Abstract

We experimentally investigate crystals doped with tetravalent chromium or divalent cobalt as saturable absorbers for passive Q-switching of visible solid-state lasers. The recovery time of the ground-state and excited-state absorption cross sections are determined by pump-probe and Z-scan measurements, respectively. We provide saturation intensities, useful wavelength ranges of the investigated materials, and advices to realize passive Q-switching of visible lasers using these crystals as saturable absorbers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers

Wensong Li, Jian Peng, Yile Zhong, Duanduan Wu, Huiyu Lin, Yongjie Cheng, Zhengqian Luo, Jian Weng, Huiying Xu, and Zhiping Cai
Opt. Mater. Express 6(6) 2031-2039 (2016)

Saturation of 640-nm absorption in Cr4+:YAG for an InGaN laser diode pumped passively Q-switched Pr3+:YLF laser

Hiroki Tanaka, Ryosuke Kariyama, Kodai Iijima, Kenichi Hirosawa, and Fumihiko Kannari
Opt. Express 23(15) 19382-19395 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: A review,” Appl. Opt. 49(25), F79–F98 (2010).
    [Crossref]
  2. N. S. Kapany, N. A. Peppers, H. C. Zweng, and M. Flocks, “Retinal Photocoagulation by Lasers,” Nature 199(4889), 146–149 (1963).
    [Crossref]
  3. M. A. Mainster, “Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems,” Ophthalmology 93(7), 952–958 (1986).
    [Crossref]
  4. M. Naeem, “Laser Processing of Reflective Materials,” Laser Tech. J. 10(1), 18–20 (2013).
    [Crossref]
  5. C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
    [Crossref]
  6. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
    [Crossref]
  7. S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photonics Rev. 3(5), 407–434 (2009).
    [Crossref]
  8. A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29(22), 2638–2640 (2004).
    [Crossref]
  9. K. Hashimoto and F. Kannari, “High-power GaN diode-pumped continuous wave Pr3+-doped LiYF4 laser,” Opt. Lett. 32(17), 2493–2495 (2007).
    [Crossref]
  10. M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
    [Crossref]
  11. N.-O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49(20), 3864–3868 (2010).
    [Crossref]
  12. M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
    [Crossref]
  13. T. Gün, P. W. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+: LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36(6), 1002–1004 (2011).
    [Crossref]
  14. F. Reichert, F. Moglia, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20(18), 20387–20395 (2012).
    [Crossref]
  15. F. Reichert, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+, Mg2+:SrAl12O19,” Opt. Lett. 37(23), 4889–4891 (2012).
    [Crossref]
  16. Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
    [Crossref]
  17. M. Fibrich, J. Šulc, and H. Jelínková, “Pr:YAlO3 laser generation in the green spectral range,” Opt. Lett. 38(23), 5024–5027 (2013).
    [Crossref]
  18. D.-T. Marzahl, F. Reichert, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of diode-pumped Pr3+,Mg2+:SrAl12O19,” Appl. Phys. B 116(1), 109–113 (2014).
    [Crossref]
  19. S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm,” Opt. Commun. 380, 357–360 (2016).
    [Crossref]
  20. H. Tanaka, S. Fujita, and F. Kannari, “High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes,” Appl. Opt. 57(21), 5923–5928 (2018).
    [Crossref]
  21. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15(8), 5172–5178 (2007).
    [Crossref]
  22. V. Ostroumov and W. Seelert, “1 W of 261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser at 479 nm,” Proc. SPIE 6871, 68711K (2008).
    [Crossref]
  23. F. Reichert, T. Calmano, S. Müller, D.-T. Marzahl, P. W. Metz, and G. Huber, “Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides,” Opt. Lett. 38, 2698–2701 (2013).
    [Crossref]
  24. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
    [Crossref]
  25. F. Reichert, D.-T. Marzahl, and G. Huber, “Spectroscopic characterization and laser performance of Pr,Mg:CaAl12O19,” J. Opt. Soc. Am. B 31(2), 349–354 (2014).
    [Crossref]
  26. P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
    [Crossref]
  27. P. W. Metz, D.-T. Marzahl, G. Huber, and C. Kränkel, “Performance and wavelength tuning of green emitting terbium lasers,” Opt. Express 25(5), 5716–5724 (2017).
    [Crossref]
  28. E. Castellano-Hernández, P. W. Metz, M. Demesh, and C. Kränkel, “Efficient directly emitting high-power Tb3+:LiLuF4 laser operating at 587.5 nm in the yellow range,” Opt. Lett. 43(19), 4791–4794 (2018).
    [Crossref]
  29. E. Castellano-Hernández, S. Kalusniak, P. W. Metz, and C. Kränkel, “Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range,” Laser Photonics Rev. 14(2), 1900229 (2020).
    [Crossref]
  30. H. Tanaka, R. Kariyama, K. Iijima, K. Hirosawa, and F. Kannari, “Saturation of 640-nm absorption in Cr4+:YAG for an InGaN laser diode pumped passively Q-switched Pr3+:YLF laser,” Opt. Express 23(15), 19382–19395 (2015).
    [Crossref]
  31. M. Demesh, D.-T. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, and C. Kränkel, “Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber,” Opt. Lett. 42(22), 4687–4690 (2017).
    [Crossref]
  32. S. Fujita, H. Tanaka, and F. Kannari, “Intracavity second-harmonic pulse generation at 261 and 320 nm with a Pr3+:YLF laser Q-switched by a Co2+:MgAl2O4 spinel saturable absorber,” Opt. Express 27(26), 38134–38146 (2019).
    [Crossref]
  33. M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
    [Crossref]
  34. K. Iijima, R. Kariyama, H. Tanaka, and F. Kannari, “Pr3+:YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers,” Appl. Opt. 55(28), 7782–7787 (2016).
    [Crossref]
  35. S. Kajikawa, M. Yoshida, S. Motokoshi, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible ns-pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fibre with SESAM,” J. Eng. 1(7), 407–409 (2017).
    [Crossref]
  36. B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
    [Crossref]
  37. S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424, 13–16 (2018).
    [Crossref]
  38. Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
    [Crossref]
  39. W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
    [Crossref]
  40. D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation,” Opt. Express 23(18), 24071–24076 (2015).
    [Crossref]
  41. D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
    [Crossref]
  42. Y. Kalisky, “Cr4+-doped crystals: Their use as lasers and passive Q-switches,” Prog. Quantum Electron. 28(5), 249–303 (2004).
    [Crossref]
  43. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 µm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).
    [Crossref]
  44. H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49(22), 15505–15513 (1994).
    [Crossref]
  45. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
    [Crossref]
  46. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
    [Crossref]
  47. M. Riley, E. Krausz, N. Manson, and B. Henderson, “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG,” Phys. Rev. B 59(3), 1850–1856 (1999).
    [Crossref]
  48. G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
    [Crossref]
  49. A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61(2), 988–995 (2000).
    [Crossref]
  50. A. Sennaroglu, U. Demirbas, S. Ozharar, and F. Yaman, “Accurate determination of saturation parameters for Cr4+-doped solid-state saturable absorbers,” J. Opt. Soc. Am. B 23(2), 241–249 (2006).
    [Crossref]
  51. R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 333–344 (2003).
    [Crossref]
  52. H. Ridderbusch and T. Graf, “Absorption in Cr4+:YAG Crystals,” IEEE J. Quantum Electron. 43(2), 168–173 (2007).
    [Crossref]
  53. N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centres,” Quantum Electron. 28(2), 147–151 (1998).
    [Crossref]
  54. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High Average Power Diode End-Pumped Composite Nd:YAG Laser Passively Q-switched by Cr4+:YAG Saturable Absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
    [Crossref]
  55. R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 393–399 (2003).
    [Crossref]
  56. N. Pavel, M. Tsunekane, and T. Taira, “Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref]
  57. K. V. Yumashev, “Saturable absorber Co2+:MgAl2O4 crystal for Q switching of 1.34-µm Nd3+:YAlO3 and 1.54-µm Er3+:glass lasers,” Appl. Opt. 38(30), 6343–6346 (1999).
    [Crossref]
  58. K. V. Yumashev, I. A. Denisov, N. N. Posnov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
    [Crossref]
  59. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  60. S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
    [Crossref]
  61. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
    [Crossref]
  62. S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” J. Lumin. 68(1), 1–14 (1996).
    [Crossref]
  63. H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 µm radiation,” Appl. Phys. Lett. 53(26), 2593–2595 (1988).
    [Crossref]
  64. M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17(13), 929–930 (1992).
    [Crossref]
  65. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr4+ ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
    [Crossref]
  66. A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18(11), 1578–1586 (2001).
    [Crossref]
  67. W. Chen and G. Boulon, “Growth mechanism of Cr:forsterite laser crystal with high Cr concentration,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 163–168 (2003).
    [Crossref]
  68. D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 µm,” Appl. Opt. 37(21), 4933–4935 (1998).
    [Crossref]
  69. Z. Burshtein and Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20(2), 87–96 (2002).
    [Crossref]
  70. N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
    [Crossref]
  71. A. A. Kaminskii, Laser crystals, 2nd ed. (Springer-Verlag, 1990).
  72. D. L. Wood, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46(9), 3595–3602 (1967).
    [Crossref]
  73. Y. Tanabe and S. Sugano, “On the Absorption Spectra of Complex Ions. I,” J. Phys. Soc. Jpn. 9(5), 753–766 (1954).
    [Crossref]
  74. M. Lazzeri and P. Thibaudeau, “Ab initio Raman spectrum of the normal and disordered MgAl2O4 spinel,” Phys. Rev. B 74(14), 140301 (2006).
    [Crossref]
  75. J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
    [Crossref]
  76. N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55(5-6), 265–269 (1993).
    [Crossref]
  77. J. J. Zayhowski, “Microchip lasers,” Opt. Mater. (Amsterdam, Neth.) 11(2-3), 255–267 (1999).
    [Crossref]

