Abstract

Development of high numerical aperture fiber bundles (FBs) requires use of thermally matched pair of glasses with a high difference of refractive indices. We have developed a pair of glasses with high refractive index contrast ΔnD>0.2, suitable for fabrication of optical fiber bundles with numerical aperture NA > 0.85. Core glass was synthetized in the lanthanum oxide system Nb2O5-Ta2O5-SiO2-ZrO2-B2O3-Al2O3-La2O3-BaO-SrO. Borosilicate glass synthetized in oxide system SiO2-Al2O3-B2O3-MgO-CaO-Na2O-K2O, thermally matched to the core glass, is used for the fiber cladding. The glasses also have high transmission from 350 to over 600 nm, which makes them ideal for fluorescence imaging applications. These thermally stable, crystallization-free lanthanum and borosilicate glasses have been successfully applied to development of proof-of-concept large diameter optical fiber.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [Crossref]
  2. R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
    [Crossref]
  3. M. Kim, K. Hong, J. Kim, and H. Shin, “Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal,” Biomed. Opt. Express 8(6), 2781–2795 (2017).
    [Crossref]
  4. B. A. Flusberg, E. D. Cocker, W. Piyawattanameth, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref]
  5. Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
    [Crossref]
  6. M. Yamane and Y. Asahara, Glasses for Photonics, (Cambridge University Press, 2000).
  7. Z. A. Steelman, K. Sanghoon, E. T. Jelly, M. Crose, K. K. Chu, and A. Wax, “Comparison of imaging fiber bundles for coherence-domain imaging,” Appl. Opt. 57(6), 1455–1462 (2018).
    [Crossref]
  8. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
    [Crossref]
  9. M. Hughes, T. P. Chang, and G. Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2794 (2013).
    [Crossref]
  10. Y. Chang, W. Lin, J. Cheng, and S. C. Chen, “Compact high-resolution endomicroscopy based on fiber bundles and image stitching,” Opt. Lett. 43(17), 4168–4171 (2018).
    [Crossref]
  11. S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, M. Raes, H. Terryn, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiber bundle part I: modal analysis,” Opt. Express 21(19), 21991 (2013).
    [Crossref]
  12. S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, M. Raes, H. Terryn, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiber bundle part II: point spread function analysis,” Opt. Express 21(21), 25403 (2013).
    [Crossref]
  13. N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Lett. 41(13), 3078–3081 (2016).
    [Crossref]
  14. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
    [Crossref]
  15. N. Koukourakis, B. Fregin, J. König, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
    [Crossref]
  16. D. Haufe, N. Koukourakis, L. Büttner, and J. W. Czarske, “Transmission of multiple signals through an optical fiber using wavefront shaping,” J. Visualized Exp. 121, 55407 (2017).
    [Crossref]
  17. F. Schmieder, S. D. Klapper, N. Koukourakis, V. Busskamp, and J. W. Czarske, “Optogenetic ttimulation of human neural networks using fast ferroelectric spatial light modulator – based holographic illumination,” Appl. Sci. 8(7), 1180 (2018).
    [Crossref]
  18. W. B. Veldkamp, J. R. Leger, and G. J. Swanson, “Coherent summation of laser beams using binary phase grating,” Opt. Lett. 11(5), 303–305 (1986).
    [Crossref]
  19. G. Josten, H. P. Weber, and W. Luethy, “Lensless focusing with an array of phase-adjusted optical fibers,” Appl. Opt. 28(23), 5133–5137 (1989).
    [Crossref]
  20. M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications,” Biomed. Opt. Express 8(5), 2405–2444 (2017).
    [Crossref]
  21. H. D. Ford and R. P. Tatam, “Coherent Fibre Bundles in full-field swept-source OCT,” Proc. SPIE 7168, 71682P (2009).
    [Crossref]
  22. A. Orth, M. Ploschner, E. R. Wilson, I. S. Maksymov, and B. C. Gibson, “Optical fiber bundles: Ultra-slim light field imaging probes,” Sci. Adv. 5(4), eaav1555 (2019).
    [Crossref]
  23. R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
    [Crossref]
  24. D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
    [Crossref]
  25. B. Morova, N. Bavili, O. Yaman, B. Uigit, M. Zeybel, M. Aydin, B. Dogan, R. Kasztelanic, D. Pysz, R. Buczynski, and A. Kiraz, “Fabrication and characterization of large numerical aperture, high-resolution optical fiber bundles based on high-contrast pairs of soft glasses for fluorescence imaging,” Opt. Express 27(7), 9502 (2019).
    [Crossref]
  26. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [Crossref]
  27. Abbe graph and data for 356 glasses from Ohara, Hoya, and Schott. https://web.archive.org/web/20151011033 820/ http://www.lacroixoptical.com/sites/default/files/content/LaCroix Dynamic Material Selection Data Tool vJanuary 2015.xlsm
  28. E. Leitz, H. Broemer, and N. Meinert, Lanthanum borosilicate optical glass, U.S. Patent No 3,615,769 (1971).
  29. D. L. Ricoult, Glasses with a high refractive index and their use as segment of multifocal corrective lenses, Patent CA2,248,921 A1 (1997).
  30. J. Cimek, R. Stepien, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczynski, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
    [Crossref]
  31. M. F. Faznny, M. K. Halimah, and M. N. Azlan, “Effect of lanthanum oxide on optical properties of zinc borotellurite glass system,” J. Optoelectr. Biom. Mat. 8(2), 49–59 (2016).
  32. Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
    [Crossref]
  33. A. Masuno, T. Iwata, Y. Yanaba, S. Sasaki, H. Inoueb, and Y. Watanabe, “High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units,” Dalton Trans. 48(29), 10804–10811 (2019).
    [Crossref]
  34. A. V. Deepa, P. Murugasen, P. Muralimanohar, and S. P. Kumar, “Optical studies of lanthanum oxide doped phosphate glasses,” Optik 160, 348–352 (2018).
    [Crossref]
  35. L. G. Hwa, Y. R. Chang, and S. P. Szu, “Optical and physical properties of lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 231(3), 222–226 (1998).
    [Crossref]
  36. J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
    [Crossref]
  37. A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
    [Crossref]
  38. J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
    [Crossref]
  39. G. F. Nordberg, B. A. Fowler, and M. Nordberg, Handbook on the Toxicology of Metals, 4th Edit. (Academic Press, 2015).
  40. K. Adachi, M. Miratsu, and T. Asahi, “Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters,” J. Mater. Res. 25(3), 510–521 (2010).
    [Crossref]
  41. R. O. Alekseev, V. I. Savinkov, and V. N. Sigaev, “Investigation of glass formation and the properties of lanthanum-aluminum-borosilicate glasses with high lanthanum oxide content,” Glass Ceram. 76(1-2), 45–48 (2019).
    [Crossref]
  42. C. Mugoni, A. Licciulli, D. Diso, and C. Siligardi, “Lanthanum glass infiltrated alumina/alumina composites for dental prosthetic applications,” Ceram. Int. 41(10), 13090–13099 (2015).
    [Crossref]
  43. A. K. Varshneya and J. C. Mauro, Fundamentals of Inorganic Glasses, (Elsevier Inc, 2019).
  44. Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
    [Crossref]
  45. A. Hruby, “Evaluation of glass-forming tendency by means of DTA,” Czech. J. Phys. 22(11), 1187–1193 (1972).
    [Crossref]
  46. R. Jose, T. Suzuki, and Y. Ohishi, “Thermal and optical properties of TeO2-BaO-SrO-Nb2O5 based glasses: New broadband Raman gain media,” J. Non-Cryst. Solids 352(52-54), 5564–5571 (2006).
    [Crossref]
  47. H. Aben and C. Guillemet, Photoelasticity of Glass (Springer-Verlag, 1993).
  48. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
    [Crossref]
  49. “IEC 60793-1-40:2001 Optical fibres - Part 1-40: Measurement methods and test procedures - Attenuation,” 2001.
  50. R. Kasztelanic, “Confinement losses measured for test fibers fabricated using LBS-23 and CG-22 glasses,” figshare (2020) [retrieved 24 June 2020], https://doi.org/10.6084/m9.figshare.12568298.

