Abstract

The optical fiber geometry is known for rugged, high power laser sources that are preferred for many applications, but is typically limited to the visible and near-infrared regions of the electromagnetic spectrum due to the transmission limits of silica (< 2 µm). This wavelength range could be extended into the mid-infrared using transition metal doped, crystalline II-VI optical gain media, but these materials cannot be fabricated into optical fibers using conventional glass drawing methods. An in-situ high pressure chemical vapor deposition method for the fabrication of silica-cladded $\textrm {ZnSe}$ fiber cores uniformly doped with $\textrm {Cr}^{2+}$ is reported. Optical pumping experiments reveal that these doped fibers exhibit threshold behavior and thus function as mid-infrared optical fiber lasers. Finite element calculations show that undesirable thermal effects common in bulk II-VI crystals are mitigated in the fiber geometry.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
    [Crossref]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  3. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
    [Crossref]
  4. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
    [Crossref]
  5. S. Kück, “Spectroscopy and laser characteristics of Cr2+-doped chalcogenide crystals - overview and recent results,” J. Alloys Compd. 341(1-2), 28–33 (2002).
    [Crossref]
  6. S. Kueck, “Cr2+ lasers,” in International Conference on Lasers, Applications, and Technologies 2002: Advanced Lasers and Systems, vol. 5137G. Huber, I. A. Scherbakov, and V. Y. Panchenko, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 48–59.
  7. E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
    [Crossref]
  8. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
    [Crossref]
  9. T. J. Carrig, “Transition-metal-doped chalcogenide lasers,” J. Electron. Mater. 31(7), 759–769 (2002).
    [Crossref]
  10. I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
    [Crossref]
  11. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18(14), 15062–15072 (2010).
    [Crossref]
  12. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
    [Crossref]
  13. I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
    [Crossref]
  14. D. V. Martyshkin, J. T. Goldstein, V. V. Fedorov, and S. B. Mirov, “Crystalline Cr2+:ZnSe/chalcogenide glass composites as active mid-IR materials,” Opt. Lett. 36(9), 1530–1532 (2011).
    [Crossref]
  15. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  16. J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
    [Crossref]
  17. J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
    [Crossref]
  18. J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43(1), 527–557 (2013).
    [Crossref]
  19. A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Direct experimental determination of the optimum chromium concentration in continuous-wave Cr2+:ZnSe lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 823–830 (2007).
    [Crossref]
  20. Y. F. Vaksman, V. V. Pavlov, Y. A. Nitsuk, Y. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Semiconductors 39(4), 377–380 (2005).
    [Crossref]
  21. J. Ndap, K. Chattopadhyay, O. Adetunji, D. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
    [Crossref]
  22. M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
    [Crossref]
  23. N. Vivet, M. Morales, M. Levalois, X. Portier, and J. Doualan, “Structural and photoluminescence properties of Cr2+:ZnSe films deposited by radiofrequency magnetron co-sputtering for mid-infrared microlaser applications,” Mater. Sci. Eng., B 146(1-3), 236–240 (2008).
    [Crossref]
  24. C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
    [Crossref]
  25. V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
    [Crossref]
  26. U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
    [Crossref]
  27. L. M. Dyagileva, E. I. Tsyganova, and Y. A. Aleksandrov, “The kinetic stability of biscyclopentadienyl and diarene compounds of transition metals in the thermal decomposition reaction,” Russ. Chem. Rev. 57(4), 316–325 (1988).
    [Crossref]
  28. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486nm,” Opt. Lett. 38(13), 2194–2196 (2013).
    [Crossref]
  29. J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010).
    [Crossref]
  30. A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
    [Crossref]
  31. P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, and A. K. Kar, “Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser,” Opt. Mater. Express 3(9), 1250–1258 (2013).
    [Crossref]
  32. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
    [Crossref]

2016 (1)

2013 (3)

2012 (2)

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2011 (4)

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

D. V. Martyshkin, J. T. Goldstein, V. V. Fedorov, and S. B. Mirov, “Crystalline Cr2+:ZnSe/chalcogenide glass composites as active mid-IR materials,” Opt. Lett. 36(9), 1530–1532 (2011).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

2010 (4)

2008 (1)

N. Vivet, M. Morales, M. Levalois, X. Portier, and J. Doualan, “Structural and photoluminescence properties of Cr2+:ZnSe films deposited by radiofrequency magnetron co-sputtering for mid-infrared microlaser applications,” Mater. Sci. Eng., B 146(1-3), 236–240 (2008).
[Crossref]

2007 (2)

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Direct experimental determination of the optimum chromium concentration in continuous-wave Cr2+:ZnSe lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 823–830 (2007).
[Crossref]

2006 (2)

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
[Crossref]

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

2005 (3)

