Abstract

Interaction between metallic nanoparticles has been widely investigated due to the rise of the enhanced local electric field inside the gap. We numerically present the broadband near- and far-field spectra from the near-ultraviolet (UV) through the visible wavelength range using plasmonic heterodimers. Both near- and far-field resonances can be manipulated by the composition of heterodimers. They show strong dependencies on gap width and particle size. Compared with Al-Au and Al-Ag heterodimers, the dipole-mode resonant peak has a redshift for the Au-Ag heterodimer. In the near-UV range, the Al-Ag heterodimer gains the strongest optical enhancement. This is due to the robust optical resonance of Al and Ag particles in the near-UV range. On the other hand, the heterodimers with Au particles exhibit a better field enhancement at longer wavelengths. The physical origin of plasmonic resonances of the bonding dipole modes and higher-order modes are revealed by the simulated mappings of local electric fields and 3D surface charge distributions. Moreover, our simulations also reveal the suitability of the plasmon ruler equation and the power law enhancement equation to quantify the optical response of heterodimers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
    [Crossref]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  4. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
    [Crossref]
  5. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  6. P. Pavaskar, J. Theiss, and S. B. Cronin, “Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles,” Opt. Express 20(13), 14656–14662 (2012).
    [Crossref]
  7. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
    [Crossref]
  8. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
    [Crossref]
  9. D. T. Debu, P. K. Ghosh, D. French, and J. B. Herzog, “Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks,” Opt. Mater. Express 7(1), 73–84 (2017).
    [Crossref]
  10. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [Crossref]
  11. S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
    [Crossref]
  12. L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
    [Crossref]
  13. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref]
  14. Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
    [Crossref]
  15. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref]
  16. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
    [Crossref]
  17. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
    [Crossref]
  18. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
    [Crossref]
  19. J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, “Core-shell nanoparticle-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 5002–5069 (2017).
    [Crossref]
  20. J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
    [Crossref]
  21. Y. Huang, Y. Chen, X. Xue, Y. Zhai, L. Wang, and Z. Zhang, “Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement,” Opt. Lett. 43(10), 2332–2335 (2018).
    [Crossref]
  22. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref]
  23. J. Katyal, “Plasmonic coupling in Au, Ag and Al nanosphere homo-dimers for sensing and SERS,” Adv. Electro. 7(2), 83–90 (2018).
    [Crossref]
  24. A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
    [Crossref]
  25. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref]
  26. H. Khadem and S. H. Tavassoli, “The effect of size-asymmetry of plasmonic heterodimers in surface-enhanced Raman scattering,” Appl. Phys. Lett. 114(25), 251901 (2019).
    [Crossref]
  27. C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
    [Crossref]
  28. Y. Huang, Y. Chen, L. L. Wang, and E. Ringe, “Small morphology variations effects on plasmonic nanoparticle dimer hotspots,” J. Mater. Chem. C 6(36), 9607–9614 (2018).
    [Crossref]
  29. Y. Huang, L. Ma, M. Hou, Z. Xie, and Z. Zhang, “Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers,” Phys. Chem. Chem. Phys. 18(4), 2319–2323 (2016).
    [Crossref]
  30. R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
    [Crossref]
  31. Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
    [Crossref]
  32. S. Dickreuter, D. P. Kern, and M. Fleischer, “Single particle dark-field spectroscopy of spherical dimers with down to sub-10 nm gaps fabricated by the annealing of nano-pillars,” Nanophotonics 7(7), 1317–1324 (2018).
    [Crossref]
  33. R. Sharma, N. K. Pathak, and R. P. Sharma, “Computational study of plasmon interaction in organic media: a comparison between analytical and numerical model for dimer,” Plasmonics 13(5), 1775–1784 (2018).
    [Crossref]
  34. D. Luo, B. Shi, Q. Zhu, L. Qian, Y. Qin, and J. Xie, “Optical properties of Au-Ag nanosphere dimer: influence interparticle spacing,” Opt. Commun. 458, 124746 (2020).
    [Crossref]
  35. F. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
    [Crossref]
  36. S. Roopak, N. K. Pathak, R. Sharma, A. Ji, H. Pathak, and R. P. Sharma, “Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry,” Plasmonics 11(6), 1603–1612 (2016).
    [Crossref]
  37. E. R. Encina and E. A. Coronado, “On the far field optical properties of Ag-Au nanosphere pairs,” J. Phys. Chem. C 114(39), 16278–16284 (2010).
    [Crossref]
  38. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
    [Crossref]
  39. O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C 115(14), 6410–6414 (2011).
    [Crossref]
  40. I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
    [Crossref]
  41. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [Crossref]
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  43. C. David, F. J, and G. de Abajo, “Surface plasmon dependence on the electron density profile at metal surfaces,” ACS Nano 8(9), 9558–9566 (2014).
    [Crossref]
  44. Y. Huang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes,” AIP Adv. 5(10), 107221 (2015).
    [Crossref]
  45. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
    [Crossref]
  46. W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5(1), 5228 (2014).
    [Crossref]
  47. Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17(43), 29293–29298 (2015).
    [Crossref]
  48. K. Diest, V. Liberman, D. M. Lennon, P. B. Welander, and M. Rothschild, “Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry,” Opt. Express 21(23), 28638–28650 (2013).
    [Crossref]
  49. J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
    [Crossref]
  50. Y. Huang, L. Ma, J. Li, and Z. Zhang, “Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement,” Nanotechnology 28(10), 105203 (2017).
    [Crossref]

