Abstract

We present a terahertz wave dual-band polarization converter with near-perfect asymmetric transmission (AT) performance based on anisotropic metamaterial that is composed of a bi-layered subwavelength metal grating sandwiched with symmetrical dual radar structure array. It can achieve high efficiency dual-band polarization conversion and high efficiency AT performance in terahertz region. The results show that the polarization conversion rate (PCR) of the terahertz wave exceeds 99% under the forward (-z)/backward (+z) direction incidence in two terahertz bands from 0.38 THz to 1.34 THz and from 1.40 THz to 2.23 THz with a relative bandwidth of 111.63% and 45.73% respectively. The corresponding AT performance in excess of 0.8 is from 0.60 THz to 1.12 THz and from 1.61 THz to 1.98 THz with a relative bandwidth of 60.47% and 20.61% respectively. Due to the excellent charming performance, the proposed structure has great application potential in terahertz isolator.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kildishev, A. Boltasseva, and V. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref]
  2. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
    [Crossref]
  3. F. Zeng, L. Ye, Z. Wang, W. Zhao, and Y. Zhang, “Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials,” Opt. Express 27(23), 33826–33839 (2019).
    [Crossref]
  4. J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref]
  5. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref]
  6. L. Zhu, X. Zhao, F. Miao, B. K. Ghosh, L. Dong, B. Tao, F. Meng, and W. Li, “Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial,” Opt. Express 27(9), 12163–12170 (2019).
    [Crossref]
  7. M. Kang, J. Chen, H. Cui, Y. Li, and H. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
    [Crossref]
  8. Y. Cheng, J. Fan, H. Luo, F. Chen, N. Feng, X. Mao, and R. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
    [Crossref]
  9. Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
    [Crossref]
  10. S. Xu, F. Hu, M. Chen, F. Fan, and S. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
    [Crossref]
  11. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
    [Crossref]
  12. D. Liu, Z. Xiao, X. Ma, and Z. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
    [Crossref]
  13. H. Wang, X. Zhou, D. Tang, and J. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 64(1), 1–7 (2017).
    [Crossref]
  14. C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref]
  15. B. Abasahl, S. Dutta-Gupta, C. Santschi, and O. Martin, “Coupling strength can control the polarization twist of a plasmonic antenna,” Nano Lett. 13(9), 4575–4579 (2013).
    [Crossref]
  16. S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
    [Crossref]
  17. K. Song, Z. Su, S. Silva, C. Fowler, C. Ding, R. Ji, Y. Liu, X. Zhao, and J. Zhou, “Broadband and high-efficiency transmissive-type nondispersive polarization conversion meta-device,” Opt. Mater. Express 8(8), 2430–2438 (2018).
    [Crossref]
  18. W. Pan, Q. Chen, Y. Ma, X. Wang, and X. Ren, “Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement,” Opt. Commun. 459, 124901 (2020).
    [Crossref]
  19. X. Jing, X. Gui, P. Zhou, and Z. Hong, “Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter,” J. Lightwave Technol. 36(12), 2322–2327 (2018).
    [Crossref]
  20. Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020).
    [Crossref]
  21. C. Wang, X. Zhou, D. Tang, W. Pan, and J. Dong, “Ultra-broad band diode-like asymmetric transmission of linearly polarized waves based on the three-layered chiral structure,” Optik 164, 171–177 (2018).
    [Crossref]
  22. Y. Cheng, H. Luo, F. Chen, X. Mao, and R. Gong, “Photo-excited switchable broadband linear polarization conversion via asymmetric transmission with complementary chiral metamaterial for terahertz waves,” OSA Continuum 2(8), 2391–2400 (2019).
    [Crossref]
  23. Y. Yu, F. Xiao, I. Rukhlenko, and W. Zhu, “High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface,” AEU-INT J. ELECTRON. C. 118, 153141 (2020).
    [Crossref]
  24. M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
    [Crossref]
  25. J. You and N. Panoiu, “Polarization control using passive and active crossed graphene gratings,” Opt. Express 26(2), 1882–1894 (2018).
    [Crossref]

2020 (3)

W. Pan, Q. Chen, Y. Ma, X. Wang, and X. Ren, “Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement,” Opt. Commun. 459, 124901 (2020).
[Crossref]

Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020).
[Crossref]

Y. Yu, F. Xiao, I. Rukhlenko, and W. Zhu, “High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface,” AEU-INT J. ELECTRON. C. 118, 153141 (2020).
[Crossref]

