya, T. Morimoto, Y. Niidome, and N. Nakashima, “NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/ poly(N-isopropylacrylamide) composite gels,” Adv. Mater. 20(19), 3610–3614 (2008).
[Crossref]

Gabriel, M. L.

T. Shen, M. G. Font, S. Jung, M. L. Gabriel, M. P. Stoykovich, and F. J. Vernerey, “Remotely triggered locomotion of hydrogel mag-bots in confined spaces,” Sci. Rep. 7(1), 16178 (2017).
[Crossref]

Gallina, M. E.

Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
[Crossref]

Halas, N. J.

S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Adv. Mater. 17(11), 1366–1368 (2005).
[Crossref]

Heinemann, D.

M. Machida, Y. Nakajima, M. L. T-Mapa, D. Heinemann, A. Heisterkamp, and M. Terakawa, “Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser,” Sci. Rep. 8(1), 187 (2018).
[Crossref]

M. Terakawa, M. L. T-Mapa, A. Takami, D. Heinemann, N. N. Nedyalkov, Y. Nakajima, A. Hördt, T. Ripken, and A. Heisterkamp, “Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethyelene glycol) diacrylate (PEGDA) hydrogel,” Opt. Lett. 41(7), 1392–1395 (2016).
[Crossref]

Heisterkamp, A.

Higgins, M. J.

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

Hippler, M.

M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
[Crossref]

Hiroki, K.

S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, “Photoresponsive polymer gel microvalves controlled by local light irradiation,” Sens. Actuators, A 140(2), 176–184 (2007).
[Crossref]

Hördt, A.

Huang, J.

T. Wang, J. Huang, Y. Yang, E. Zhang, W. Sun, and Z. Tong, “Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels,” ACS Appl. Mater. Interfaces 7(42), 23423–23430 (2015).
[Crossref]

Ikegami, T.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Iredale, R. J.

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

Javey, A.

H. Ko and A. Javey, “Smart actuators and adhesives for reconfigurable matter,” Acc. Chem. Res. 50(4), 691–702 (2017).
[Crossref]

Jiang, H. Y.

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

Jin, Y.

Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
[Crossref]

Jung, S.

T. Shen, M. G. Font, S. Jung, M. L. Gabriel, M. P. Stoykovich, and F. J. Vernerey, “Remotely triggered locomotion of hydrogel mag-bots in confined spaces,” Sci. Rep. 7(1), 16178 (2017).
[Crossref]

Kalayci, K.

K. Kalayci, H. Frisch, C. Barner-Kowollik, and V. X. Truong, “Wavelength-dependent stiffening of hydrogel matrices via redshifted [2 + 2] photocycloadditions,” Adv. Funct. Mater. 30(15), 1908171 (2020).
[Crossref]

Kanamori, T.

S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, “Photoresponsive polymer gel microvalves controlled by local light irradiation,” Sens. Actuators, A 140(2), 176–184 (2007).
[Crossref]

Kang, S.

S. Kang, K. Vora, and E. Mazur, “One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix,” Nanotechnology 26(12), 121001 (2015).
[Crossref]

Kawata, S.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

Kelch, S.

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

Kim, J. M.

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

Ko, H.

H. Ko and A. Javey, “Smart actuators and adhesives for reconfigurable matter,” Acc. Chem. Res. 50(4), 691–702 (2017).
[Crossref]

Kunitake, M.

S. Watanabe, H. Era, and M. Kunitake, “Two-wavelength infrared responsive hydrogel actuators containing rare-earth photothermal conversion particles,” Sci. Rep. 8(1), 13528 (2018).
[Crossref]

Lee, C. W.

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

Lendlein, A.

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

Lin, B.-P.

B. Zuo, M. Wang, B.-P. Lin, and H. Yang, “Visible and infrared three-wavelength modulated multi-directional actuators,” Nat. Commun. 10(1), 4539 (2019).
[Crossref]

Liu, J.

Z. Liu, R. Tang, D. Xu, J. Liu, and H. Yu, “Precise actuation of bilayer photomechanical films coated with molecular azobenzene chromophores,” Macromol. Rapid Commun. 36(12), 1171–1176 (2015).
[Crossref]

Liu, Z.