Y. F. Vaksman, V. V. Pavlov, Y. A. Nitsuk, Y. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Semiconductors 39(4), 377–380 (2005).
[Crossref]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[Crossref]

2004 (2)

I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[Crossref]

M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
[Crossref]

2002 (3)

T. J. Carrig, “Transition-metal-doped chalcogenide lasers,” J. Electron. Mater. 31(7), 759–769 (2002).
[Crossref]

S. Kück, “Spectroscopy and laser characteristics of Cr2+-doped chalcogenide crystals - overview and recent results,” J. Alloys Compd. 341(1-2), 28–33 (2002).
[Crossref]

J. Ndap, K. Chattopadhyay, O. Adetunji, D. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[Crossref]

1999 (1)

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

1997 (1)

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

1988 (1)

L. M. Dyagileva, E. I. Tsyganova, and Y. A. Aleksandrov, “The kinetic stability of biscyclopentadienyl and diarene compounds of transition metals in the thermal decomposition reaction,” Russ. Chem. Rev. 57(4), 316–325 (1988).
[Crossref]

Adetunji, O.

J. Ndap, K. Chattopadhyay, O. Adetunji, D. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[Crossref]

Aharonovich, I.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Akimov, V. A.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
[Crossref]

Aleksandrov, Y. A.

L. M. Dyagileva, E. I. Tsyganova, and Y. A. Aleksandrov, “The kinetic stability of biscyclopentadienyl and diarene compounds of transition metals in the thermal decomposition reaction,” Russ. Chem. Rev. 57(4), 316–325 (1988).
[Crossref]

Badding, J. V.

J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43(1), 527–557 (2013).
[Crossref]

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

Beecher, S. J.

Berry, P. A.

Brown, G.

Burger, A.

J. Ndap, K. Chattopadhyay, O. Adetunji, D. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[Crossref]

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Camata, R. P.

Carrig, T. J.

T. J. Carrig, “Transition-metal-doped chalcogenide lasers,” J. Electron. Mater. 31(7), 759–769 (2002).
[Crossref]

Chattopadhyay, K.

J. Ndap, K. Chattopadhyay, O. Adetunji, D. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[Crossref]

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Chaudhuri, S.

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

Chen, K.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Clarkson, W. A.

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Demirbas, U.

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Direct experimental determination of the optimum chromium concentration in continuous-wave Cr2+:ZnSe lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 823–830 (2007).
[Crossref]

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

Doualan, J.

N. Vivet, M. Morales, M. Levalois, X. Portier, and J. Doualan, “Structural and photoluminescence properties of Cr2+:ZnSe films deposited by radiofrequency magnetron co-sputtering for mid-infrared microlaser applications,” Mater. Sci. Eng., B 146(1-3), 236–240 (2008).
[Crossref]

Dyagileva, L. M.

L. M. Dyagileva, E. I. Tsyganova, and Y. A. Aleksandrov, “The kinetic stability of biscyclopentadienyl and diarene compounds of transition metals in the thermal decomposition reaction,” Russ. Chem. Rev. 57(4), 316–325 (1988).
[Crossref]

Dynowska, E.

M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
[Crossref]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Fedorov, V. V.

Feth, S.

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Fitzgibbons, T. C.

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

Frolov, M. P.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
[Crossref]

Gapontsev, V.

George, M.

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Goldstein, J. T.

Gopalan, V.

J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43(1), 527–557 (2013).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

Greentree, A. D.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

He, R.

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

Healy, N.

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jouanne, M.

M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
[Crossref]

Kar, A. K.

Karczewski, G.

M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
[Crossref]

Kim, C.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Korostelin, Y. V.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
[Crossref]

Kozlovsky, V. I.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
[Crossref]

Krishnamurthi, M.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Kück, S.

S. Kück, “Spectroscopy and laser characteristics of Cr2+-doped chalcogenide crystals - overview and recent results,” J. Alloys Compd. 341(1-2), 28–33 (2002).
[Crossref]

Kueck, S.

S. Kueck, “Cr2+ lasers,” in International Conference on Lasers, Applications, and Technologies 2002: Advanced Lasers and Systems, vol. 5137G. Huber, I. A. Scherbakov, and V. Y. Panchenko, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 48–59.

Kurt, A.

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Direct experimental determination of the optimum chromium concentration in continuous-wave Cr2+:ZnSe lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 823–830 (2007).
[Crossref]

Landman, A. I.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
[Crossref]

Lehoczky, S.

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Levalois, M.

N. Vivet, M. Morales, M. Levalois, X. Portier, and J. Doualan, “Structural and photoluminescence properties of Cr2+:ZnSe films deposited by radiofrequency magnetron co-sputtering for mid-infrared microlaser applications,” Mater. Sci. Eng., B 146(1-3), 236–240 (2008).
[Crossref]

lLusakowska, E.

M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
[Crossref]

Macdonald, J. R.