2020 (1)

E. Castellano-Hernández, S. Kalusniak, P. W. Metz, and C. Kränkel, “Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range,” Laser Photonics Rev. 14(2), 1900229 (2020).
[Crossref]

2019 (1)

2018 (3)

2017 (5)

M. Demesh, D.-T. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, and C. Kränkel, “Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber,” Opt. Lett. 42(22), 4687–4690 (2017).
[Crossref]

S. Kajikawa, M. Yoshida, S. Motokoshi, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible ns-pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fibre with SESAM,” J. Eng. 1(7), 407–409 (2017).
[Crossref]

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

P. W. Metz, D.-T. Marzahl, G. Huber, and C. Kränkel, “Performance and wavelength tuning of green emitting terbium lasers,” Opt. Express 25(5), 5716–5724 (2017).
[Crossref]

2016 (7)

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm,” Opt. Commun. 380, 357–360 (2016).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

K. Iijima, R. Kariyama, H. Tanaka, and F. Kannari, “Pr3+:YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers,” Appl. Opt. 55(28), 7782–7787 (2016).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
[Crossref]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

2015 (2)

2014 (5)

2013 (4)

2012 (2)

2011 (3)

2010 (3)

2009 (2)

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photonics Rev. 3(5), 407–434 (2009).
[Crossref]

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

2008 (1)

V. Ostroumov and W. Seelert, “1 W of 261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser at 479 nm,” Proc. SPIE 6871, 68711K (2008).
[Crossref]

2007 (3)

