Abstract

We demonstrate a surface emitting 1.5 µm multi-quantum well (MQW) light-emitting diode (LED) on a 3-inch epitaxial lateral overgrowth (ELOG) InP/Si wafer. The enhanced crystalline quality of ELOG InP/Si is revealed by various characterization techniques, which gives rise to a MQW with high photoluminescence intensity at 1.5 µm and interference fringes arising from the vertical Fabry-Perot cavity. The LED devices exhibited strong electroluminescence intensity that increased with pump current. Moreover, transparency current measurements indicate optical gain in the 1.5 µm MQW on InP/Si. The results are encouraging for obtaining wafer scale 1.5 µm surface emitting laser structures on silicon with further optimization.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lourdudoss, R. T. Chen, and C. Jagadish, Silicon photonics: Semiconductors and Semimetals vol. 99 (Elsevier, 2018).
  2. Y. B. Bolkhovityanov and O. P. Pchelyakov, “III-V compounds-on-Si: heterostructure fabrication, application and prospects,” Open Nanosci. J. 3(1), 20–33 (2009).
    [Crossref]
  3. S. Lourdudoss, “Heteroepitaxy and selective area heteroepitaxy for silicon photonics,” Curr. Opin. Solid State Mater. Sci. 16(2), 91–99 (2012).
    [Crossref]
  4. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 4(11), e358 (2015).
    [Crossref]
  5. Q. Li and K. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63(4), 105–120 (2017).
    [Crossref]
  6. B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33(9), 093002 (2018).
    [Crossref]
  7. A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum. Electron. 24(6), 1–12 (2018).
    [Crossref]
  8. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
    [Crossref]
  9. B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4(2), 204–210 (2017).
    [Crossref]
  10. A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
    [Crossref]
  11. M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-Long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
    [Crossref]
  12. B. Shi, H. Zhao, L. Wang, B. Song, S. T. S. Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550  nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6(12), 1507–1514 (2019).
    [Crossref]
  13. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
    [Crossref]
  14. Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 µm InAs quantum dash microring lasers,” ACS Photonics 6(2), 279–285 (2019).
    [Crossref]
  15. D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-economic comparison of silicon photonics and multimode VCSELs,” J. Lightwave Technol. 34(2), 233–242 (2016).
    [Crossref]
  16. Y. Yang, G. Djogo, M. Haque, P. R. Herman, and J. K. S. Poon, “Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling,” Opt. Express 25(5), 5758–5771 (2017).
    [Crossref]
  17. W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
    [Crossref]
  18. Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications - A monolithic approach,” Mater. Sci. Eng., B 177(17), 1551–1557 (2012).
    [Crossref]
  19. J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
    [Crossref]
  20. H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
    [Crossref]
  21. Y. T. Sun, S. Lourdudoss, M. Avella, and J. Jiménez, “Sulfur-Doped Indium Phosphide on Silicon Substrate Grown by ELOG,” Electrochem. Solid-State Lett. 7(11), G269–G271 (2004).
    [Crossref]
  22. Z. Yan, Y. Hamaoka, S. Naritsuka, and T. Nishinaga, “Coalescence in microchannel epitaxy of InP,” J. Cryst. Growth 212(1-2), 1–10 (2000).
    [Crossref]
  23. B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
    [Crossref]
  24. Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
    [Crossref]
  25. J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth 135(1-2), 71–77 (1994).
    [Crossref]
  26. Z. R. Zytkiewicz and J. Domagala, “Thermal strain in GaAs layers grown by epitaxial lateral overgrowth on Si substrates,” Appl. Phys. Lett. 75(18), 2749–2751 (1999).
    [Crossref]
  27. Y. Sun and S. Lourdudoss, Semiconductors and semimetals Vol. 101: Future Directions in Silicon Photonics, S. Lourdudoss, J. E. Bowers, and C. Jagadish, eds. (Elsevier, 2019), Chap. 5.
  28. C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
    [Crossref]
  29. Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
    [Crossref]
  30. N. Esser and J. Geurts, Optical Characterization of Epitaxial Semiconductor Layers, G. Bauer and W. Richter, eds. (Springer-Verlag, 1996), Chap. 4.
  31. L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
    [Crossref]
  32. P. Andrekson, N. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz, and H. Temkin, “Novel technique for determining internal loss of individual semiconductor lasers,” Electron. Lett. 28(2), 171–172 (1992).
    [Crossref]
  33. G. E. Shtengel and D. A. Ackerman, “Internal optical loss measurements in 1.3 µm InGaAsP lasers,” Electron. Lett. 31(14), 1157–1159 (1995).
    [Crossref]
  34. G. Omanakuttan, O. M. Sacristán, S. Marcinkevičius, T. K. Uždavinys, J. Jiménez, H. Ali, K. Leifer, S. Lourdudoss, and Y. T. Sun, “Optical and interface properties of direct InP/Si heterojunction formed by corrugated epitaxial lateral overgrowth,” Opt. Mater. Express 9(3), 1488–1500 (2019).
    [Crossref]