2019 (6)

Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
[Crossref]

A. Orth, M. Ploschner, E. R. Wilson, I. S. Maksymov, and B. C. Gibson, “Optical fiber bundles: Ultra-slim light field imaging probes,” Sci. Adv. 5(4), eaav1555 (2019).
[Crossref]

B. Morova, N. Bavili, O. Yaman, B. Uigit, M. Zeybel, M. Aydin, B. Dogan, R. Kasztelanic, D. Pysz, R. Buczynski, and A. Kiraz, “Fabrication and characterization of large numerical aperture, high-resolution optical fiber bundles based on high-contrast pairs of soft glasses for fluorescence imaging,” Opt. Express 27(7), 9502 (2019).
[Crossref]

A. Masuno, T. Iwata, Y. Yanaba, S. Sasaki, H. Inoueb, and Y. Watanabe, “High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units,” Dalton Trans. 48(29), 10804–10811 (2019).
[Crossref]

R. O. Alekseev, V. I. Savinkov, and V. N. Sigaev, “Investigation of glass formation and the properties of lanthanum-aluminum-borosilicate glasses with high lanthanum oxide content,” Glass Ceram. 76(1-2), 45–48 (2019).
[Crossref]

Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
[Crossref]

2018 (4)

A. V. Deepa, P. Murugasen, P. Muralimanohar, and S. P. Kumar, “Optical studies of lanthanum oxide doped phosphate glasses,” Optik 160, 348–352 (2018).
[Crossref]

Z. A. Steelman, K. Sanghoon, E. T. Jelly, M. Crose, K. K. Chu, and A. Wax, “Comparison of imaging fiber bundles for coherence-domain imaging,” Appl. Opt. 57(6), 1455–1462 (2018).
[Crossref]

Y. Chang, W. Lin, J. Cheng, and S. C. Chen, “Compact high-resolution endomicroscopy based on fiber bundles and image stitching,” Opt. Lett. 43(17), 4168–4171 (2018).
[Crossref]