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Martyshkin, D. V.

Matyi, R.

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

McDaniel, S. A.

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Mirov, M.

Mirov, S.

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref]

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Mirov, S. B.

Molenkamp, L.

M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
[Crossref]

Morales, M.

N. Vivet, M. Morales, M. Levalois, X. Portier, and J. Doualan, “Structural and photoluminescence properties of Cr2+:ZnSe films deposited by radiofrequency magnetron co-sputtering for mid-infrared microlaser applications,” Mater. Sci. Eng., B 146(1-3), 236–240 (2008).
[Crossref]

Morhange, J.

M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
[Crossref]

Moskalev, I.

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref]

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Moskalev, I. S.

Nasibov, A. S.

Y. F. Vaksman, V. V. Pavlov, Y. A. Nitsuk, Y. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Semiconductors 39(4), 377–380 (2005).
[Crossref]

Naumov, S.

E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[Crossref]

Ndap, J.

J. Ndap, K. Chattopadhyay, O. Adetunji, D. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[Crossref]

Nilsson, J.

Nitsuk, Y. A.

Y. F. Vaksman, V. V. Pavlov, Y. A. Nitsuk, Y. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Semiconductors 39(4), 377–380 (2005).
[Crossref]

Page, R. H.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Pavlov, V. V.

Y. F. Vaksman, V. V. Pavlov, Y. A. Nitsuk, Y. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Semiconductors 39(4), 377–380 (2005).
[Crossref]

Payne, D. N.

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Peacock, A. C.

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Podmar’kov, Y. P.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
[Crossref]

Portier, X.

N. Vivet, M. Morales, M. Levalois, X. Portier, and J. Doualan, “Structural and photoluminescence properties of Cr2+:ZnSe films deposited by radiofrequency magnetron co-sputtering for mid-infrared microlaser applications,” Mater. Sci. Eng., B 146(1-3), 236–240 (2008).
[Crossref]

Prawer, S.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Purtov, Y. N.

Y. F. Vaksman, V. V. Pavlov, Y. A. Nitsuk, Y. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Semiconductors 39(4), 377–380 (2005).
[Crossref]

Richardson, D. J.

Sazio, P. J.

J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43(1), 527–557 (2013).
[Crossref]

Sazio, P. J. A.

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

Schaffers, K. I.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Schepler, K. L.

Sennaroglu, A.

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Direct experimental determination of the optimum chromium concentration in continuous-wave Cr2+:ZnSe lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 823–830 (2007).
[Crossref]

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

Shapkin, P. V.

Y. F. Vaksman, V. V. Pavlov, Y. A. Nitsuk, Y. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Semiconductors 39(4), 377–380 (2005).
[Crossref]

Smolski, V.

Somer, M.

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Direct experimental determination of the optimum chromium concentration in continuous-wave Cr2+:ZnSe lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 823–830 (2007).
[Crossref]

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

Sorokin, E.

E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[Crossref]

Sorokina, I. T.

E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[Crossref]

I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[Crossref]

Sparks, J. R.

J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43(1), 527–557 (2013).
[Crossref]

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

Su, C.-H.

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Szuszkiewicz, W.

M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
[Crossref]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Tsyganova, E. I.

L. M. Dyagileva, E. I. Tsyganova, and Y. A. Aleksandrov, “The kinetic stability of biscyclopentadienyl and diarene compounds of transition metals in the thermal decomposition reaction,” Russ. Chem. Rev. 57(4), 316–325 (1988).
[Crossref]

Vaksman, Y. F.

Y. F. Vaksman, V. V. Pavlov, Y. A. Nitsuk, Y. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Semiconductors 39(4), 377–380 (2005).
[Crossref]

Vasilyev, S.

Vivet, N.

N. Vivet, M. Morales, M. Levalois, X. Portier, and J. Doualan, “Structural and photoluminescence properties of Cr2+:ZnSe films deposited by radiofrequency magnetron co-sputtering for mid-infrared microlaser applications,” Mater. Sci. Eng., B 146(1-3), 236–240 (2008).
[Crossref]

Volz, M.

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Voronov, A. A.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
[Crossref]

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Williams, J. E.

Zakrevskiy, A.

Zelmon, D.