2006 (2)

2004 (2)

Y. Kalisky, “Cr4+-doped crystals: Their use as lasers and passive Q-switches,” Prog. Quantum Electron. 28(5), 249–303 (2004).
[Crossref]

A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29(22), 2638–2640 (2004).
[Crossref]

2003 (3)

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 333–344 (2003).
[Crossref]

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 393–399 (2003).
[Crossref]

W. Chen and G. Boulon, “Growth mechanism of Cr:forsterite laser crystal with high Cr concentration,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 163–168 (2003).
[Crossref]

2002 (2)

Z. Burshtein and Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20(2), 87–96 (2002).
[Crossref]

K. V. Yumashev, I. A. Denisov, N. N. Posnov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

2001 (2)

A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18(11), 1578–1586 (2001).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High Average Power Diode End-Pumped Composite Nd:YAG Laser Passively Q-switched by Cr4+:YAG Saturable Absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

2000 (1)

A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61(2), 988–995 (2000).
[Crossref]

1999 (4)

M. Riley, E. Krausz, N. Manson, and B. Henderson, “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG,” Phys. Rev. B 59(3), 1850–1856 (1999).
[Crossref]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
[Crossref]

K. V. Yumashev, “Saturable absorber Co2+:MgAl2O4 crystal for Q switching of 1.34-µm Nd3+:YAlO3 and 1.54-µm Er3+:glass lasers,” Appl. Opt. 38(30), 6343–6346 (1999).
[Crossref]

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. (Amsterdam, Neth.) 11(2-3), 255–267 (1999).
[Crossref]

1998 (3)

D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 µm,” Appl. Opt. 37(21), 4933–4935 (1998).
[Crossref]

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centres,” Quantum Electron. 28(2), 147–151 (1998).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

1997 (1)

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

1996 (2)

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” J. Lumin. 68(1), 1–14 (1996).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

1995 (1)

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

1994 (1)

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49(22), 15505–15513 (1994).
[Crossref]

1993 (1)

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55(5-6), 265–269 (1993).
[Crossref]

1992 (2)

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 µm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).
[Crossref]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17(13), 929–930 (1992).
[Crossref]

1991 (1)

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr4+ ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[Crossref]

1988 (1)

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 µm radiation,” Appl. Phys. Lett. 53(26), 2593–2595 (1988).
[Crossref]

1986 (1)

M. A. Mainster, “Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems,” Ophthalmology 93(7), 952–958 (1986).
[Crossref]

1968 (1)

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

1967 (1)

D. L. Wood, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46(9), 3595–3602 (1967).
[Crossref]

1963 (1)

N. S. Kapany, N. A. Peppers, H. C. Zweng, and M. Flocks, “Retinal Photocoagulation by Lasers,” Nature 199(4889), 146–149 (1963).
[Crossref]

1954 (1)

Y. Tanabe and S. Sugano, “On the Absorption Spectra of Complex Ions. I,” J. Phys. Soc. Jpn. 9(5), 753–766 (1954).
[Crossref]

Andrauskas, D. M.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 µm radiation,” Appl. Phys. Lett. 53(26), 2593–2595 (1988).
[Crossref]

Bass, M.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
[Crossref]

Bauman, R. P.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Bellancourt, A.-R.

Blau, P.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Boulon, G.

W. Chen and G. Boulon, “Growth mechanism of Cr:forsterite laser crystal with high Cr concentration,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 163–168 (2003).
[Crossref]

Bu, Y.

Burshtein, Z.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 333–344 (2003).
[Crossref]

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 393–399 (2003).
[Crossref]

Z. Burshtein and Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20(2), 87–96 (2002).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Cai, Z.

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
[Crossref]

S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm,” Opt. Commun. 380, 357–360 (2016).
[Crossref]

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation,” Opt. Express 23(18), 24071–24076 (2015).
[Crossref]

Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

Calmano, T.

Calvez, S.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photonics Rev. 3(5), 407–434 (2009).
[Crossref]

Camy, P.

Castellano-Hernández, E.

E. Castellano-Hernández, S. Kalusniak, P. W. Metz, and C. Kränkel, “Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range,” Laser Photonics Rev. 14(2), 1900229 (2020).
[Crossref]

E. Castellano-Hernández, P. W. Metz, M. Demesh, and C. Kränkel, “Efficient directly emitting high-power Tb3+:LiLuF4 laser operating at 587.5 nm in the yellow range,” Opt. Lett. 43(19), 4791–4794 (2018).
[Crossref]

Chang, I. F.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Chellappan, K. V.

Chen, N.

Chen, W.

W. Chen and G. Boulon, “Growth mechanism of Cr:forsterite laser crystal with high Cr concentration,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 163–168 (2003).
[Crossref]

Cheng, Y.

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
[Crossref]

Cui, Q.

S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm,” Opt. Commun. 380, 357–360 (2016).
[Crossref]

Danger, T.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

Dawson, M. D.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photonics Rev. 3(5), 407–434 (2009).
[Crossref]

Demchuk, M. I.

Demesh, M.

Demirbas, U.

Denisov, I. A.

K. V. Yumashev, I. A. Denisov, N. N. Posnov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

Denker, B.

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr4+ ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[Crossref]

Dennis, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 µm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).
[Crossref]

Diening, A.

Dong, H.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

Eilers, H.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49(22), 15505–15513 (1994).
[Crossref]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 µm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).
[Crossref]

Erden, E.

Fechner, M.

D.-T. Marzahl, F. Reichert, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of diode-pumped Pr3+,Mg2+:SrAl12O19,” Appl. Phys. B 116(1), 109–113 (2014).
[Crossref]

F. Reichert, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+, Mg2+:SrAl12O19,” Opt. Lett. 37(23), 4889–4891 (2012).
[Crossref]

F. Reichert, F. Moglia, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20(18), 20387–20395 (2012).
[Crossref]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

Feldman, R.