F. Schmieder, S. D. Klapper, N. Koukourakis, V. Busskamp, and J. W. Czarske, “Optogenetic ttimulation of human neural networks using fast ferroelectric spatial light modulator – based holographic illumination,” Appl. Sci. 8(7), 1180 (2018).
[Crossref]

2017 (4)

D. Haufe, N. Koukourakis, L. Büttner, and J. W. Czarske, “Transmission of multiple signals through an optical fiber using wavefront shaping,” J. Visualized Exp. 121, 55407 (2017).
[Crossref]

M. Kim, K. Hong, J. Kim, and H. Shin, “Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal,” Biomed. Opt. Express 8(6), 2781–2795 (2017).
[Crossref]

M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications,” Biomed. Opt. Express 8(5), 2405–2444 (2017).
[Crossref]

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

2016 (3)

2015 (2)

J. Cimek, R. Stepien, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczynski, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

C. Mugoni, A. Licciulli, D. Diso, and C. Siligardi, “Lanthanum glass infiltrated alumina/alumina composites for dental prosthetic applications,” Ceram. Int. 41(10), 13090–13099 (2015).
[Crossref]

2014 (2)

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

2013 (3)

2010 (4)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

K. Adachi, M. Miratsu, and T. Asahi, “Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters,” J. Mater. Res. 25(3), 510–521 (2010).
[Crossref]

2009 (2)

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

H. D. Ford and R. P. Tatam, “Coherent Fibre Bundles in full-field swept-source OCT,” Proc. SPIE 7168, 71682P (2009).
[Crossref]

2008 (1)

2006 (2)

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

R. Jose, T. Suzuki, and Y. Ohishi, “Thermal and optical properties of TeO2-BaO-SrO-Nb2O5 based glasses: New broadband Raman gain media,” J. Non-Cryst. Solids 352(52-54), 5564–5571 (2006).
[Crossref]

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanameth, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

2004 (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

2001 (1)

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

1998 (1)

L. G. Hwa, Y. R. Chang, and S. P. Szu, “Optical and physical properties of lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 231(3), 222–226 (1998).
[Crossref]

1993 (1)

1989 (1)

1986 (1)

1972 (1)

A. Hruby, “Evaluation of glass-forming tendency by means of DTA,” Czech. J. Phys. 22(11), 1187–1193 (1972).
[Crossref]

Aben, H.

H. Aben and C. Guillemet, Photoelasticity of Glass (Springer-Verlag, 1993).

Adachi, K.

K. Adachi, M. Miratsu, and T. Asahi, “Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters,” J. Mater. Res. 25(3), 510–521 (2010).
[Crossref]

Alekseev, R. O.

R. O. Alekseev, V. I. Savinkov, and V. N. Sigaev, “Investigation of glass formation and the properties of lanthanum-aluminum-borosilicate glasses with high lanthanum oxide content,” Glass Ceram. 76(1-2), 45–48 (2019).
[Crossref]

Asahara, Y.

M. Yamane and Y. Asahara, Glasses for Photonics, (Cambridge University Press, 2000).

Asahi, T.

K. Adachi, M. Miratsu, and T. Asahi, “Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters,” J. Mater. Res. 25(3), 510–521 (2010).
[Crossref]

Aydin, M.

Aziz, D.

Azlan, M. N.

M. F. Faznny, M. K. Halimah, and M. N. Azlan, “Effect of lanthanum oxide on optical properties of zinc borotellurite glass system,” J. Optoelectr. Biom. Mat. 8(2), 49–59 (2016).

Bartelt, H.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Bavili, N.

Bi, W.

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

Birks, T. A.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Bouwmans, G.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Broderick, N. G.

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

Broemer, H.

E. Leitz, H. Broemer, and N. Meinert, Lanthanum borosilicate optical glass, U.S. Patent No 3,615,769 (1971).

Buczynski, R.

B. Morova, N. Bavili, O. Yaman, B. Uigit, M. Zeybel, M. Aydin, B. Dogan, R. Kasztelanic, D. Pysz, R. Buczynski, and A. Kiraz, “Fabrication and characterization of large numerical aperture, high-resolution optical fiber bundles based on high-contrast pairs of soft glasses for fluorescence imaging,” Opt. Express 27(7), 9502 (2019).
[Crossref]

J. Cimek, R. Stepien, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczynski, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, M. Raes, H. Terryn, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiber bundle part II: point spread function analysis,” Opt. Express 21(21), 25403 (2013).
[Crossref]

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, M. Raes, H. Terryn, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiber bundle part I: modal analysis,” Opt. Express 21(19), 21991 (2013).
[Crossref]

Busskamp, V.

F. Schmieder, S. D. Klapper, N. Koukourakis, V. Busskamp, and J. W. Czarske, “Optogenetic ttimulation of human neural networks using fast ferroelectric spatial light modulator – based holographic illumination,” Appl. Sci. 8(7), 1180 (2018).
[Crossref]

Büttner, L.

D. Haufe, N. Koukourakis, L. Büttner, and J. W. Czarske, “Transmission of multiple signals through an optical fiber using wavefront shaping,” J. Visualized Exp. 121, 55407 (2017).
[Crossref]

N. Koukourakis, B. Fregin, J. König, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
[Crossref]

Buzniak, J.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Chang, T. P.