Z. Liu, R. Tang, D. Xu, J. Liu, and H. Yu, “Precise actuation of bilayer photomechanical films coated with molecular azobenzene chromophores,” Macromol. Rapid Commun. 36(12), 1171–1176 (2015).
[Crossref]

Lu, C.

S. Chen, H. Wang, J. Zhou, L. Fang, C. Lu, and Z. Xu, “Photoresponsive hydrogels with high wavelength selectivity for near-infrared light,” Mater. Lett. 219, 163–165 (2018).
[Crossref]

Lu, Y.

C. H. Zhu, Y. Lu, J. Peng, J. F. Chen, and S. H. Yu, “Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves,” Adv. Funct. Mater. 22(19), 4017–4022 (2012).
[Crossref]

Machida, M.

M. Machida, T. Niidome, H. Onoe, A. Heisterkamp, and M. Terakawa, “Spatially-targeted laser fabrication of multi-metal microstructures inside a hydrogel,” Opt. Express 27(10), 14657–14666 (2019).
[Crossref]

M. Machida, Y. Nakajima, M. L. T-Mapa, D. Heinemann, A. Heisterkamp, and M. Terakawa, “Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser,” Sci. Rep. 8(1), 187 (2018).
[Crossref]

Maruo, S.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Mazur, E.

S. Kang, K. Vora, and E. Mazur, “One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix,” Nanotechnology 26(12), 121001 (2015).
[Crossref]

Mensing, G. A.

S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Adv. Mater. 17(11), 1366–1368 (2005).
[Crossref]

Monaco, K.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Morimoto, T.

T. Fujigaya, T. Morimoto, Y. Niidome, and N. Nakashima, “NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/ poly(N-isopropylacrylamide) composite gels,” Adv. Mater. 20(19), 3610–3614 (2008).
[Crossref]

Naficy, S.

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

Nakajima, Y.

M. Machida, Y. Nakajima, M. L. T-Mapa, D. Heinemann, A. Heisterkamp, and M. Terakawa, “Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser,” Sci. Rep. 8(1), 187 (2018).
[Crossref]

M. Terakawa, M. L. T-Mapa, A. Takami, D. Heinemann, N. N. Nedyalkov, Y. Nakajima, A. Hördt, T. Ripken, and A. Heisterkamp, “Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethyelene glycol) diacrylate (PEGDA) hydrogel,” Opt. Lett. 41(7), 1392–1395 (2016).
[Crossref]

Nakashima, N.

T. Fujigaya, T. Morimoto, Y. Niidome, and N. Nakashima, “NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/ poly(N-isopropylacrylamide) composite gels,” Adv. Mater. 20(19), 3610–3614 (2008).
[Crossref]

Nam, Y. S.

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

Nedyalkov, N. N.

Ng, M.

S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Adv. Mater. 17(11), 1366–1368 (2005).
[Crossref]

Niidome, T.

Niidome, Y.

T. Fujigaya, T. Morimoto, Y. Niidome, and N. Nakashima, “NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/ poly(N-isopropylacrylamide) composite gels,” Adv. Mater. 20(19), 3610–3614 (2008).
[Crossref]

Ohi, K.

S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, “Photoresponsive polymer gel microvalves controlled by local light irradiation,” Sens. Actuators, A 140(2), 176–184 (2007).
[Crossref]

Onoe, H.

Ozawa, R.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Park, D. H.

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

Park, I. S.

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

Peng, J.

C. H. Zhu, Y. Lu, J. Peng, J. F. Chen, and S. H. Yu, “Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves,” Adv. Funct. Mater. 22(19), 4017–4022 (2012).
[Crossref]

Qu, J.

M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
[Crossref]

Ripken, T.

Rossiter, J. M.

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

Schild, H. G.

H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Prog. Polym. Sci. 17(2), 163–249 (1992).
[Crossref]

Senses, E.

Z. Zhu, E. Senses, P. Akcora, and S. A. Sukhishvili, “Programmable light-controlled shape changes in layered polymer nanocomposites,” ACS Nano 6(4), 3152–3162 (2012).
[Crossref]

Sershen, S. R.

S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Adv. Mater. 17(11), 1366–1368 (2005).
[Crossref]

Shen, T.