2019 (4)

2018 (4)

2017 (5)

M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

H. Wang, X. Zhou, D. Tang, and J. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 64(1), 1–7 (2017).
[Crossref]

S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
[Crossref]

Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

S. Xu, F. Hu, M. Chen, F. Fan, and S. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

2015 (1)

D. Liu, Z. Xiao, X. Ma, and Z. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

2014 (1)

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref]

2013 (2)

A. Kildishev, A. Boltasseva, and V. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

B. Abasahl, S. Dutta-Gupta, C. Santschi, and O. Martin, “Coupling strength can control the polarization twist of a plasmonic antenna,” Nano Lett. 13(9), 4575–4579 (2013).
[Crossref]

2011 (2)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

M. Kang, J. Chen, H. Cui, Y. Li, and H. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
[Crossref]

2010 (1)

C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

2009 (1)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

2006 (1)

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Abasahl, B.

B. Abasahl, S. Dutta-Gupta, C. Santschi, and O. Martin, “Coupling strength can control the polarization twist of a plasmonic antenna,” Nano Lett. 13(9), 4575–4579 (2013).
[Crossref]

Alu, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref]

Azad, A. K.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Boltasseva, A.

A. Kildishev, A. Boltasseva, and V. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Castaldi, G.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref]

Chang, S.

S. Xu, F. Hu, M. Chen, F. Fan, and S. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Chen, F.

Chen, J.

Chen, M.

S. Xu, F. Hu, M. Chen, F. Fan, and S. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Chen, Q.

W. Pan, Q. Chen, Y. Ma, X. Wang, and X. Ren, “Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement,” Opt. Commun. 459, 124901 (2020).
[Crossref]

Cheng, Y.

Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020).
[Crossref]

Y. Cheng, H. Luo, F. Chen, X. Mao, and R. Gong, “Photo-excited switchable broadband linear polarization conversion via asymmetric transmission with complementary chiral metamaterial for terahertz waves,” OSA Continuum 2(8), 2391–2400 (2019).
[Crossref]

Y. Cheng, J. Fan, H. Luo, F. Chen, N. Feng, X. Mao, and R. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
[Crossref]

Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Cheville, R.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Cui, H.

Ding, C.

Dong, J.

C. Wang, X. Zhou, D. Tang, W. Pan, and J. Dong, “Ultra-broad band diode-like asymmetric transmission of linearly polarized waves based on the three-layered chiral structure,” Optik 164, 171–177 (2018).
[Crossref]

H. Wang, X. Zhou, D. Tang, and J. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 64(1), 1–7 (2017).
[Crossref]

Dong, L.

Dutta-Gupta, S.

B. Abasahl, S. Dutta-Gupta, C. Santschi, and O. Martin, “Coupling strength can control the polarization twist of a plasmonic antenna,” Nano Lett. 13(9), 4575–4579 (2013).
[Crossref]

Engheta, N.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref]

Fan, F.

S. Xu, F. Hu, M. Chen, F. Fan, and S. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Fan, J.

Feng, N.

Fowler, C.

Galdi, V.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref]

Ghosh, B. K.

Gong, R.

Gui, X.

He, Q.

S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
[Crossref]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Hong, Z.

Hu, F.

S. Xu, F. Hu, M. Chen, F. Fan, and S. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Ji, R.

Jing, X.

Kang, M.

Kildishev, A.

A. Kildishev, A. Boltasseva, and V. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Kley, E.

C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Li, M.

M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Li, W.

Li, Y.

Liu, D.

D. Liu, Z. Xiao, X. Ma, and Z. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

Liu, Y.

Liu, Z.

M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Luo, H.

Luo, W.

S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
[Crossref]

Ma, S.

S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
[Crossref]

Ma, X.

D. Liu, Z. Xiao, X. Ma, and Z. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

Ma, Y.

W. Pan, Q. Chen, Y. Ma, X. Wang, and X. Ren, “Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement,” Opt. Commun. 459, 124901 (2020).
[Crossref]

Mao, X.

Martin, O.

B. Abasahl, S. Dutta-Gupta, C. Santschi, and O. Martin, “Coupling strength can control the polarization twist of a plasmonic antenna,” Nano Lett. 13(9), 4575–4579 (2013).
[Crossref]

Meng, F.

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Miao, F.

Monticone, F.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref]

Pan, W.