Chang, Y.

Chang, Y. R.

L. G. Hwa, Y. R. Chang, and S. P. Szu, “Optical and physical properties of lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 231(3), 222–226 (1998).
[Crossref]

Chen, S. C.

Chen, X.

Cheng, J.

Cheng, T.

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanameth, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Chu, K. K.

Cimek, J.

J. Cimek, R. Stepien, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczynski, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanameth, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Couderc, V.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Crose, M.

Cui, M.

Czarske, J. W.

F. Schmieder, S. D. Klapper, N. Koukourakis, V. Busskamp, and J. W. Czarske, “Optogenetic ttimulation of human neural networks using fast ferroelectric spatial light modulator – based holographic illumination,” Appl. Sci. 8(7), 1180 (2018).
[Crossref]

D. Haufe, N. Koukourakis, L. Büttner, and J. W. Czarske, “Transmission of multiple signals through an optical fiber using wavefront shaping,” J. Visualized Exp. 121, 55407 (2017).
[Crossref]

N. Koukourakis, B. Fregin, J. König, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
[Crossref]

Deepa, A. V.

A. V. Deepa, P. Murugasen, P. Muralimanohar, and S. P. Kumar, “Optical studies of lanthanum oxide doped phosphate glasses,” Optik 160, 348–352 (2018).
[Crossref]

Diso, D.

C. Mugoni, A. Licciulli, D. Diso, and C. Siligardi, “Lanthanum glass infiltrated alumina/alumina composites for dental prosthetic applications,” Ceram. Int. 41(10), 13090–13099 (2015).
[Crossref]

Dogan, B.

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref]

Fang, Y.

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

Faznny, M. F.

M. F. Faznny, M. K. Halimah, and M. N. Azlan, “Effect of lanthanum oxide on optical properties of zinc borotellurite glass system,” J. Optoelectr. Biom. Mat. 8(2), 49–59 (2016).

Filipkowski, A.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanameth, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Ford, H. D.

H. D. Ford and R. P. Tatam, “Coherent Fibre Bundles in full-field swept-source OCT,” Proc. SPIE 7168, 71682P (2009).
[Crossref]

Fowler, B. A.

G. F. Nordberg, B. A. Fowler, and M. Nordberg, Handbook on the Toxicology of Metals, 4th Edit. (Academic Press, 2015).

Franczyk, M.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Fregin, B.

Fu, A.

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

Gao, W.

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

Gibson, B. C.

A. Orth, M. Ploschner, E. R. Wilson, I. S. Maksymov, and B. C. Gibson, “Optical fiber bundles: Ultra-slim light field imaging probes,” Sci. Adv. 5(4), eaav1555 (2019).
[Crossref]

Gmitro, A. F.

Gora, M. J.

Guillemet, C.

H. Aben and C. Guillemet, Photoelasticity of Glass (Springer-Verlag, 1993).

Gulbiten, O.

Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
[Crossref]

Halimah, M. K.

M. F. Faznny, M. K. Halimah, and M. N. Azlan, “Effect of lanthanum oxide on optical properties of zinc borotellurite glass system,” J. Optoelectr. Biom. Mat. 8(2), 49–59 (2016).

Harasny, K.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Harwood, D. W. J.

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

Haufe, D.

D. Haufe, N. Koukourakis, L. Büttner, and J. W. Czarske, “Transmission of multiple signals through an optical fiber using wavefront shaping,” J. Visualized Exp. 121, 55407 (2017).
[Crossref]

Hedley, T. D.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref]

Hewak, D. W.

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

Heyvaert, S.

Hong, K.

Hruby, A.

A. Hruby, “Evaluation of glass-forming tendency by means of DTA,” Czech. J. Phys. 22(11), 1187–1193 (1972).
[Crossref]

Hughes, M.

Hwa, L. G.

L. G. Hwa, Y. R. Chang, and S. P. Szu, “Optical and physical properties of lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 231(3), 222–226 (1998).
[Crossref]

Inoueb, H.

A. Masuno, T. Iwata, Y. Yanaba, S. Sasaki, H. Inoueb, and Y. Watanabe, “High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units,” Dalton Trans. 48(29), 10804–10811 (2019).
[Crossref]

Iwata, T.

A. Masuno, T. Iwata, Y. Yanaba, S. Sasaki, H. Inoueb, and Y. Watanabe, “High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units,” Dalton Trans. 48(29), 10804–10811 (2019).
[Crossref]

Jamier, R.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

Jelly, E. T.

Jiang, P.

Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
[Crossref]

Jose, R.

R. Jose, T. Suzuki, and Y. Ohishi, “Thermal and optical properties of TeO2-BaO-SrO-Nb2O5 based glasses: New broadband Raman gain media,” J. Non-Cryst. Solids 352(52-54), 5564–5571 (2006).
[Crossref]

Josten, G.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanameth, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Juškattis, R.

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

Kasztelanic, R.

Kim, J.

Kim, M.

Kiraz, A.

Kirchhof, J.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Klapper, S. D.

F. Schmieder, S. D. Klapper, N. Koukourakis, V. Busskamp, and J. W. Czarske, “Optogenetic ttimulation of human neural networks using fast ferroelectric spatial light modulator – based holographic illumination,” Appl. Sci. 8(7), 1180 (2018).
[Crossref]

Klimczak, M.