T. Shen, M. G. Font, S. Jung, M. L. Gabriel, M. P. Stoykovich, and F. J. Vernerey, “Remotely triggered locomotion of hydrogel mag-bots in confined spaces,” Sci. Rep. 7(1), 16178 (2017).
[Crossref]

Song, S.

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

Spinks, G. M.

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

Stocker, M. P.

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Stoykovich, M. P.

T. Shen, M. G. Font, S. Jung, M. L. Gabriel, M. P. Stoykovich, and F. J. Vernerey, “Remotely triggered locomotion of hydrogel mag-bots in confined spaces,” Sci. Rep. 7(1), 16178 (2017).
[Crossref]

Sugiura, S.

S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, “Photoresponsive polymer gel microvalves controlled by local light irradiation,” Sens. Actuators, A 140(2), 176–184 (2007).
[Crossref]

Sukhishvili, S. A.

Z. Zhu, E. Senses, P. Akcora, and S. A. Sukhishvili, “Programmable light-controlled shape changes in layered polymer nanocomposites,” ACS Nano 6(4), 3152–3162 (2012).
[Crossref]

Sumaru, K.

S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, “Photoresponsive polymer gel microvalves controlled by local light irradiation,” Sens. Actuators, A 140(2), 176–184 (2007).
[Crossref]

Sun, W.

T. Wang, J. Huang, Y. Yang, E. Zhang, W. Sun, and Z. Tong, “Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels,” ACS Appl. Mater. Interfaces 7(42), 23423–23430 (2015).
[Crossref]

Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
[Crossref]

Takagi, T.

S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, “Photoresponsive polymer gel microvalves controlled by local light irradiation,” Sens. Actuators, A 140(2), 176–184 (2007).
[Crossref]

Takami, A.

Takeyasu, N.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

Tanaka, M.

M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
[Crossref]

Tanaka, T.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

Tang, R.

Z. Liu, R. Tang, D. Xu, J. Liu, and H. Yu, “Precise actuation of bilayer photomechanical films coated with molecular azobenzene chromophores,” Macromol. Rapid Commun. 36(12), 1171–1176 (2015).
[Crossref]

Terakawa, M.

Thompson, A. J.

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

T-Mapa, M. L.

M. Machida, Y. Nakajima, M. L. T-Mapa, D. Heinemann, A. Heisterkamp, and M. Terakawa, “Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser,” Sci. Rep. 8(1), 187 (2018).
[Crossref]

M. Terakawa, M. L. T-Mapa, A. Takami, D. Heinemann, N. N. Nedyalkov, Y. Nakajima, A. Hördt, T. Ripken, and A. Heisterkamp, “Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethyelene glycol) diacrylate (PEGDA) hydrogel,” Opt. Lett. 41(7), 1392–1395 (2016).
[Crossref]

Tong, Z.

T. Wang, J. Huang, Y. Yang, E. Zhang, W. Sun, and Z. Tong, “Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels,” ACS Appl. Mater. Interfaces 7(42), 23423–23430 (2015).
[Crossref]

Truong, V. X.

K. Kalayci, H. Frisch, C. Barner-Kowollik, and V. X. Truong, “Wavelength-dependent stiffening of hydrogel matrices via redshifted [2 + 2] photocycloadditions,” Adv. Funct. Mater. 30(15), 1908171 (2020).
[Crossref]

Tudor, A.

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

Vernerey, F. J.

T. Shen, M. G. Font, S. Jung, M. L. Gabriel, M. P. Stoykovich, and F. J. Vernerey, “Remotely triggered locomotion of hydrogel mag-bots in confined spaces,” Sci. Rep. 7(1), 16178 (2017).
[Crossref]

Vora, K.

S. Kang, K. Vora, and E. Mazur, “One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix,” Nanotechnology 26(12), 121001 (2015).
[Crossref]

Wang, H.

S. Chen, H. Wang, J. Zhou, L. Fang, C. Lu, and Z. Xu, “Photoresponsive hydrogels with high wavelength selectivity for near-infrared light,” Mater. Lett. 219, 163–165 (2018).
[Crossref]

Wang, M.