2020 (1)

D. Luo, B. Shi, Q. Zhu, L. Qian, Y. Qin, and J. Xie, “Optical properties of Au-Ag nanosphere dimer: influence interparticle spacing,” Opt. Commun. 458, 124746 (2020).
[Crossref]

2019 (3)

H. Khadem and S. H. Tavassoli, “The effect of size-asymmetry of plasmonic heterodimers in surface-enhanced Raman scattering,” Appl. Phys. Lett. 114(25), 251901 (2019).
[Crossref]

Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
[Crossref]

I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
[Crossref]

2018 (5)

J. Katyal, “Plasmonic coupling in Au, Ag and Al nanosphere homo-dimers for sensing and SERS,” Adv. Electro. 7(2), 83–90 (2018).
[Crossref]

Y. Huang, Y. Chen, X. Xue, Y. Zhai, L. Wang, and Z. Zhang, “Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement,” Opt. Lett. 43(10), 2332–2335 (2018).
[Crossref]

Y. Huang, Y. Chen, L. L. Wang, and E. Ringe, “Small morphology variations effects on plasmonic nanoparticle dimer hotspots,” J. Mater. Chem. C 6(36), 9607–9614 (2018).
[Crossref]

S. Dickreuter, D. P. Kern, and M. Fleischer, “Single particle dark-field spectroscopy of spherical dimers with down to sub-10 nm gaps fabricated by the annealing of nano-pillars,” Nanophotonics 7(7), 1317–1324 (2018).
[Crossref]

R. Sharma, N. K. Pathak, and R. P. Sharma, “Computational study of plasmon interaction in organic media: a comparison between analytical and numerical model for dimer,” Plasmonics 13(5), 1775–1784 (2018).
[Crossref]

2017 (3)

J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, “Core-shell nanoparticle-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 5002–5069 (2017).
[Crossref]

D. T. Debu, P. K. Ghosh, D. French, and J. B. Herzog, “Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks,” Opt. Mater. Express 7(1), 73–84 (2017).
[Crossref]

Y. Huang, L. Ma, J. Li, and Z. Zhang, “Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement,” Nanotechnology 28(10), 105203 (2017).
[Crossref]

2016 (6)

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
[Crossref]

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

Y. Huang, L. Ma, M. Hou, Z. Xie, and Z. Zhang, “Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers,” Phys. Chem. Chem. Phys. 18(4), 2319–2323 (2016).
[Crossref]

S. Roopak, N. K. Pathak, R. Sharma, A. Ji, H. Pathak, and R. P. Sharma, “Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry,” Plasmonics 11(6), 1603–1612 (2016).
[Crossref]

2015 (3)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]