W. Pan, Q. Chen, Y. Ma, X. Wang, and X. Ren, “Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement,” Opt. Commun. 459, 124901 (2020).
[Crossref]

C. Wang, X. Zhou, D. Tang, W. Pan, and J. Dong, “Ultra-broad band diode-like asymmetric transmission of linearly polarized waves based on the three-layered chiral structure,” Optik 164, 171–177 (2018).
[Crossref]

Panoiu, N.

Pendry, J.

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Piao, Y.

M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Plum, E.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Qin, F.

M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Ren, X.

W. Pan, Q. Chen, Y. Ma, X. Wang, and X. Ren, “Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement,” Opt. Commun. 459, 124901 (2020).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Rukhlenko, I.

Y. Yu, F. Xiao, I. Rukhlenko, and W. Zhu, “High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface,” AEU-INT J. ELECTRON. C. 118, 153141 (2020).
[Crossref]

Santschi, C.

B. Abasahl, S. Dutta-Gupta, C. Santschi, and O. Martin, “Coupling strength can control the polarization twist of a plasmonic antenna,” Nano Lett. 13(9), 4575–4579 (2013).
[Crossref]

Schurig, D.

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Shalaev, V.

A. Kildishev, A. Boltasseva, and V. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Silva, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref]

Silva, S.

Singh, R.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Smith, D.

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Song, K.

Su, Z.

Sun, S.

S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
[Crossref]

Tang, D.

C. Wang, X. Zhou, D. Tang, W. Pan, and J. Dong, “Ultra-broad band diode-like asymmetric transmission of linearly polarized waves based on the three-layered chiral structure,” Optik 164, 171–177 (2018).
[Crossref]

H. Wang, X. Zhou, D. Tang, and J. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 64(1), 1–7 (2017).
[Crossref]

Tao, B.

Tunnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Wang, C.

C. Wang, X. Zhou, D. Tang, W. Pan, and J. Dong, “Ultra-broad band diode-like asymmetric transmission of linearly polarized waves based on the three-layered chiral structure,” Optik 164, 171–177 (2018).
[Crossref]

Wang, H.

H. Wang, X. Zhou, D. Tang, and J. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 64(1), 1–7 (2017).
[Crossref]

M. Kang, J. Chen, H. Cui, Y. Li, and H. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
[Crossref]

Wang, X.

W. Pan, Q. Chen, Y. Ma, X. Wang, and X. Ren, “Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement,” Opt. Commun. 459, 124901 (2020).
[Crossref]

S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
[Crossref]

Wang, Y.

M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Wang, Z.

F. Zeng, L. Ye, Z. Wang, W. Zhao, and Y. Zhang, “Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials,” Opt. Express 27(23), 33826–33839 (2019).
[Crossref]

D. Liu, Z. Xiao, X. Ma, and Z. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

Wu, L.

Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Xiao, F.

Y. Yu, F. Xiao, I. Rukhlenko, and W. Zhu, “High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface,” AEU-INT J. ELECTRON. C. 118, 153141 (2020).
[Crossref]

Xiao, J.

M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Xiao, Z.

D. Liu, Z. Xiao, X. Ma, and Z. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

Xu, S.

S. Xu, F. Hu, M. Chen, F. Fan, and S. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Ye, L.

You, J.

Yu, Y.

Y. Yu, F. Xiao, I. Rukhlenko, and W. Zhu, “High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface,” AEU-INT J. ELECTRON. C. 118, 153141 (2020).
[Crossref]

Zeng, F.

Zhang, Q.

M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Zhang, W.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

Zhang, Y.

F. Zeng, L. Ye, Z. Wang, W. Zhao, and Y. Zhang, “Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials,” Opt. Express 27(23), 33826–33839 (2019).
[Crossref]

S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
[Crossref]

Zhao, W.

Zhao, X.

Zheludev, N.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Zhou, J.

Zhou, L.

S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
[Crossref]

Zhou, P.

Zhou, X.

C. Wang, X. Zhou, D. Tang, W. Pan, and J. Dong, “Ultra-broad band diode-like asymmetric transmission of linearly polarized waves based on the three-layered chiral structure,” Optik 164, 171–177 (2018).
[Crossref]

H. Wang, X. Zhou, D. Tang, and J. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 64(1), 1–7 (2017).
[Crossref]

Zhu, L.

Zhu, W.