B. Zuo, M. Wang, B.-P. Lin, and H. Yang, “Visible and infrared three-wavelength modulated multi-directional actuators,” Nat. Commun. 10(1), 4539 (2019).
[Crossref]

Wang, T.

T. Wang, J. Huang, Y. Yang, E. Zhang, W. Sun, and Z. Tong, “Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels,” ACS Appl. Mater. Interfaces 7(42), 23423–23430 (2015).
[Crossref]

Watanabe, S.

S. Watanabe, H. Era, and M. Kunitake, “Two-wavelength infrared responsive hydrogel actuators containing rare-earth photothermal conversion particles,” Sci. Rep. 8(1), 13528 (2018).
[Crossref]

Weaver, P. M.

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

Wegener, M.

M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
[Crossref]

West, J. L.

S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Adv. Mater. 17(11), 1366–1368 (2005).
[Crossref]

Wu, I. C.

Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
[Crossref]

Xu, D.

Z. Liu, R. Tang, D. Xu, J. Liu, and H. Yu, “Precise actuation of bilayer photomechanical films coated with molecular azobenzene chromophores,” Macromol. Rapid Commun. 36(12), 1171–1176 (2015).
[Crossref]

Xu, Z.

S. Chen, H. Wang, J. Zhou, L. Fang, C. Lu, and Z. Xu, “Photoresponsive hydrogels with high wavelength selectivity for near-infrared light,” Mater. Lett. 219, 163–165 (2018).
[Crossref]

Yang, G.-Z.

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

Yang, H.

B. Zuo, M. Wang, B.-P. Lin, and H. Yang, “Visible and infrared three-wavelength modulated multi-directional actuators,” Nat. Commun. 10(1), 4539 (2019).
[Crossref]

Yang, Y.

T. Wang, J. Huang, Y. Yang, E. Zhang, W. Sun, and Z. Tong, “Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels,” ACS Appl. Mater. Interfaces 7(42), 23423–23430 (2015).
[Crossref]

Yarimaga, O.

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

Yoo, I.

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

Yu, H.

Z. Liu, R. Tang, D. Xu, J. Liu, and H. Yu, “Precise actuation of bilayer photomechanical films coated with molecular azobenzene chromophores,” Macromol. Rapid Commun. 36(12), 1171–1176 (2015).
[Crossref]

Yu, S. H.

C. H. Zhu, Y. Lu, J. Peng, J. F. Chen, and S. H. Yu, “Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves,” Adv. Funct. Mater. 22(19), 4017–4022 (2012).
[Crossref]

Zhang, E.

T. Wang, J. Huang, Y. Yang, E. Zhang, W. Sun, and Z. Tong, “Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels,” ACS Appl. Mater. Interfaces 7(42), 23423–23430 (2015).
[Crossref]

Zhang, H.

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

Zhang, X.

Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
[Crossref]

Zhou, J.

S. Chen, H. Wang, J. Zhou, L. Fang, C. Lu, and Z. Xu, “Photoresponsive hydrogels with high wavelength selectivity for near-infrared light,” Mater. Lett. 219, 163–165 (2018).
[Crossref]

Zhu, C. H.

C. H. Zhu, Y. Lu, J. Peng, J. F. Chen, and S. H. Yu, “Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves,” Adv. Funct. Mater. 22(19), 4017–4022 (2012).
[Crossref]

Zhu, Z.

Z. Zhu, E. Senses, P. Akcora, and S. A. Sukhishvili, “Programmable light-controlled shape changes in layered polymer nanocomposites,” ACS Nano 6(4), 3152–3162 (2012).
[Crossref]

Zuo, B.

B. Zuo, M. Wang, B.-P. Lin, and H. Yang, “Visible and infrared three-wavelength modulated multi-directional actuators,” Nat. Commun. 10(1), 4539 (2019).
[Crossref]

Acc. Chem. Res. (1)

H. Ko and A. Javey, “Smart actuators and adhesives for reconfigurable matter,” Acc. Chem. Res. 50(4), 691–702 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

T. Wang, J. Huang, Y. Yang, E. Zhang, W. Sun, and Z. Tong, “Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels,” ACS Appl. Mater. Interfaces 7(42), 23423–23430 (2015).
[Crossref]

ACS Nano (1)