J. Cimek, R. Stepien, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczynski, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Knight, J. C.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Kobelke, J.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Kociszewski, L.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

König, J.

Koukourakis, N.

F. Schmieder, S. D. Klapper, N. Koukourakis, V. Busskamp, and J. W. Czarske, “Optogenetic ttimulation of human neural networks using fast ferroelectric spatial light modulator – based holographic illumination,” Appl. Sci. 8(7), 1180 (2018).
[Crossref]

D. Haufe, N. Koukourakis, L. Büttner, and J. W. Czarske, “Transmission of multiple signals through an optical fiber using wavefront shaping,” J. Visualized Exp. 121, 55407 (2017).
[Crossref]

N. Koukourakis, B. Fregin, J. König, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
[Crossref]

Kujawa, I.

J. Cimek, R. Stepien, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczynski, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, M. Raes, H. Terryn, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiber bundle part II: point spread function analysis,” Opt. Express 21(21), 25403 (2013).
[Crossref]

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, M. Raes, H. Terryn, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiber bundle part I: modal analysis,” Opt. Express 21(19), 21991 (2013).
[Crossref]

Kumar, S. P.

A. V. Deepa, P. Murugasen, P. Muralimanohar, and S. P. Kumar, “Optical studies of lanthanum oxide doped phosphate glasses,” Optik 160, 348–352 (2018).
[Crossref]

Labruyere, A.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref]

Leger, J. R.

Leitz, E.

E. Leitz, H. Broemer, and N. Meinert, Lanthanum borosilicate optical glass, U.S. Patent No 3,615,769 (1971).

Leproux, P.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Li, C.

Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
[Crossref]

Li, S.

Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
[Crossref]

Li, X.

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications,” Biomed. Opt. Express 8(5), 2405–2444 (2017).
[Crossref]

Liao, M.

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

Licciulli, A.

C. Mugoni, A. Licciulli, D. Diso, and C. Siligardi, “Lanthanum glass infiltrated alumina/alumina composites for dental prosthetic applications,” Ceram. Int. 41(10), 13090–13099 (2015).
[Crossref]

Lin, W.

Litzkendorf, D.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Luethy, W.

Mairaj, A. K.

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

Maksymov, I. S.

A. Orth, M. Ploschner, E. R. Wilson, I. S. Maksymov, and B. C. Gibson, “Optical fiber bundles: Ultra-slim light field imaging probes,” Sci. Adv. 5(4), eaav1555 (2019).
[Crossref]

Masuno, A.

A. Masuno, T. Iwata, Y. Yanaba, S. Sasaki, H. Inoueb, and Y. Watanabe, “High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units,” Dalton Trans. 48(29), 10804–10811 (2019).
[Crossref]

Mauro, J. C.

Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
[Crossref]

A. K. Varshneya and J. C. Mauro, Fundamentals of Inorganic Glasses, (Elsevier Inc, 2019).

Meinert, N.

E. Leitz, H. Broemer, and N. Meinert, Lanthanum borosilicate optical glass, U.S. Patent No 3,615,769 (1971).

Miratsu, M.

K. Adachi, M. Miratsu, and T. Asahi, “Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters,” J. Mater. Res. 25(3), 510–521 (2010).
[Crossref]

Monro, T. M.

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

Montazerian, M.

Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
[Crossref]

Morova, B.

Moser, C.

Mugoni, C.

C. Mugoni, A. Licciulli, D. Diso, and C. Siligardi, “Lanthanum glass infiltrated alumina/alumina composites for dental prosthetic applications,” Ceram. Int. 41(10), 13090–13099 (2015).
[Crossref]

Muralimanohar, P.

A. V. Deepa, P. Murugasen, P. Muralimanohar, and S. P. Kumar, “Optical studies of lanthanum oxide doped phosphate glasses,” Optik 160, 348–352 (2018).
[Crossref]

Murugasen, P.

A. V. Deepa, P. Murugasen, P. Muralimanohar, and S. P. Kumar, “Optical studies of lanthanum oxide doped phosphate glasses,” Optik 160, 348–352 (2018).
[Crossref]

Ng, L. N.

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

Nordberg, G. F.

G. F. Nordberg, B. A. Fowler, and M. Nordberg, Handbook on the Toxicology of Metals, 4th Edit. (Academic Press, 2015).

Nordberg, M.

G. F. Nordberg, B. A. Fowler, and M. Nordberg, Handbook on the Toxicology of Metals, 4th Edit. (Academic Press, 2015).

Ohishi, Y.

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

R. Jose, T. Suzuki, and Y. Ohishi, “Thermal and optical properties of TeO2-BaO-SrO-Nb2O5 based glasses: New broadband Raman gain media,” J. Non-Cryst. Solids 352(52-54), 5564–5571 (2006).
[Crossref]

Orth, A.

A. Orth, M. Ploschner, E. R. Wilson, I. S. Maksymov, and B. C. Gibson, “Optical fiber bundles: Ultra-slim light field imaging probes,” Sci. Adv. 5(4), eaav1555 (2019).
[Crossref]

Ottevaere, H.