2019 (3)

2018 (4)

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33(9), 093002 (2018).
[Crossref]

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum. Electron. 24(6), 1–12 (2018).
[Crossref]

2017 (8)

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
[Crossref]

Q. Li and K. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63(4), 105–120 (2017).
[Crossref]

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Y. Yang, G. Djogo, M. Haque, P. R. Herman, and J. K. S. Poon, “Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling,” Opt. Express 25(5), 5758–5771 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

2016 (1)

2015 (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 4(11), e358 (2015).
[Crossref]

2014 (2)

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

2012 (3)

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications - A monolithic approach,” Mater. Sci. Eng., B 177(17), 1551–1557 (2012).
[Crossref]

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

S. Lourdudoss, “Heteroepitaxy and selective area heteroepitaxy for silicon photonics,” Curr. Opin. Solid State Mater. Sci. 16(2), 91–99 (2012).
[Crossref]

2011 (1)

W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
[Crossref]

2009 (1)

Y. B. Bolkhovityanov and O. P. Pchelyakov, “III-V compounds-on-Si: heterostructure fabrication, application and prospects,” Open Nanosci. J. 3(1), 20–33 (2009).
[Crossref]

2004 (1)

Y. T. Sun, S. Lourdudoss, M. Avella, and J. Jiménez, “Sulfur-Doped Indium Phosphide on Silicon Substrate Grown by ELOG,” Electrochem. Solid-State Lett. 7(11), G269–G271 (2004).
[Crossref]

2000 (1)

Z. Yan, Y. Hamaoka, S. Naritsuka, and T. Nishinaga, “Coalescence in microchannel epitaxy of InP,” J. Cryst. Growth 212(1-2), 1–10 (2000).
[Crossref]

1999 (1)

Z. R. Zytkiewicz and J. Domagala, “Thermal strain in GaAs layers grown by epitaxial lateral overgrowth on Si substrates,” Appl. Phys. Lett. 75(18), 2749–2751 (1999).
[Crossref]

1995 (1)

G. E. Shtengel and D. A. Ackerman, “Internal optical loss measurements in 1.3 µm InGaAsP lasers,” Electron. Lett. 31(14), 1157–1159 (1995).
[Crossref]

1994 (1)

J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth 135(1-2), 71–77 (1994).
[Crossref]

1992 (1)

P. Andrekson, N. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz, and H. Temkin, “Novel technique for determining internal loss of individual semiconductor lasers,” Electron. Lett. 28(2), 171–172 (1992).
[Crossref]

1991 (1)

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-Long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Ackerman, D. A.

G. E. Shtengel and D. A. Ackerman, “Internal optical loss measurements in 1.3 µm InGaAsP lasers,” Electron. Lett. 31(14), 1157–1159 (1995).
[Crossref]

Ali, H.

Andrekson, P.

P. Andrekson, N. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz, and H. Temkin, “Novel technique for determining internal loss of individual semiconductor lasers,” Electron. Lett. 28(2), 171–172 (1992).
[Crossref]

Avella, M.

Y. T. Sun, S. Lourdudoss, M. Avella, and J. Jiménez, “Sulfur-Doped Indium Phosphide on Silicon Substrate Grown by ELOG,” Electrochem. Solid-State Lett. 7(11), G269–G271 (2004).
[Crossref]

Ayers, J. E.