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 393–399 (2003).
[Crossref]

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 333–344 (2003).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Fibrich, M.

M. Fibrich, J. Šulc, and H. Jelínková, “Pr:YAlO3 laser generation in the green spectral range,” Opt. Lett. 38(23), 5024–5027 (2013).
[Crossref]

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Flocks, M.

N. S. Kapany, N. A. Peppers, H. C. Zweng, and M. Flocks, “Retinal Photocoagulation by Lasers,” Nature 199(4889), 146–149 (1963).
[Crossref]

Fujimoto, Y.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424, 13–16 (2018).
[Crossref]

S. Kajikawa, M. Yoshida, S. Motokoshi, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible ns-pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fibre with SESAM,” J. Eng. 1(7), 407–409 (2017).
[Crossref]

Fujita, S.

Gaponenko, M.

Graf, T.

H. Ridderbusch and T. Graf, “Absorption in Cr4+:YAG Crystals,” IEEE J. Quantum Electron. 43(2), 168–173 (2007).
[Crossref]

Guina, M.

M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
[Crossref]

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photonics Rev. 3(5), 407–434 (2009).
[Crossref]

Gün, T.

Hansen, N.-O.

Härkönen, A.

Hartung, S.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hashimoto, K.

Hastie, J. E.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photonics Rev. 3(5), 407–434 (2009).
[Crossref]

Henderson, B.

M. Riley, E. Krausz, N. Manson, and B. Henderson, “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG,” Phys. Rev. B 59(3), 1850–1856 (1999).
[Crossref]

Heuer, A.

Heumann, E.

Hirosawa, K.

Hoffman, K. R.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49(22), 15505–15513 (1994).
[Crossref]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 µm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).
[Crossref]

Hömmerich, U.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49(22), 15505–15513 (1994).
[Crossref]

Huang, S.

Huber, G.

P. W. Metz, D.-T. Marzahl, G. Huber, and C. Kränkel, “Performance and wavelength tuning of green emitting terbium lasers,” Opt. Express 25(5), 5716–5724 (2017).
[Crossref]

M. Demesh, D.-T. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, and C. Kränkel, “Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber,” Opt. Lett. 42(22), 4687–4690 (2017).
[Crossref]

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

F. Reichert, D.-T. Marzahl, and G. Huber, “Spectroscopic characterization and laser performance of Pr,Mg:CaAl12O19,” J. Opt. Soc. Am. B 31(2), 349–354 (2014).
[Crossref]

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref]

D.-T. Marzahl, F. Reichert, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of diode-pumped Pr3+,Mg2+:SrAl12O19,” Appl. Phys. B 116(1), 109–113 (2014).
[Crossref]

M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
[Crossref]

F. Reichert, T. Calmano, S. Müller, D.-T. Marzahl, P. W. Metz, and G. Huber, “Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides,” Opt. Lett. 38, 2698–2701 (2013).
[Crossref]

F. Reichert, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+, Mg2+:SrAl12O19,” Opt. Lett. 37(23), 4889–4891 (2012).
[Crossref]

F. Reichert, F. Moglia, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20(18), 20387–20395 (2012).
[Crossref]

T. Gün, P. W. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+: LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36(6), 1002–1004 (2011).
[Crossref]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

N.-O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49(20), 3864–3868 (2010).
[Crossref]

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15(8), 5172–5178 (2007).
[Crossref]

A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29(22), 2638–2640 (2004).
[Crossref]

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” J. Lumin. 68(1), 1–14 (1996).
[Crossref]

Hurrell, J. P.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Iijima, K.

Il’ichev, N. N.

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centres,” Quantum Electron. 28(2), 147–151 (1998).
[Crossref]

Ishii, O.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424, 13–16 (2018).
[Crossref]

S. Kajikawa, M. Yoshida, S. Motokoshi, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible ns-pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fibre with SESAM,” J. Eng. 1(7), 407–409 (2017).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

Jacobsen, S. M.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49(22), 15505–15513 (1994).
[Crossref]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 µm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).
[Crossref]

Jaffe, S.

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr4+ ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[Crossref]

Jelínková, H.

M. Fibrich, J. Šulc, and H. Jelínková, “Pr:YAlO3 laser generation in the green spectral range,” Opt. Lett. 38(23), 5024–5027 (2013).
[Crossref]

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Jia, W.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49(22), 15505–15513 (1994).
[Crossref]

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr4+ ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[Crossref]

Kajikawa, S.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424, 13–16 (2018).
[Crossref]

S. Kajikawa, M. Yoshida, S. Motokoshi, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible ns-pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fibre with SESAM,” J. Eng. 1(7), 407–409 (2017).
[Crossref]

Kalisky, Y.

Y. Kalisky, “Cr4+-doped crystals: Their use as lasers and passive Q-switches,” Prog. Quantum Electron. 28(5), 249–303 (2004).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Kalusniak, S.

E. Castellano-Hernández, S. Kalusniak, P. W. Metz, and C. Kränkel, “Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range,” Laser Photonics Rev. 14(2), 1900229 (2020).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, Laser crystals, 2nd ed. (Springer-Verlag, 1990).

Kannari, F.

Kapany, N. S.

N. S. Kapany, N. A. Peppers, H. C. Zweng, and M. Flocks, “Retinal Photocoagulation by Lasers,” Nature 199(4889), 146–149 (1963).
[Crossref]

Kariyama, R.

Kir’yanov, A. V.

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centres,” Quantum Electron. 28(2), 147–151 (1998).
[Crossref]

Kisel, V.

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

Kokta, M. R.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Kränkel, C.