Y. Huang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes,” AIP Adv. 5(10), 107221 (2015).
[Crossref]

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17(43), 29293–29298 (2015).
[Crossref]

2014 (2)

C. David, F. J, and G. de Abajo, “Surface plasmon dependence on the electron density profile at metal surfaces,” ACS Nano 8(9), 9558–9566 (2014).
[Crossref]

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5(1), 5228 (2014).
[Crossref]

2013 (3)

K. Diest, V. Liberman, D. M. Lennon, P. B. Welander, and M. Rothschild, “Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry,” Opt. Express 21(23), 28638–28650 (2013).
[Crossref]

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

2012 (3)

P. Pavaskar, J. Theiss, and S. B. Cronin, “Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles,” Opt. Express 20(13), 14656–14662 (2012).
[Crossref]

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref]

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

2011 (2)

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C 115(14), 6410–6414 (2011).
[Crossref]

F. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

2010 (3)

E. R. Encina and E. A. Coronado, “On the far field optical properties of Ag-Au nanosphere pairs,” J. Phys. Chem. C 114(39), 16278–16284 (2010).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

2009 (2)

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref]

2008 (1)

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

2007 (1)

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

2006 (2)

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[Crossref]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

2005 (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

2000 (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

1999 (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

1995 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Aizpurua, J.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[Crossref]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

Alemu, N.

F. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

Alonso, M. I.

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C 115(14), 6410–6414 (2011).
[Crossref]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Ausman, L. K.

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

Bachelier, G.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Baumberg, J. J.

L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
[Crossref]

Benamara, M.

Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
[Crossref]

Benichou, E.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Bregovic, V. B.

I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
[Crossref]

Brevet, P. F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Brown, A. S.

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Bryant, G. W.

Bubaš, M.

I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
[Crossref]

Campoy-Quiles, M.

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C 115(14), 6410–6414 (2011).
[Crossref]

Chen, F.

F. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

Chen, Y.

Y. Huang, Y. Chen, L. L. Wang, and E. Ringe, “Small morphology variations effects on plasmonic nanoparticle dimer hotspots,” J. Mater. Chem. C 6(36), 9607–9614 (2018).
[Crossref]

Y. Huang, Y. Chen, X. Xue, Y. Zhai, L. Wang, and Z. Zhang, “Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement,” Opt. Lett. 43(10), 2332–2335 (2018).
[Crossref]

Chilkoti, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Coronado, E. A.

E. R. Encina and E. A. Coronado, “On the far field optical properties of Ag-Au nanosphere pairs,” J. Phys. Chem. C 114(39), 16278–16284 (2010).
[Crossref]

Cronin, S. B.

Crozier, K. B.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5(1), 5228 (2014).
[Crossref]

Crut, A.

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

David, C.

C. David, F. J, and G. de Abajo, “Surface plasmon dependence on the electron density profile at metal surfaces,” ACS Nano 8(9), 9558–9566 (2014).
[Crossref]

de Abajo, G.

C. David, F. J, and G. de Abajo, “Surface plasmon dependence on the electron density profile at metal surfaces,” ACS Nano 8(9), 9558–9566 (2014).
[Crossref]

de la Osa, R. A.

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Debu, D. T.

Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
[Crossref]

D. T. Debu, P. K. Ghosh, D. French, and J. B. Herzog, “Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks,” Opt. Mater. Express 7(1), 73–84 (2017).
[Crossref]

Dickreuter, S.

S. Dickreuter, D. P. Kern, and M. Fleischer, “Single particle dark-field spectroscopy of spherical dimers with down to sub-10 nm gaps fabricated by the annealing of nano-pillars,” Nanophotonics 7(7), 1317–1324 (2018).
[Crossref]

Diest, K.

Ding, S. Y.

J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, “Core-shell nanoparticle-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 5002–5069 (2017).
[Crossref]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Encina, E. R.

E. R. Encina and E. A. Coronado, “On the far field optical properties of Ag-Au nanosphere pairs,” J. Phys. Chem. C 114(39), 16278–16284 (2010).
[Crossref]

Everitt, H. O.

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Fabijanic, I.

I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
[Crossref]

Fatti, N. D.