Percival, R. M.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Petrovich, M. N.

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

Piyawattanameth, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanameth, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Ploschner, M.

A. Orth, M. Ploschner, E. R. Wilson, I. S. Maksymov, and B. C. Gibson, “Optical fiber bundles: Ultra-slim light field imaging probes,” Sci. Adv. 5(4), eaav1555 (2019).
[Crossref]

Psaltis, D.

Pysz, D.

B. Morova, N. Bavili, O. Yaman, B. Uigit, M. Zeybel, M. Aydin, B. Dogan, R. Kasztelanic, D. Pysz, R. Buczynski, and A. Kiraz, “Fabrication and characterization of large numerical aperture, high-resolution optical fiber bundles based on high-contrast pairs of soft glasses for fluorescence imaging,” Opt. Express 27(7), 9502 (2019).
[Crossref]

J. Cimek, R. Stepien, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczynski, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Raes, M.

Reichenbach, K. L.

Ricoult, D. L.

D. L. Ricoult, Glasses with a high refractive index and their use as segment of multifocal corrective lenses, Patent CA2,248,921 A1 (1997).

Russell, P. S. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Sanghoon, K.

Sasaki, S.

A. Masuno, T. Iwata, Y. Yanaba, S. Sasaki, H. Inoueb, and Y. Watanabe, “High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units,” Dalton Trans. 48(29), 10804–10811 (2019).
[Crossref]

Savinkov, V. I.

R. O. Alekseev, V. I. Savinkov, and V. N. Sigaev, “Investigation of glass formation and the properties of lanthanum-aluminum-borosilicate glasses with high lanthanum oxide content,” Glass Ceram. 76(1-2), 45–48 (2019).
[Crossref]

Schmieder, F.

F. Schmieder, S. D. Klapper, N. Koukourakis, V. Busskamp, and J. W. Czarske, “Optogenetic ttimulation of human neural networks using fast ferroelectric spatial light modulator – based holographic illumination,” Appl. Sci. 8(7), 1180 (2018).
[Crossref]

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanameth, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Schuster, K.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Schwuchow, A.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref]

Shin, H.

Sigaev, V. N.

R. O. Alekseev, V. I. Savinkov, and V. N. Sigaev, “Investigation of glass formation and the properties of lanthanum-aluminum-borosilicate glasses with high lanthanum oxide content,” Glass Ceram. 76(1-2), 45–48 (2019).
[Crossref]

Siligardi, C.

C. Mugoni, A. Licciulli, D. Diso, and C. Siligardi, “Lanthanum glass infiltrated alumina/alumina composites for dental prosthetic applications,” Ceram. Int. 41(10), 13090–13099 (2015).
[Crossref]

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref]

Stasio, N.

Steelman, Z. A.

Stepien, R.

J. Cimek, R. Stepien, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczynski, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Suter, M. J.

Suzuki, T.

R. Jose, T. Suzuki, and Y. Ohishi, “Thermal and optical properties of TeO2-BaO-SrO-Nb2O5 based glasses: New broadband Raman gain media,” J. Non-Cryst. Solids 352(52-54), 5564–5571 (2006).
[Crossref]

Swanson, G. J.

Szu, S. P.

L. G. Hwa, Y. R. Chang, and S. P. Szu, “Optical and physical properties of lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 231(3), 222–226 (1998).
[Crossref]

Tatam, R. P.

H. D. Ford and R. P. Tatam, “Coherent Fibre Bundles in full-field swept-source OCT,” Proc. SPIE 7168, 71682P (2009).
[Crossref]

Tearney, G. J.

Terryn, H.

Thienpont, H.

Tombelaine, V.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

Uigit, B.

Varshneya, A. K.

A. K. Varshneya and J. C. Mauro, Fundamentals of Inorganic Glasses, (Elsevier Inc, 2019).

Veldkamp, W. B.

Wadsworth, W. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

Wang, L.

Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
[Crossref]

Wang, Y.

Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
[Crossref]

Watanabe, Y.

A. Masuno, T. Iwata, Y. Yanaba, S. Sasaki, H. Inoueb, and Y. Watanabe, “High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units,” Dalton Trans. 48(29), 10804–10811 (2019).
[Crossref]

Watson, T. F.

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

Wax, A.

Weber, H. P.

West, Y. D.

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

Wilson, E. R.

A. Orth, M. Ploschner, E. R. Wilson, I. S. Maksymov, and B. C. Gibson, “Optical fiber bundles: Ultra-slim light field imaging probes,” Sci. Adv. 5(4), eaav1555 (2019).
[Crossref]

Wilson, T.

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

Xu, C.

Yaman, O.

Yamane, M.

M. Yamane and Y. Asahara, Glasses for Photonics, (Cambridge University Press, 2000).

Yan, J. Y.

Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
[Crossref]

Yanaba, Y.

A. Masuno, T. Iwata, Y. Yanaba, S. Sasaki, H. Inoueb, and Y. Watanabe, “High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units,” Dalton Trans. 48(29), 10804–10811 (2019).
[Crossref]

Yang, C.

Yang, G. Z.

Yang, Y.

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

Yu, L.

Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
[Crossref]

Yue, Y.

Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
[Crossref]

Zanotto, E. D.

Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
[Crossref]

Zeybel, M.

Zhang, Y.

Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
[Crossref]

Zhao, G.

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

Zheng, Q.

Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Sci. (1)

F. Schmieder, S. D. Klapper, N. Koukourakis, V. Busskamp, and J. W. Czarske, “Optogenetic ttimulation of human neural networks using fast ferroelectric spatial light modulator – based holographic illumination,” Appl. Sci. 8(7), 1180 (2018).
[Crossref]

Biomed. Opt. Express (3)

Bull. Pol. Acad. Sci.: Tech. Sci. (1)

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Ceram. Int. (1)

C. Mugoni, A. Licciulli, D. Diso, and C. Siligardi, “Lanthanum glass infiltrated alumina/alumina composites for dental prosthetic applications,” Ceram. Int. 41(10), 13090–13099 (2015).
[Crossref]

Chem. Rev. (1)

Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J. C. Mauro, E. D. Zanotto, and Y. Yue, “Understanding Glass through Differential Scanning Calorimetry,” Chem. Rev. 119(13), 7848–7939 (2019).
[Crossref]

Czech. J. Phys. (1)

A. Hruby, “Evaluation of glass-forming tendency by means of DTA,” Czech. J. Phys. 22(11), 1187–1193 (1972).
[Crossref]

Dalton Trans. (1)

A. Masuno, T. Iwata, Y. Yanaba, S. Sasaki, H. Inoueb, and Y. Watanabe, “High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units,” Dalton Trans. 48(29), 10804–10811 (2019).
[Crossref]

Glass Ceram. (1)

R. O. Alekseev, V. I. Savinkov, and V. N. Sigaev, “Investigation of glass formation and the properties of lanthanum-aluminum-borosilicate glasses with high lanthanum oxide content,” Glass Ceram. 76(1-2), 45–48 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photonics Technol. Lett. 16(3), 843–845 (2004).
[Crossref]

J. Appl. Phys. (1)

Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, “Filamentation and supercontinuum generation in lanthanum glass,” J. Appl. Phys. 121(2), 023107 (2017).
[Crossref]

J. Biophotonics (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref]

J. Mater. Res. (1)

K. Adachi, M. Miratsu, and T. Asahi, “Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters,” J. Mater. Res. 25(3), 510–521 (2010).
[Crossref]

J. Non-Cryst. Solids (2)

R. Jose, T. Suzuki, and Y. Ohishi, “Thermal and optical properties of TeO2-BaO-SrO-Nb2O5 based glasses: New broadband Raman gain media,” J. Non-Cryst. Solids 352(52-54), 5564–5571 (2006).
[Crossref]

L. G. Hwa, Y. R. Chang, and S. P. Szu, “Optical and physical properties of lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 231(3), 222–226 (1998).
[Crossref]

J. Optoelectr. Biom. Mat. (1)

M. F. Faznny, M. K. Halimah, and M. N. Azlan, “Effect of lanthanum oxide on optical properties of zinc borotellurite glass system,” J. Optoelectr. Biom. Mat. 8(2), 49–59 (2016).

J. Visualized Exp. (1)

D. Haufe, N. Koukourakis, L. Büttner, and J. W. Czarske, “Transmission of multiple signals through an optical fiber using wavefront shaping,” J. Visualized Exp. 121, 55407 (2017).
[Crossref]

Nanophotonics (1)

Y. Wang, S. Li, J. Y. Yan, C. Li, P. Jiang, L. Wang, and L. Yu, “Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas,” Nanophotonics 8(7), 1271–1278 (2019).
[Crossref]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanameth, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Opt. Eng. (1)

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. (1)

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mater. 32(9), 1002–1006 (2010).
[Crossref]

Opt. Quantum Electron. (1)

J. Cimek, R. Stepien, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczynski, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

Optik (1)

A. V. Deepa, P. Murugasen, P. Muralimanohar, and S. P. Kumar, “Optical studies of lanthanum oxide doped phosphate glasses,” Optik 160, 348–352 (2018).
[Crossref]

Proc. SPIE (3)

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, H. Bartelt, V. Tombelaine, P. Leproux, V. Couderc, and A. Labruyere, “Microstructured fibers with high lanthanum oxide glass core for nonlinear applications,” Proc. SPIE 7357, 735702 (2009).
[Crossref]

A. K. Mairaj, M. N. Petrovich, Y. D. West, A. Fu, D. W. J. Harwood, L. N. Ng, T. M. Monro, N. G. Broderick, and D. W. Hewak, “Gallium lanthanum sulphide glass for optical fiber and devices,” Proc. SPIE 4204, 278–286 (2001).
[Crossref]

H. D. Ford and R. P. Tatam, “Coherent Fibre Bundles in full-field swept-source OCT,” Proc. SPIE 7168, 71682P (2009).
[Crossref]

Scanning (1)

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

Sci. Adv. (1)

A. Orth, M. Ploschner, E. R. Wilson, I. S. Maksymov, and B. C. Gibson, “Optical fiber bundles: Ultra-slim light field imaging probes,” Sci. Adv. 5(4), eaav1555 (2019).
[Crossref]

Other (9)

“IEC 60793-1-40:2001 Optical fibres - Part 1-40: Measurement methods and test procedures - Attenuation,” 2001.