J. Ndap, K. Chattopadhyay, O. Adetunji, D. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[Crossref]

Adv. Funct. Mater. (1)

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. A. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2012).
[Crossref]

Adv. Mater. (1)

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23(14), 1647–1651 (2011).
[Crossref]

Annu. Rev. Mater. Res. (1)

J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43(1), 527–557 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Direct experimental determination of the optimum chromium concentration in continuous-wave Cr2+:ZnSe lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 823–830 (2007).
[Crossref]

E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[Crossref]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

J. Alloys Compd. (2)

S. Kück, “Spectroscopy and laser characteristics of Cr2+-doped chalcogenide crystals - overview and recent results,” J. Alloys Compd. 341(1-2), 28–33 (2002).
[Crossref]

M. Jouanne, J. Morhange, E. Dynowska, E. łLusakowska, W. Szuszkiewicz, L. Molenkamp, and G. Karczewski, “Structure characterization of MBE-grown (Zn,Cr)Se layers,” J. Alloys Compd. 382(1-2), 92–99 (2004).
[Crossref]

J. Cryst. Growth (2)

C.-H. Su, S. Feth, M. Volz, R. Matyi, M. George, K. Chattopadhyay, A. Burger, and S. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

J. Ndap, K. Chattopadhyay, O. Adetunji, D. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[Crossref]

J. Electron. Mater. (1)

T. J. Carrig, “Transition-metal-doped chalcogenide lasers,” J. Electron. Mater. 31(7), 759–769 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Mater. Sci. Eng., B (1)

N. Vivet, M. Morales, M. Levalois, X. Portier, and J. Doualan, “Structural and photoluminescence properties of Cr2+:ZnSe films deposited by radiofrequency magnetron co-sputtering for mid-infrared microlaser applications,” Mater. Sci. Eng., B 146(1-3), 236–240 (2008).
[Crossref]

Nat. Photonics (2)

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (3)

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[Crossref]

Opt. Mater. Express (1)

Phys. Status Solidi C (1)

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and A. A. Voronov, “Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers,” Phys. Status Solidi C 3(4), 1213–1216 (2006).
[Crossref]

Russ. Chem. Rev. (1)

L. M. Dyagileva, E. I. Tsyganova, and Y. A. Aleksandrov, “The kinetic stability of biscyclopentadienyl and diarene compounds of transition metals in the thermal decomposition reaction,” Russ. Chem. Rev. 57(4), 316–325 (1988).
[Crossref]

Science (1)

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

Semiconductors (1)

Y. F. Vaksman, V. V. Pavlov, Y. A. Nitsuk, Y. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Semiconductors 39(4), 377–380 (2005).
[Crossref]

Other (1)

S. Kueck, “Cr2+ lasers,” in International Conference on Lasers, Applications, and Technologies 2002: Advanced Lasers and Systems, vol. 5137G. Huber, I. A. Scherbakov, and V. Y. Panchenko, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 48–59.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. $\textrm {(RCp)}_{2}\textrm{Cr}$ pyrolysis, where R $=$ $\textrm {H}$, $\textrm {Et}$, or $\textrm {iPr}$
Fig. 2.
Fig. 2. $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ optical fiber fabrication and characterization. a) Schematic of all-fiber apparatus with two independently heated furnace zones. Zone 1 heats a solid or liquid precursor contained in a larger capillary fusion spliced to the capillary in which the fiber core is deposited. The flowing reactant stream mixes with vapor from the heated $\textrm {Cr}^{{2}+}$ precursor and continues to a higher temperature zone 2 where deposition of $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ takes place. b) Diascopically illuminated optical micrograph along the length of a $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ core optical fiber. The central pore is magnified considerably in comparison to its true diameter by a cylindrical lensing effect. c) Scanning electron micrograph of the $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ fiber cross section. The central pore is approximately 450 nm in diameter. d) Image of the guided optical mode at 1.550 µm.
Fig. 3.
Fig. 3. Spectroscopic characterization of $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ fiber cores. Measured $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ absorption and fluorescence (solid lines) from optical fibers deposited with $\textrm {(EtCp)}_{2}\textrm{Cr}$ and $\textrm {(Cp)}_{2}\textrm{Cr}$ as the source, respectively. Dotted lines are reference spectra from a commercial, diffusion doped $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ bulk laser gain element.
Fig. 4.
Fig. 4. Time domain and spectral emission characterization of the $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ optical fiber. a) Optical pumping of a 15 µm $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ optical fiber, where clear evidence of threshold behavior is observed. b) Sharpening of the output signal is seen in the time domain, indicating stimulated emission is accelerating the decay of the excited state. c) Spectral emission of $\textrm {Cr}^{{2}+}$:$\textrm {ZnSe}$ fiber laser above and below the laser threshold.

Tables (2)

Tables Icon

Table 1. Cr 2 + : ZnSe fluorescence intensity for different cyclopentadiene ring substituents at a fixed source temperature of 150 °C. The precursor with the highest vapor pressure, (EtCp) 2 Cr , deposits fiber cores with the highest fluorescence signal. The fluorescence intensity is similar to samples doped via diffusion.

Tables Icon

Table 2. Cr 2 + : ZnSe fluorescence intensity for different ring substituents at source temperatures of 150 °C and 225 °C at two different positions along the length of the fiber core, separated by 1 cm (shown via ). The diffusion doped sample is shown for reference.