Z. Zhu, E. Senses, P. Akcora, and S. A. Sukhishvili, “Programmable light-controlled shape changes in layered polymer nanocomposites,” ACS Nano 6(4), 3152–3162 (2012).
[Crossref]

Adv. Funct. Mater. (2)

K. Kalayci, H. Frisch, C. Barner-Kowollik, and V. X. Truong, “Wavelength-dependent stiffening of hydrogel matrices via redshifted [2 + 2] photocycloadditions,” Adv. Funct. Mater. 30(15), 1908171 (2020).
[Crossref]

C. H. Zhu, Y. Lu, J. Peng, J. F. Chen, and S. H. Yu, “Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves,” Adv. Funct. Mater. 22(19), 4017–4022 (2012).
[Crossref]

Adv. Mater. (3)

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

T. Fujigaya, T. Morimoto, Y. Niidome, and N. Nakashima, “NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/ poly(N-isopropylacrylamide) composite gels,” Adv. Mater. 20(19), 3610–3614 (2008).
[Crossref]

S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Adv. Mater. 17(11), 1366–1368 (2005).
[Crossref]

Anal. Chem. (1)

Y. H. Chan, M. E. Gallina, X. Zhang, I. C. Wu, Y. Jin, W. Sun, and D. T. Chiu, “Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots,” Anal. Chem. 84(21), 9431–9438 (2012).
[Crossref]

Appl. Phys. Lett. (1)

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

Chem. Commun. (1)

Y. S. Nam, I. Yoo, O. Yarimaga, I. S. Park, D. H. Park, S. Song, J. M. Kim, and C. W. Lee, “Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing,” Chem. Commun. 50(32), 4251–4254 (2014).
[Crossref]

J. Laser Micro/Nanoeng. (1)

T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” J. Laser Micro/Nanoeng. 8(1), 6–10 (2013).
[Crossref]

Macromol. Rapid Commun. (1)

Z. Liu, R. Tang, D. Xu, J. Liu, and H. Yu, “Precise actuation of bilayer photomechanical films coated with molecular azobenzene chromophores,” Macromol. Rapid Commun. 36(12), 1171–1176 (2015).
[Crossref]

Mater. Lett. (1)

S. Chen, H. Wang, J. Zhou, L. Fang, C. Lu, and Z. Xu, “Photoresponsive hydrogels with high wavelength selectivity for near-infrared light,” Mater. Lett. 219, 163–165 (2018).
[Crossref]

Mater. Today (1)

A. Tudor, C. Delaney, H. Zhang, A. J. Thompson, V. F. Curto, G.-Z. Yang, M. J. Higgins, D. Diamond, and L. Florea, “Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s,” Mater. Today 21(8), 807–816 (2018).
[Crossref]

Nanotechnology (1)

S. Kang, K. Vora, and E. Mazur, “One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix,” Nanotechnology 26(12), 121001 (2015).
[Crossref]

Nat. Commun. (2)

M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, “Controlling the shape of 3D microstructures by temperature and light,” Nat. Commun. 10(1), 232 (2019).
[Crossref]

B. Zuo, M. Wang, B.-P. Lin, and H. Yang, “Visible and infrared three-wavelength modulated multi-directional actuators,” Nat. Commun. 10(1), 4539 (2019).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Prog. Polym. Sci. (1)

H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Prog. Polym. Sci. 17(2), 163–249 (1992).
[Crossref]

Sci. Rep. (4)

M. Machida, Y. Nakajima, M. L. T-Mapa, D. Heinemann, A. Heisterkamp, and M. Terakawa, “Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser,” Sci. Rep. 8(1), 187 (2018).
[Crossref]

M. P. M. Dicker, A. B. Baker, R. J. Iredale, S. Naficy, I. P. Bond, C. F. J. Faul, J. M. Rossiter, G. M. Spinks, and P. M. Weaver, “Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals,” Sci. Rep. 7(1), 9197 (2017).
[Crossref]

S. Watanabe, H. Era, and M. Kunitake, “Two-wavelength infrared responsive hydrogel actuators containing rare-earth photothermal conversion particles,” Sci. Rep. 8(1), 13528 (2018).
[Crossref]