J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth 135(1-2), 71–77 (1994).
[Crossref]

Bai, Y.

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Baryshniskova, M.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33(9), 093002 (2018).
[Crossref]

Bolkhovityanov, Y. B.

Y. B. Bolkhovityanov and O. P. Pchelyakov, “III-V compounds-on-Si: heterostructure fabrication, application and prospects,” Open Nanosci. J. 3(1), 20–33 (2009).
[Crossref]

Bonef, B.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Bowers, J.

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum. Electron. 24(6), 1–12 (2018).
[Crossref]

Bowers, J. E.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 µm InAs quantum dash microring lasers,” ACS Photonics 6(2), 279–285 (2019).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Brunelli, S. T. S.

Cabinian, B. C.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Castellano, A.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
[Crossref]

Cerutti, L.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
[Crossref]

Chen, R. T.

S. Lourdudoss, R. T. Chen, and C. Jagadish, Silicon photonics: Semiconductors and Semimetals vol. 99 (Elsevier, 2018).

Cheng, Z.

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Coblentz, D.

P. Andrekson, N. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz, and H. Temkin, “Novel technique for determining internal loss of individual semiconductor lasers,” Electron. Lett. 28(2), 171–172 (1992).
[Crossref]

Cole, C.

Collins, N.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 µm InAs quantum dash microring lasers,” ACS Photonics 6(2), 279–285 (2019).
[Crossref]

Dagur, P.

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

Denoyer, G.

Djogo, G.

Domagala, J.

Z. R. Zytkiewicz and J. Domagala, “Thermal strain in GaAs layers grown by epitaxial lateral overgrowth on Si substrates,” Appl. Phys. Lett. 75(18), 2749–2751 (1999).
[Crossref]

Duan, X.

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Dumont, M.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 µm InAs quantum dash microring lasers,” ACS Photonics 6(2), 279–285 (2019).
[Crossref]

Esser, N.

N. Esser and J. Geurts, Optical Characterization of Epitaxial Semiconductor Layers, G. Bauer and W. Richter, eds. (Springer-Verlag, 1996), Chap. 4.

Garreau, A.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
[Crossref]

Gau, M.-H.

W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
[Crossref]

Geurts, J.

N. Esser and J. Geurts, Optical Characterization of Epitaxial Semiconductor Layers, G. Bauer and W. Richter, eds. (Springer-Verlag, 1996), Chap. 4.

Gossard, A. C.

Hamaoka, Y.

Z. Yan, Y. Hamaoka, S. Naritsuka, and T. Nishinaga, “Coalescence in microchannel epitaxy of InP,” J. Cryst. Growth 212(1-2), 1–10 (2000).
[Crossref]

Haque, M.

Herman, P. R.

Hill, R.

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Hu, C.

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications - A monolithic approach,” Mater. Sci. Eng., B 177(17), 1551–1557 (2012).
[Crossref]

Hu, E. L.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Hu, H.

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Huang, D.

Huang, Y.

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Hultman, L.

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
[Crossref]

Itoh, Y.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-Long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Jagadish, C.

S. Lourdudoss, R. T. Chen, and C. Jagadish, Silicon photonics: Semiconductors and Semimetals vol. 99 (Elsevier, 2018).

Jiménez, J.

Julian, N.

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Junesand, C.

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications - A monolithic approach,” Mater. Sci. Eng., B 177(17), 1551–1557 (2012).
[Crossref]

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
[Crossref]

Jung, D.

Kataria, H.

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Kennedy, M. J.

Klamkin, J.

B. Shi, H. Zhao, L. Wang, B. Song, S. T. S. Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550  nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6(12), 1507–1514 (2019).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Kocot, C.

Kunert, B.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33(9), 093002 (2018).
[Crossref]

Langer, R.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33(9), 093002 (2018).
[Crossref]

Lau, K.

Q. Li and K. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63(4), 105–120 (2017).
[Crossref]

Lau, K. M.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Leifer, K.

Lelarge, F.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
[Crossref]

Li, Q.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

Q. Li and K. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63(4), 105–120 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Liang, D.