E. Castellano-Hernández, S. Kalusniak, P. W. Metz, and C. Kränkel, “Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range,” Laser Photonics Rev. 14(2), 1900229 (2020).
[Crossref]

E. Castellano-Hernández, P. W. Metz, M. Demesh, and C. Kränkel, “Efficient directly emitting high-power Tb3+:LiLuF4 laser operating at 587.5 nm in the yellow range,” Opt. Lett. 43(19), 4791–4794 (2018).
[Crossref]

P. W. Metz, D.-T. Marzahl, G. Huber, and C. Kränkel, “Performance and wavelength tuning of green emitting terbium lasers,” Opt. Express 25(5), 5716–5724 (2017).
[Crossref]

M. Demesh, D.-T. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, and C. Kränkel, “Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber,” Opt. Lett. 42(22), 4687–4690 (2017).
[Crossref]

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref]

M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
[Crossref]

Krausz, E.

M. Riley, E. Krausz, N. Manson, and B. Henderson, “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG,” Phys. Rev. B 59(3), 1850–1856 (1999).
[Crossref]

Kück, S.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” J. Lumin. 68(1), 1–14 (1996).
[Crossref]

Kuleshov, N.

Kuleshov, N. V.

K. V. Yumashev, I. A. Denisov, N. N. Posnov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55(5-6), 265–269 (1993).
[Crossref]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17(13), 929–930 (1992).
[Crossref]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High Average Power Diode End-Pumped Composite Nd:YAG Laser Passively Q-switched by Cr4+:YAG Saturable Absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Lan, J.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

Lazzeri, M.

M. Lazzeri and P. Thibaudeau, “Ab initio Raman spectrum of the normal and disordered MgAl2O4 spinel,” Phys. Rev. B 74(14), 140301 (2006).
[Crossref]

Leinonen, T.

Li, J.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

Li, W.

Lim, J. H.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
[Crossref]

Lin, H.

Liu, H.

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr4+ ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[Crossref]

Liu, Z.

Livshits, M. G.

Luo, S.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm,” Opt. Commun. 380, 357–360 (2016).
[Crossref]

Luo, Z.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
[Crossref]

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation,” Opt. Express 23(18), 24071–24076 (2015).
[Crossref]

Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

Mainster, M. A.

M. A. Mainster, “Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems,” Ophthalmology 93(7), 952–958 (1986).
[Crossref]

Majid, A.

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

Manson, N.

M. Riley, E. Krausz, N. Manson, and B. Henderson, “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG,” Phys. Rev. B 59(3), 1850–1856 (1999).
[Crossref]

Martinez, A.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Marzahl, D.-T.

P. W. Metz, D.-T. Marzahl, G. Huber, and C. Kränkel, “Performance and wavelength tuning of green emitting terbium lasers,” Opt. Express 25(5), 5716–5724 (2017).
[Crossref]

M. Demesh, D.-T. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, and C. Kränkel, “Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber,” Opt. Lett. 42(22), 4687–4690 (2017).
[Crossref]

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

F. Reichert, D.-T. Marzahl, and G. Huber, “Spectroscopic characterization and laser performance of Pr,Mg:CaAl12O19,” J. Opt. Soc. Am. B 31(2), 349–354 (2014).
[Crossref]

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref]

D.-T. Marzahl, F. Reichert, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of diode-pumped Pr3+,Mg2+:SrAl12O19,” Appl. Phys. B 116(1), 109–113 (2014).
[Crossref]

F. Reichert, T. Calmano, S. Müller, D.-T. Marzahl, P. W. Metz, and G. Huber, “Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides,” Opt. Lett. 38, 2698–2701 (2013).
[Crossref]

F. Reichert, F. Moglia, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20(18), 20387–20395 (2012).
[Crossref]

F. Reichert, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+, Mg2+:SrAl12O19,” Opt. Lett. 37(23), 4889–4891 (2012).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

McCollum, T.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 µm radiation,” Appl. Phys. Lett. 53(26), 2593–2595 (1988).
[Crossref]

Meng, Z.

Metz, P. W.

E. Castellano-Hernández, S. Kalusniak, P. W. Metz, and C. Kränkel, “Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range,” Laser Photonics Rev. 14(2), 1900229 (2020).
[Crossref]

E. Castellano-Hernández, P. W. Metz, M. Demesh, and C. Kränkel, “Efficient directly emitting high-power Tb3+:LiLuF4 laser operating at 587.5 nm in the yellow range,” Opt. Lett. 43(19), 4791–4794 (2018).
[Crossref]

P. W. Metz, D.-T. Marzahl, G. Huber, and C. Kränkel, “Performance and wavelength tuning of green emitting terbium lasers,” Opt. Express 25(5), 5716–5724 (2017).
[Crossref]

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref]

D.-T. Marzahl, F. Reichert, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of diode-pumped Pr3+,Mg2+:SrAl12O19,” Appl. Phys. B 116(1), 109–113 (2014).
[Crossref]

M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
[Crossref]

F. Reichert, T. Calmano, S. Müller, D.-T. Marzahl, P. W. Metz, and G. Huber, “Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides,” Opt. Lett. 38, 2698–2701 (2013).
[Crossref]

F. Reichert, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+, Mg2+:SrAl12O19,” Opt. Lett. 37(23), 4889–4891 (2012).
[Crossref]

F. Reichert, F. Moglia, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20(18), 20387–20395 (2012).
[Crossref]

T. Gün, P. W. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+: LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36(6), 1002–1004 (2011).
[Crossref]

Mikhailov, V. P.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55(5-6), 265–269 (1993).
[Crossref]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17(13), 929–930 (1992).
[Crossref]

Minkov, B. I.

Mitra, S. S.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Moglia, F.

Moncorgé, R.

Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

K. V. Yumashev, I. A. Denisov, N. N. Posnov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

Motokoshi, S.