Y. Yu, F. Xiao, I. Rukhlenko, and W. Zhu, “High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface,” AEU-INT J. ELECTRON. C. 118, 153141 (2020).
[Crossref]

AEU-INT J. ELECTRON. C. (1)

Y. Yu, F. Xiao, I. Rukhlenko, and W. Zhu, “High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface,” AEU-INT J. ELECTRON. C. 118, 153141 (2020).
[Crossref]

Ann. Phys. (1)

S. Xu, F. Hu, M. Chen, F. Fan, and S. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Appl. Phys. Express (1)

D. Liu, Z. Xiao, X. Ma, and Z. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

Europhys. Lett. (1)

S. Ma, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Ultra-wide band reflective metamaterial wave plates for terahertz waves,” Europhys. Lett. 117(3), 37007 (2017).
[Crossref]

IEEE Access (1)

Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

H. Wang, X. Zhou, D. Tang, and J. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 64(1), 1–7 (2017).
[Crossref]

J. Opt. (1)

M. Li, Q. Zhang, F. Qin, Z. Liu, Y. Piao, Y. Wang, and J. Xiao, “Microwave linear polarization rotator in a bilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Nano Lett. (1)

B. Abasahl, S. Dutta-Gupta, C. Santschi, and O. Martin, “Coupling strength can control the polarization twist of a plasmonic antenna,” Nano Lett. 13(9), 4575–4579 (2013).
[Crossref]

Opt. Commun. (1)

W. Pan, Q. Chen, Y. Ma, X. Wang, and X. Ren, “Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement,” Opt. Commun. 459, 124901 (2020).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (2)

Optik (1)

C. Wang, X. Zhou, D. Tang, W. Pan, and J. Dong, “Ultra-broad band diode-like asymmetric transmission of linearly polarized waves based on the three-layered chiral structure,” Optik 164, 171–177 (2018).
[Crossref]

OSA Continuum (1)

Phys. Rev. B (1)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Phys. Rev. Lett. (1)

C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Plasmonics (1)

Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Science (3)

A. Kildishev, A. Boltasseva, and V. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref]

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. 3D schematic diagram of the designed Dual-band terahertz polarization converter with high-efficiency asymmetric transmission (a), consisting of top periodic metal grating (b), SiO2 spacer, middle symmetrical dual radar metal microstructure layer (c), SiO2 spacer, and the bottom metal grating layer (d). (e) is partial enlarged drawing of the proposed device.
Fig. 2.
Fig. 2. (a) Basic principle of two cascaded Fabry–Perot-like resonance cavities. (b) Terahertz wave transmission curve of double-layer structure (i.e. a sub-wavelength metal grating and a symmetrical dual radar metal microstructure). (c) Schematics of the Poincaré sphere.
Fig. 3.
Fig. 3. Terahertz wave transmission spectrums, AT and PCR of the proposed architecture (a) Transmission curve of the three-layer structure, (b) Forward and backward AT parameters (c) Forward incident x-polarized PCR, (d) Backward incident y-polarized PCR.
Fig. 4.
Fig. 4. Surface current distribution of the intermediate polarization conversion layer under normal incidence terahertz wave along (-z) at various frequencies (a) 1.1 THz, (b) 1.38 THz, and (c) 1.6 THz. (Here, the surface current direction of LC resonance marked ①, the surface current direction of the dipole-like resonance marked ②.)
Fig. 5.
Fig. 5. Polarization conversion ratio of forward terahertz incidence with different parameters (a) radius r1, (b) radius r2, (c) width w1, (d) thickness h.
Fig. 6.
Fig. 6. Different parameters, (a) radius (r1), (b) radius (r2), (c) width (w1), (d) thickness (h) dependence of AT coefficient under normal incidence.
Fig. 7.
Fig. 7. (a) The variation of PCR and incident angle vs. frequency, (b) The variation of AT and incident angle vs. frequency.

Tables (1)

Tables Icon

Table 1. Performance comparison of the proposed polarization converter with some reported polarization converters.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ lin x  =  | T y x f | 2 | T y x b | 2 Δ lin y  =  | T x y f | 2 | T x y b | 2
| T x y | | T y x | , T x x T y y
( E x t E y t ) = ( T x x T x y T y x T y y ) ( E x i E y i )
PCR x  =  | T y x | 2 | T y x | 2 + | T x x | 2  = PCR y  =  | T x y | 2 | T x y | 2 + | T y y | 2