T. Shen, M. G. Font, S. Jung, M. L. Gabriel, M. P. Stoykovich, and F. J. Vernerey, “Remotely triggered locomotion of hydrogel mag-bots in confined spaces,” Sci. Rep. 7(1), 16178 (2017).
[Crossref]

Sens. Actuators, A (1)

S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, “Photoresponsive polymer gel microvalves controlled by local light irradiation,” Sens. Actuators, A 140(2), 176–184 (2007).
[Crossref]

Small (1)

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       The shrinkage of the metal microstructure with light stimulation
» Visualization 2       The bending behavior of the hydrogel with the dual-wavelengths of light stimulation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Bright-field microscope images of (a) silver and (b) gold line structures fabricated in the PNIPAm hydrogel at different laser powers. (c) Dependence of line widths of the silver and gold microstructures on laser power. The scanning speed used for fabrication was 100 µm/s. Scale bars indicate 100 µm.
Fig. 2.
Fig. 2. Bright-field microscope images of (a) – (d) silver and (e) – (h) gold microstructures. Silver and gold gratings were fabricated in an area of 100 µm ×100 µm inside the hydrogel with different spacings between adjacent lines: (a)(e) 5 µm, (b)(f) 10 µm, (c)(g) 15 µm, and (d)(h) 20 µm. (i) Absorbance spectra of PNIPAm hydrogel containing silver and gold microstructures. The spacing between adjacent lines was 10 µm. The laser power and the scanning speed used for fabrication were 15 mW and 100 µm/s, respectively. The black line, control, indicates the absorbance spectrum of the hydrogel without a metal microstructure. Scale bars indicate 100 µm.
Fig. 3.
Fig. 3. (a) Schematic of the experimental setup used for light stimulation of the PNIPAm hydrogel. The laser power and scanning speed used for multiphoton photoreduction were 15 mW and 100 µm/s, respectively. Laser diodes at 405 nm and 520 nm were used for light stimulation. (b) Swelling ratios of silver and gold microstructures under different line spacings immediately after 10 s of light illumination. The error bars indicate the standard error. (c)-(f) Typical shrinkage behavior of the silver microstructures with 10 s of 405 nm light illumination: (c) Before light illumination, (d) during light stimulation, 5s, (e) immediately after 10 s of light stimulation, and (f) 60 s after light illumination. Scale bars indicate 100 µm.
Fig. 4.
Fig. 4. Temporal size profile of the silver and gold microstructures with 10 s of light stimulation; (a) 405 nm, (b) 520 nm. (c) Temporal size profiles of the metal microstructures for 10 cycles of light stimulation, in which resonant wavelengths of 405 nm and 520 nm were used for silver and gold microstructures, respectively. The output power was 30 mW for both wavelengths. The spacing between adjacent lines was 10 µm.
Fig. 5.
Fig. 5. (a) Schematic illustration of neighboring silver and gold grating microstructures fabricated in the PNIPAm hydrogel. Bright-field microscope images of fabricated microstructures by illuminating light at wavelengths of (b) – (d) 405 nm (8.7 mW) and (e) – (g) 520 nm (11.6 mW). (b)(e) Before light illumination, (c)(f) immediately after 10 s of light stimulation, and (d)(g) 60 s after light illumination. Scale bars indicate 100 µm.
Fig. 6.
Fig. 6. (a) Schematic of the hydrogel in which silver and gold microstructures were fabricated 50 µm from the opposite surfaces of the hydrogel. (b) Temporal profiles of the bending angles of the hydrogel with wavelengths of 405 nm and 520 nm, respectively. The clockwise direction was considered a positive angle. (c) – (h) Bright-field microscope images of the PNIPAm hydrogel with silver and gold microstructures by illuminating light at 405 nm (c) – (e) or (f) – (h). (c)(f) Before light illumination, (d)(g) immediately after 10 s of light stimulation, and (e)(h) 60 s after light illumination. Scale bars indicate 200 µm.
Fig. 7.
Fig. 7. Experimental demonstration of the recovery of bending actuation. The hydrogel was the same as that used for Fig. 6. Stimulating light at 520 nm was illuminated for 10 s, followed by illumination at 405 nm for another 10 s to compare with spontaneous recovery. Scale bars indicate 200 µm.