S. Kajikawa, M. Yoshida, S. Motokoshi, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible ns-pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fibre with SESAM,” J. Eng. 1(7), 407–409 (2017).
[Crossref]

Müller, S.

Naeem, M.

M. Naeem, “Laser Processing of Reflective Materials,” Laser Tech. J. 10(1), 18–20 (2013).
[Crossref]

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

Nejezchleb, K.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Okhotnikov, O. G.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photonics Rev. 3(5), 407–434 (2009).
[Crossref]

Okhrimchuk, A.

A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61(2), 988–995 (2000).
[Crossref]

Osiac, E.

Ostroumov, V.

V. Ostroumov and W. Seelert, “1 W of 261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser at 479 nm,” Proc. SPIE 6871, 68711K (2008).
[Crossref]

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15(8), 5172–5178 (2007).
[Crossref]

Ozharar, S.

Page, R.

Pashinin, P. P.

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centres,” Quantum Electron. 28(2), 147–151 (1998).
[Crossref]

Pavel, N.

N. Pavel, M. Tsunekane, and T. Taira, “Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High Average Power Diode End-Pumped Composite Nd:YAG Laser Passively Q-switched by Cr4+:YAG Saturable Absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Peng, J.

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation,” Opt. Express 23(18), 24071–24076 (2015).
[Crossref]

Peppers, N. A.

N. S. Kapany, N. A. Peppers, H. C. Zweng, and M. Flocks, “Retinal Photocoagulation by Lasers,” Nature 199(4889), 146–149 (1963).
[Crossref]

Petermann, K.

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” J. Lumin. 68(1), 1–14 (1996).
[Crossref]

Pinto, A.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 µm radiation,” Appl. Phys. Lett. 53(26), 2593–2595 (1988).
[Crossref]

Pohlmann, U.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” J. Lumin. 68(1), 1–14 (1996).
[Crossref]

Porto, S. P. S.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Posnov, N. N.

K. V. Yumashev, I. A. Denisov, N. N. Posnov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

Prokoshin, P. V.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55(5-6), 265–269 (1993).
[Crossref]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17(13), 929–930 (1992).
[Crossref]

Reichert, F.

Richter, A.

Ridderbusch, H.

H. Ridderbusch and T. Graf, “Absorption in Cr4+:YAG Crystals,” IEEE J. Quantum Electron. 43(2), 168–173 (2007).
[Crossref]

Riley, M.

M. Riley, E. Krausz, N. Manson, and B. Henderson, “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG,” Phys. Rev. B 59(3), 1850–1856 (1999).
[Crossref]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High Average Power Diode End-Pumped Composite Nd:YAG Laser Passively Q-switched by Cr4+:YAG Saturable Absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Scherbitsky, V. G.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55(5-6), 265–269 (1993).
[Crossref]

Seelert, W.

Sennaroglu, A.

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

Shcherbitsky, V. G.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

Shestakov, A.

A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61(2), 988–995 (2000).
[Crossref]

Shimony, Y.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 333–344 (2003).
[Crossref]

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 393–399 (2003).
[Crossref]

Z. Burshtein and Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20(2), 87–96 (2002).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Škoda, V.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Small, D. L.

Stareki, F.

Südmeyer, T.

Sugano, S.

Y. Tanabe and S. Sugano, “On the Absorption Spectra of Complex Ions. I,” J. Phys. Soc. Jpn. 9(5), 753–766 (1954).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

Šulc, J.

M. Fibrich, J. Šulc, and H. Jelínková, “Pr:YAlO3 laser generation in the green spectral range,” Opt. Lett. 38(23), 5024–5027 (2013).
[Crossref]

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Sun, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High Average Power Diode End-Pumped Composite Nd:YAG Laser Passively Q-switched by Cr4+:YAG Saturable Absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Tanabe, Y.

Y. Tanabe and S. Sugano, “On the Absorption Spectra of Complex Ions. I,” J. Phys. Soc. Jpn. 9(5), 753–766 (1954).
[Crossref]

Tanaka, H.

Thibaudeau, P.

M. Lazzeri and P. Thibaudeau, “Ab initio Raman spectrum of the normal and disordered MgAl2O4 spinel,” Phys. Rev. B 74(14), 140301 (2006).
[Crossref]

Thomas, L. M.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 µm radiation,” Appl. Phys. Lett. 53(26), 2593–2595 (1988).
[Crossref]

Tsunekane, M.

Urey, H.

Van Stryland, E.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
[Crossref]

Verdun, H. R.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 µm radiation,” Appl. Phys. Lett. 53(26), 2593–2595 (1988).
[Crossref]

Wang, F.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Wang, J.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

Weichman, L.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
[Crossref]

Weichmann, U.

Weng, J.

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
[Crossref]

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation,” Opt. Express 23(18), 24071–24076 (2015).
[Crossref]

Wood, D. L.

D. L. Wood, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46(9), 3595–3602 (1967).
[Crossref]

Wu, D.

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation,” Opt. Express 23(18), 24071–24076 (2015).
[Crossref]

Xiao, G.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
[Crossref]

Xu, B.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm,” Opt. Commun. 380, 357–360 (2016).
[Crossref]

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

Xu, H.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
[Crossref]

S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm,” Opt. Commun. 380, 357–360 (2016).
[Crossref]

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation,” Opt. Express 23(18), 24071–24076 (2015).
[Crossref]

Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

Xu, S.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

Yaman, F.

Yamashita, S.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Yamazaki, M.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424, 13–16 (2018).
[Crossref]

S. Kajikawa, M. Yoshida, S. Motokoshi, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible ns-pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fibre with SESAM,” J. Eng. 1(7), 407–409 (2017).
[Crossref]

Yan, X.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm,” Opt. Commun. 380, 357–360 (2016).
[Crossref]

Yang, S.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
[Crossref]

Yasukevich, A.