R. Kasztelanic, “Confinement losses measured for test fibers fabricated using LBS-23 and CG-22 glasses,” figshare (2020) [retrieved 24 June 2020], https://doi.org/10.6084/m9.figshare.12568298.

A. K. Varshneya and J. C. Mauro, Fundamentals of Inorganic Glasses, (Elsevier Inc, 2019).

G. F. Nordberg, B. A. Fowler, and M. Nordberg, Handbook on the Toxicology of Metals, 4th Edit. (Academic Press, 2015).

H. Aben and C. Guillemet, Photoelasticity of Glass (Springer-Verlag, 1993).

M. Yamane and Y. Asahara, Glasses for Photonics, (Cambridge University Press, 2000).

Abbe graph and data for 356 glasses from Ohara, Hoya, and Schott. https://web.archive.org/web/20151011033 820/ http://www.lacroixoptical.com/sites/default/files/content/LaCroix Dynamic Material Selection Data Tool vJanuary 2015.xlsm

E. Leitz, H. Broemer, and N. Meinert, Lanthanum borosilicate optical glass, U.S. Patent No 3,615,769 (1971).

D. L. Ricoult, Glasses with a high refractive index and their use as segment of multifocal corrective lenses, Patent CA2,248,921 A1 (1997).

Supplementary Material (1)

NameDescription
» Dataset 1       Raw experimental data of the attenuation measurement.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1. Refractive index of the LBS-2X series glasses in function of La2O3 concentration (measurement precision 2 × 10−4).
Fig. 2.
Fig. 2. Spectral characteristics of refractive index for LBS-2X rod glass.
Fig. 3.
Fig. 3. Abbe diagram with LBS-2X type and CG-2X type glasses.
Fig. 4.
Fig. 4. Spectral characteristics of refractive index for CG-2X cladding glass.
Fig. 5.
Fig. 5. Transmittance of LBS-2X series glasses in the range of 250-600 nm (d – thickness of glass sample).
Fig. 6.
Fig. 6. Transmittance of CG-2X series glasses in the range of 200-600 nm (d – thickness of glass sample).
Fig. 7.
Fig. 7. Absorption coefficient vs. wavelength for the LBS-23 (core) and CG-22 (cladding) selected pair of glasses.
Fig. 8.
Fig. 8. Viscosity of the LBS-2X series glasses vs. temperature.
Fig. 9.
Fig. 9. Rheological curves of the very well matched LBS-23 core glass and CG-22 cladding glass.
Fig. 10.
Fig. 10. Thermal expansion coefficient (CTE) of the LBS-2X series glasses in function of La2O3 concentration. We assume that total content of SiO2, B2O3 and La2O3 in LBS-2X glasses is constant and equal to 57.5 mol% (measurement precision 0.5 10−7K-1).
Fig. 11.
Fig. 11. DSC curves for LBS series lanthanum core glasses.
Fig. 12.
Fig. 12. DSC curves for CG series borosilicate cladding glasses.
Fig. 13.
Fig. 13. XRD curves for LBS-23 lanthanum core glass.
Fig. 14.
Fig. 14. XRD curves for CG-23 borosilicate cladding glass.
Fig. 15.
Fig. 15. Water durability of example LBS and CG glasses. As a reference water durability optical borosilicate BK7 Schott glass. Smaller mass decrease denotes higher water durability.
Fig. 16.
Fig. 16. Glass ‘sandwiches’ observed under polarized light microscope: a) LBS-23 core glass combined with CG-22 cladding glass (Δα = 1.0×10−7K-1); b) LBS-24 core glass combined with CG-22 cladding glass (Δα = 2.9×10−7K-1).
Fig. 17.
Fig. 17. Development of test fiber. Rod-in-tube preform after drawing process (a). Cross section of the drawn subpreform of the fiber observed with the polarized light microscope to identify internal stress in glass.
Fig. 18.
Fig. 18. Angular intensity distribution at the fiber output for wavelength of 532 nm.
Fig. 19.
Fig. 19. Confinement losses measured for test fibers fabricated using LBS-23 and CG-22 glasses. Raw experimental data are included in the supplement “Dataset 1” [50].

Tables (7)

Tables Icon

Table 1. Chemical composition of niobium-lanthanum-borosilicate glasses (LBS-2X series) [mol%].

Tables Icon

Table 2. Chemical composition of sodium-potassium-borosilicate glasses (CG-2X series) [mol%].

Tables Icon

Table 3. Basic properties of the LBS-2X series niobium-lanthanum-borosilicate glasses.

Tables Icon

Table 4. Sellmeier dispersion coefficients for LBS-2X glasses.

Tables Icon

Table 5. Basic properties of the CG-2X series sodium-potassium-borosilicate glasses.

Tables Icon

Table 6. Sellmeier dispersion coefficients for CG-2X glasses.

Tables Icon

Table 7. Characteristic temperatures of the LBS and CG glasses determined based on DSC measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NA = ( n 1 2 n 2 2 ) 1 / 2 ,