Liu, A. Y.

Lo, I.

W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
[Crossref]

Logan, R. A.

P. Andrekson, N. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz, and H. Temkin, “Novel technique for determining internal loss of individual semiconductor lasers,” Electron. Lett. 28(2), 171–172 (1992).
[Crossref]

Lourdudoss, S.

G. Omanakuttan, O. M. Sacristán, S. Marcinkevičius, T. K. Uždavinys, J. Jiménez, H. Ali, K. Leifer, S. Lourdudoss, and Y. T. Sun, “Optical and interface properties of direct InP/Si heterojunction formed by corrugated epitaxial lateral overgrowth,” Opt. Mater. Express 9(3), 1488–1500 (2019).
[Crossref]

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications - A monolithic approach,” Mater. Sci. Eng., B 177(17), 1551–1557 (2012).
[Crossref]

S. Lourdudoss, “Heteroepitaxy and selective area heteroepitaxy for silicon photonics,” Curr. Opin. Solid State Mater. Sci. 16(2), 91–99 (2012).
[Crossref]

W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
[Crossref]

Y. T. Sun, S. Lourdudoss, M. Avella, and J. Jiménez, “Sulfur-Doped Indium Phosphide on Silicon Substrate Grown by ELOG,” Electrochem. Solid-State Lett. 7(11), G269–G271 (2004).
[Crossref]

Y. Sun and S. Lourdudoss, Semiconductors and semimetals Vol. 101: Future Directions in Silicon Photonics, S. Lourdudoss, J. E. Bowers, and C. Jagadish, eds. (Elsevier, 2019), Chap. 5.

S. Lourdudoss, R. T. Chen, and C. Jagadish, Silicon photonics: Semiconductors and Semimetals vol. 99 (Elsevier, 2018).

Lyubomirsky, I.

MacFarlane, I.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 µm InAs quantum dash microring lasers,” ACS Photonics 6(2), 279–285 (2019).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]

Mahgerefteh, D.

Marcinkevicius, S.

Megalini, L.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Metaferia, W.

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications - A monolithic approach,” Mater. Sci. Eng., B 177(17), 1551–1557 (2012).
[Crossref]

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 4(11), e358 (2015).
[Crossref]

Mols, Y.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33(9), 093002 (2018).
[Crossref]

Mori, H.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-Long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Narcy, G.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
[Crossref]

Naritsuka, S.

Z. Yan, Y. Hamaoka, S. Naritsuka, and T. Nishinaga, “Coalescence in microchannel epitaxy of InP,” J. Cryst. Growth 212(1-2), 1–10 (2000).
[Crossref]

Ng, K. W.

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Nguyen, T.

Nishinaga, T.

Z. Yan, Y. Hamaoka, S. Naritsuka, and T. Nishinaga, “Coalescence in microchannel epitaxy of InP,” J. Cryst. Growth 212(1-2), 1–10 (2000).
[Crossref]

Norman, J.

Olsson, N.

P. Andrekson, N. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz, and H. Temkin, “Novel technique for determining internal loss of individual semiconductor lasers,” Electron. Lett. 28(2), 171–172 (1992).
[Crossref]

Omanakuttan, G.

Pchelyakov, O. P.

Y. B. Bolkhovityanov and O. P. Pchelyakov, “III-V compounds-on-Si: heterostructure fabrication, application and prospects,” Open Nanosci. J. 3(1), 20–33 (2009).
[Crossref]

Poon, J. K. S.

Pozina, G.

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
[Crossref]

Ren, X.

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Rodriguez, J. B.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
[Crossref]

Sacristán, O. M.

Sakai, Y.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-Long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Schulze, A.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33(9), 093002 (2018).
[Crossref]

Shang, C.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 µm InAs quantum dash microring lasers,” ACS Photonics 6(2), 279–285 (2019).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]

Shi, B.

B. Shi, H. Zhao, L. Wang, B. Song, S. T. S. Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550  nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6(12), 1507–1514 (2019).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Shtengel, G. E.