Ye, C.

Yen, W. M.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49(22), 15505–15513 (1994).
[Crossref]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 µm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).
[Crossref]

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr4+ ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[Crossref]

Yoshida, M.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424, 13–16 (2018).
[Crossref]

S. Kajikawa, M. Yoshida, S. Motokoshi, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible ns-pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fibre with SESAM,” J. Eng. 1(7), 407–409 (2017).
[Crossref]

Yumashev, K. V.

K. V. Yumashev, I. A. Denisov, N. N. Posnov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

K. V. Yumashev, “Saturable absorber Co2+:MgAl2O4 crystal for Q switching of 1.34-µm Nd3+:YAlO3 and 1.54-µm Er3+:glass lasers,” Appl. Opt. 38(30), 6343–6346 (1999).
[Crossref]

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55(5-6), 265–269 (1993).
[Crossref]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17(13), 929–930 (1992).
[Crossref]

Zayhowski, J. J.

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. (Amsterdam, Neth.) 11(2-3), 255–267 (1999).
[Crossref]

Zelmon, D. E.

Zeng, C.

Zhang, H.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Zhang, L.

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

Zhavoronkov, N. I.

Zhong, Y.

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

W. Li, J. Peng, Y. Zhong, D. Wu, H. Lin, Y. Cheng, Z. Luo, J. Weng, H. Xu, and Z. Cai, “Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers,” Opt. Mater. Express 6(6), 2031–2039 (2016).
[Crossref]

Zhu, C.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Zweng, H. C.

N. S. Kapany, N. A. Peppers, H. C. Zweng, and M. Flocks, “Retinal Photocoagulation by Lasers,” Nature 199(4889), 146–149 (1963).
[Crossref]

Appl. Opt. (6)

Appl. Phys. B (3)

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

D.-T. Marzahl, F. Reichert, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of diode-pumped Pr3+,Mg2+:SrAl12O19,” Appl. Phys. B 116(1), 109–113 (2014).
[Crossref]

Appl. Phys. Lett. (2)

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 µm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).
[Crossref]

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 µm radiation,” Appl. Phys. Lett. 53(26), 2593–2595 (1988).
[Crossref]

IEEE J. Quantum Electron. (4)

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
[Crossref]

H. Ridderbusch and T. Graf, “Absorption in Cr4+:YAG Crystals,” IEEE J. Quantum Electron. 43(2), 168–173 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Wu, Z. Cai, Y. Zhong, J. Peng, Y. Cheng, J. Weng, Z. Luo, and H. Xu, “Compact Passive Q-Switching Pr3+-Doped ZBLAN Fiber Laser With Black Phosphorus-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 7–12 (2017).
[Crossref]

B. Xu, S. Luo, X. Yan, J. Li, J. Lan, Z. Luo, H. Xu, Z. Cai, H. Dong, J. Wang, and L. Zhang, “CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–7 (2017).
[Crossref]

J. Alloys Compd. (1)

K. V. Yumashev, I. A. Denisov, N. N. Posnov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

J. Chem. Phys. (1)

D. L. Wood, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46(9), 3595–3602 (1967).
[Crossref]

J. Eng. (1)

S. Kajikawa, M. Yoshida, S. Motokoshi, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible ns-pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fibre with SESAM,” J. Eng. 1(7), 407–409 (2017).
[Crossref]

J. Lumin. (3)

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited-state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75(4), 319–325 (1997).
[Crossref]

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” J. Lumin. 68(1), 1–14 (1996).
[Crossref]

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55(5-6), 265–269 (1993).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Soc. Jpn. (1)

Y. Tanabe and S. Sugano, “On the Absorption Spectra of Complex Ions. I,” J. Phys. Soc. Jpn. 9(5), 753–766 (1954).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High Average Power Diode End-Pumped Composite Nd:YAG Laser Passively Q-switched by Cr4+:YAG Saturable Absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Laser Photonics Rev. (4)

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photonics Rev. 3(5), 407–434 (2009).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photonics Rev. 10(2), 335–344 (2016).
[Crossref]

E. Castellano-Hernández, S. Kalusniak, P. W. Metz, and C. Kränkel, “Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range,” Laser Photonics Rev. 14(2), 1900229 (2020).
[Crossref]

Laser Tech. J. (1)

M. Naeem, “Laser Processing of Reflective Materials,” Laser Tech. J. 10(1), 18–20 (2013).
[Crossref]

Nanoscale (1)

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Nat. Photonics (2)

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Nature (1)

N. S. Kapany, N. A. Peppers, H. C. Zweng, and M. Flocks, “Retinal Photocoagulation by Lasers,” Nature 199(4889), 146–149 (1963).
[Crossref]

Ophthalmology (1)

M. A. Mainster, “Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems,” Ophthalmology 93(7), 952–958 (1986).
[Crossref]

Opt. Commun. (2)

S. Luo, X. Yan, Q. Cui, B. Xu, H. Xu, and Z. Cai, “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm,” Opt. Commun. 380, 357–360 (2016).
[Crossref]

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424, 13–16 (2018).
[Crossref]

Opt. Express (7)

Opt. Fiber Technol. (1)

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Opt. Lett. (11)

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17(13), 929–930 (1992).
[Crossref]

F. Reichert, D.-T. Marzahl, P. W. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+, Mg2+:SrAl12O19,” Opt. Lett. 37(23), 4889–4891 (2012).
[Crossref]

T. Gün, P. W. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+: LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36(6), 1002–1004 (2011).
[Crossref]

M. Fibrich, J. Šulc, and H. Jelínková, “Pr:YAlO3 laser generation in the green spectral range,” Opt. Lett. 38(23), 5024–5027 (2013).
[Crossref]

A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29(22), 2638–2640 (2004).
[Crossref]

K. Hashimoto and F. Kannari, “High-power GaN diode-pumped continuous wave Pr3+-doped LiYF4 laser,” Opt. Lett. 32(17), 2493–2495 (2007).
[Crossref]

F. Reichert, T. Calmano, S. Müller, D.-T. Marzahl, P. W. Metz, and G. Huber, “Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides,” Opt. Lett. 38, 2698–2701 (2013).
[Crossref]

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref]

E. Castellano-Hernández, P. W. Metz, M. Demesh, and C. Kränkel, “Efficient directly emitting high-power Tb3+:LiLuF4 laser operating at 587.5 nm in the yellow range,” Opt. Lett. 43(19), 4791–4794 (2018).
[Crossref]

M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
[Crossref]

M. Demesh, D.-T. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, and C. Kränkel, “Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber,” Opt. Lett. 42(22), 4687–4690 (2017).
[Crossref]

Opt. Mater. (1)

Z. Burshtein and Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20(2), 87–96 (2002).
[Crossref]

Opt. Mater. (Amsterdam, Neth.) (4)

W. Chen and G. Boulon, “Growth mechanism of Cr:forsterite laser crystal with high Cr concentration,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 163–168 (2003).
[Crossref]

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 393–399 (2003).
[Crossref]

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24(1-2), 333–344 (2003).
[Crossref]

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. (Amsterdam, Neth.) 11(2-3), 255–267 (1999).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. (1)

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Phys. Rev. B (5)

M. Lazzeri and P. Thibaudeau, “Ab initio Raman spectrum of the normal and disordered MgAl2O4 spinel,” Phys. Rev. B 74(14), 140301 (2006).
[Crossref]

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49(22), 15505–15513 (1994).
[Crossref]

A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61(2), 988–995 (2000).
[Crossref]

M. Riley, E. Krausz, N. Manson, and B. Henderson, “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG,” Phys. Rev. B 59(3), 1850–1856 (1999).
[Crossref]

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr4+ ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[Crossref]

Proc. SPIE (1)

V. Ostroumov and W. Seelert, “1 W of 261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser at 479 nm,” Proc. SPIE 6871, 68711K (2008).
[Crossref]

Prog. Quantum Electron. (1)

Y. Kalisky, “Cr4+-doped crystals: Their use as lasers and passive Q-switches,” Prog. Quantum Electron. 28(5), 249–303 (2004).
[Crossref]

Quantum Electron. (1)

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centres,” Quantum Electron. 28(2), 147–151 (1998).
[Crossref]

Other (1)

A. A. Kaminskii, Laser crystals, 2nd ed. (Springer-Verlag, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Four-level model of a saturable absorber. (b) Experimental setups of pump-probe and Z-scan measurements.
Fig. 2.
Fig. 2. Absorption spectra of the two Cr4+:YAG samples and a Cr4+:Mg2SiO4 (forsterite) sample. The Fresnel reflections on the uncoated facets were taken into account using the Sellmeier equations of undoped YAG [68] and undoped forsterite [69].
Fig. 3.
Fig. 3. Energy diagrams of tetrahedrally coordinated Cr4+ in YAG (D2d symmetry when the closest ligands are only taken into account) [51] and forsterite (Cs symmetry) [70], as well as tetrahedrally coordinated Co2+ in spinel or garnet crystals [76].
Fig. 4.
Fig. 4. (a) Time-dependent normalized transmission of Cr4+(0.08%):YAG and Cr4+:forsterite, pumped at 607 and 570 nm, respectively. The curve of Cr4+:forsterite is also shown ten-times magnified in the linear scale. (b) Time-dependent transmission change of Cr4+(0.08%):YAG when pumped at wavelengths between 580 and 430 nm. (c) Time-dependent transmission change of Cr4+(0.08%):YAG pumped at 430 nm recorded over 15 ms.
Fig. 5.
Fig. 5. Saturation curves of (a) Cr4+:YAG and (b) Cr4+:forsterite crystals.
Fig. 6.
Fig. 6. Absorption spectra of Co2+ doped MgAl2O4, ZnGa2O4, LiGa5O8, YAG, and GGG.
Fig. 7.
Fig. 7. Time-dependent normalized transmission in Co2+ doped (a) MgAl2O4, (b) ZnGa2O4, and (c) LiGa5O8. The excitation wavelength was 607 nm for all the three samples.
Fig. 8.
Fig. 8. Time-dependent normalized transmission in Co2+ doped (a) YAG, and (b) GGG. The excitation wavelength was 607 nm for both samples.
Fig. 9.
Fig. 9. Saturation curves of the (a) Co2+:MgAl2O4 and (b) Co2+:GGG samples.

Tables (4)

Tables Icon

Table 1. Overview of previously reported saturable absorbers for visible lasers.

Tables Icon

Table 2. Determined parameters of Cr4+:YAG and Cr4+:forsterite crystals.

Tables Icon

Table 3. Determined parameters of Co2+ doped MgAl2O4 spinel crystal.

Tables Icon

Table 4. Summarized properties of the investigated saturable absorbers.a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T = exp [ ( σ g s n g s + σ e s n e s ) l S A ]
T 0 = exp ( σ g s n t o t l S A )
T s a t = exp ( σ e s n t o t l S A )
T ( t ) = exp [ { σ g s ( n t o t n e s ( t = 0 ) ) exp ( t τ ) σ e s n e s ( t = 0 ) exp ( t τ ) } l S A ] .
ln [ ln ( T ( t ) T 0 ) ] = t τ + ln [ ( σ g s σ e s ) n e s l S A ] .
F O M = σ g s σ e s = σ g s n t o t l S A σ e s n t o t l S A = ln T 0 ln T s a t .

Metrics