G. E. Shtengel and D. A. Ackerman, “Internal optical loss measurements in 1.3 µm InGaAsP lasers,” Electron. Lett. 31(14), 1157–1159 (1995).
[Crossref]

Song, B.

Speck, J. S.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Sugo, M.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-Long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Sun, Y.

Y. Sun and S. Lourdudoss, Semiconductors and semimetals Vol. 101: Future Directions in Silicon Photonics, S. Lourdudoss, J. E. Bowers, and C. Jagadish, eds. (Elsevier, 2019), Chap. 5.

Sun, Y. T.

Tachikawa, M.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-Long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Tanbun-Ek, T.

P. Andrekson, N. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz, and H. Temkin, “Novel technique for determining internal loss of individual semiconductor lasers,” Electron. Lett. 28(2), 171–172 (1992).
[Crossref]

Tang, C. W.

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Tatum, J.

Taylor, A.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Temkin, H.

P. Andrekson, N. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz, and H. Temkin, “Novel technique for determining internal loss of individual semiconductor lasers,” Electron. Lett. 28(2), 171–172 (1992).
[Crossref]

Thompson, C.

Torres, A.

Tournié, E.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
[Crossref]

Uždavinys, T. K.

Vert, A.

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Waldron, N.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33(9), 093002 (2018).
[Crossref]

Wan, Y.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 µm InAs quantum dash microring lasers,” ACS Photonics 6(2), 279–285 (2019).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]

Wang, J.

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Wang, L.

Wang, Z.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications - A monolithic approach,” Mater. Sci. Eng., B 177(17), 1551–1557 (2012).
[Crossref]

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

Wosinski, L.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications - A monolithic approach,” Mater. Sci. Eng., B 177(17), 1551–1557 (2012).
[Crossref]

Yan, Z.

Z. Yan, Y. Hamaoka, S. Naritsuka, and T. Nishinaga, “Coalescence in microchannel epitaxy of InP,” J. Cryst. Growth 212(1-2), 1–10 (2000).
[Crossref]

Yang, Y.

Yang, Z.

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 4(11), e358 (2015).
[Crossref]

Zhang, C.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Zhang, Z.

Zhao, H.

B. Shi, H. Zhao, L. Wang, B. Song, S. T. S. Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550  nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6(12), 1507–1514 (2019).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 4(11), e358 (2015).
[Crossref]

Zhu, S.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Zytkiewicz, Z. R.

Z. R. Zytkiewicz and J. Domagala, “Thermal strain in GaAs layers grown by epitaxial lateral overgrowth on Si substrates,” Appl. Phys. Lett. 75(18), 2749–2751 (1999).
[Crossref]

ACS Photonics (2)

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 µm InAs quantum dash microring lasers,” ACS Photonics 6(2), 279–285 (2019).
[Crossref]

APL Photonics (1)

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photonics 2(6), 061301 (2017).
[Crossref]

Appl. Phys. Lett. (2)

Z. R. Zytkiewicz and J. Domagala, “Thermal strain in GaAs layers grown by epitaxial lateral overgrowth on Si substrates,” Appl. Phys. Lett. 75(18), 2749–2751 (1999).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Curr. Opin. Solid State Mater. Sci. (1)

S. Lourdudoss, “Heteroepitaxy and selective area heteroepitaxy for silicon photonics,” Curr. Opin. Solid State Mater. Sci. 16(2), 91–99 (2012).
[Crossref]

Electrochem. Solid-State Lett. (1)

Y. T. Sun, S. Lourdudoss, M. Avella, and J. Jiménez, “Sulfur-Doped Indium Phosphide on Silicon Substrate Grown by ELOG,” Electrochem. Solid-State Lett. 7(11), G269–G271 (2004).
[Crossref]

Electron. Lett. (2)

P. Andrekson, N. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz, and H. Temkin, “Novel technique for determining internal loss of individual semiconductor lasers,” Electron. Lett. 28(2), 171–172 (1992).
[Crossref]

G. E. Shtengel and D. A. Ackerman, “Internal optical loss measurements in 1.3 µm InGaAsP lasers,” Electron. Lett. 31(14), 1157–1159 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 4(11), e358 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum. Electron. (1)

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum. Electron. 24(6), 1–12 (2018).
[Crossref]

J. Appl. Phys. (1)

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

J. Cryst. Growth (4)

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth 135(1-2), 71–77 (1994).
[Crossref]

Z. Yan, Y. Hamaoka, S. Naritsuka, and T. Nishinaga, “Coalescence in microchannel epitaxy of InP,” J. Cryst. Growth 212(1-2), 1–10 (2000).
[Crossref]

W. Metaferia, C. Junesand, M.-H. Gau, I. Lo, G. Pozina, L. Hultman, and S. Lourdudoss, “Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon,” J. Cryst. Growth 332(1), 27–33 (2011).
[Crossref]

J. Electron. Mater. (1)

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on InP grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater. 41(9), 2345–2349 (2012).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-Long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Laser Phys. Lett. (1)

J. Wang, Z. Cheng, H. Hu, Z. Yang, Y. Bai, X. Duan, Y. Huang, and X. Ren, “Mirror design for long-wavelength vertical-cavity surface-emitting lasers,” Laser Phys. Lett. 14(12), 125801 (2017).
[Crossref]

Mater. Sci. Eng., B (1)

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications - A monolithic approach,” Mater. Sci. Eng., B 177(17), 1551–1557 (2012).
[Crossref]

Open Nanosci. J. (1)

Y. B. Bolkhovityanov and O. P. Pchelyakov, “III-V compounds-on-Si: heterostructure fabrication, application and prospects,” Open Nanosci. J. 3(1), 20–33 (2009).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Optica (2)

Prog. Cryst. Growth Charact. Mater. (1)

Q. Li and K. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63(4), 105–120 (2017).
[Crossref]

Semicond. Sci. Technol. (1)

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33(9), 093002 (2018).
[Crossref]

Other (3)

Y. Sun and S. Lourdudoss, Semiconductors and semimetals Vol. 101: Future Directions in Silicon Photonics, S. Lourdudoss, J. E. Bowers, and C. Jagadish, eds. (Elsevier, 2019), Chap. 5.

S. Lourdudoss, R. T. Chen, and C. Jagadish, Silicon photonics: Semiconductors and Semimetals vol. 99 (Elsevier, 2018).

N. Esser and J. Geurts, Optical Characterization of Epitaxial Semiconductor Layers, G. Bauer and W. Richter, eds. (Springer-Verlag, 1996), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic drawing of (a) ELOG template on silicon substrate and (b) after ELOG.
Fig. 2.
Fig. 2. (a) Schematic view of the MQW structure processed as LED. (b) SEM view of the wafer processed into electrically contacted LEDs.
Fig. 3.
Fig. 3. HRXRD reciprocal lattice mapping at (004) reflection of the InP ELOG layer on Si.
Fig. 4.
Fig. 4. PL mapping of 921 nm emission from the ELOG InP on Si. The side bar shows the intensity scale.
Fig. 5.
Fig. 5. Raman shift of InP-seed/Si, ELOG InP/Si after growth, ELOG InP/Si after CMP and InP on MQW measured from the top (001) surface. A 514.5 nm Ar+ laser beam was used as the excitation source.
Fig. 6.
Fig. 6. (a) PL spectra of the MQW. The peak is observed at 1529 nm. Inset map shows the PL intensity distribution of the MQW emission (1529 nm); the large encircled region is the ELOG region and the small one is the seed region. (b) PL spectra of MQW under various optical pump power.
Fig. 7.
Fig. 7. Electrical characteristics of 200 µm diameter mesa MQW on ELOG InP/Si. The insets show (i) the low reverse leakage and (ii) the subthreshold diode characteristic on a log scale with I ∼ exp(qV/1.7kT).
Fig. 8.
Fig. 8. (a) Evolution of electroluminescence spectra from 200 µm diameter LED on Si for currents from 10 mA to 90 mA plotted in logarithmic scale. (b) Light-Current characteristic of the device.
Fig. 9.
Fig. 9. Transparency current measurement. Measurement principle (a) and measured transparency current for an LED with 50 µm diameter shown as colored dots in (b). At higher currents (red area), the device exhibits material gain.