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Ferré-Borrull, J.

I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
[Crossref]

Fleischer, M.

S. Dickreuter, D. P. Kern, and M. Fleischer, “Single particle dark-field spectroscopy of spherical dimers with down to sub-10 nm gaps fabricated by the annealing of nano-pillars,” Nanophotonics 7(7), 1317–1324 (2018).
[Crossref]

French, D.

García de Abajo, F. J.

García-Parajó, M. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

Garriga, M.

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C 115(14), 6410–6414 (2011).
[Crossref]

Ghosh, P. K.

Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
[Crossref]

D. T. Debu, P. K. Ghosh, D. French, and J. B. Herzog, “Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks,” Opt. Mater. Express 7(1), 73–84 (2017).
[Crossref]

Gomez, D.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

González, F.

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Grzelczak, M. P.

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Hartland, G. V.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

Hemmig, E. A.

L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
[Crossref]

Herrmann, L. O.

L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
[Crossref]

Herzog, J. B.

Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
[Crossref]

D. T. Debu, P. K. Ghosh, D. French, and J. B. Herzog, “Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks,” Opt. Mater. Express 7(1), 73–84 (2017).
[Crossref]

Hill, R. T.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Hou, M.

Y. Huang, L. Ma, M. Hou, Z. Xie, and Z. Zhang, “Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers,” Phys. Chem. Chem. Phys. 18(4), 2319–2323 (2016).
[Crossref]

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref]

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17(43), 29293–29298 (2015).
[Crossref]

Y. Huang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes,” AIP Adv. 5(10), 107221 (2015).
[Crossref]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Huang, Y.

Y. Huang, Y. Chen, L. L. Wang, and E. Ringe, “Small morphology variations effects on plasmonic nanoparticle dimer hotspots,” J. Mater. Chem. C 6(36), 9607–9614 (2018).
[Crossref]

Y. Huang, Y. Chen, X. Xue, Y. Zhai, L. Wang, and Z. Zhang, “Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement,” Opt. Lett. 43(10), 2332–2335 (2018).
[Crossref]

Y. Huang, L. Ma, J. Li, and Z. Zhang, “Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement,” Nanotechnology 28(10), 105203 (2017).
[Crossref]

Y. Huang, L. Ma, M. Hou, Z. Xie, and Z. Zhang, “Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers,” Phys. Chem. Chem. Phys. 18(4), 2319–2323 (2016).
[Crossref]

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref]

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17(43), 29293–29298 (2015).
[Crossref]

Y. Huang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes,” AIP Adv. 5(10), 107221 (2015).
[Crossref]

Hucknall, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

J, F.

C. David, F. J, and G. de Abajo, “Surface plasmon dependence on the electron density profile at metal surfaces,” ACS Nano 8(9), 9558–9566 (2014).
[Crossref]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Janicki, V.

I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
[Crossref]

Ji, A.

S. Roopak, N. K. Pathak, R. Sharma, A. Ji, H. Pathak, and R. P. Sharma, “Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry,” Plasmonics 11(6), 1603–1612 (2016).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnston, R. L.

F. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

Jokerst, N. M.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref]

Jonin, C.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Katyal, J.

J. Katyal, “Plasmonic coupling in Au, Ag and Al nanosphere homo-dimers for sensing and SERS,” Adv. Electro. 7(2), 83–90 (2018).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kern, D. P.

S. Dickreuter, D. P. Kern, and M. Fleischer, “Single particle dark-field spectroscopy of spherical dimers with down to sub-10 nm gaps fabricated by the annealing of nano-pillars,” Nanophotonics 7(7), 1317–1324 (2018).
[Crossref]

Keyser, U. F.

L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
[Crossref]

Khadem, H.

H. Khadem and S. H. Tavassoli, “The effect of size-asymmetry of plasmonic heterodimers in surface-enhanced Raman scattering,” Appl. Phys. Lett. 114(25), 251901 (2019).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Lennon, D. M.

Li, J.

Y. Huang, L. Ma, J. Li, and Z. Zhang, “Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement,” Nanotechnology 28(10), 105203 (2017).
[Crossref]

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref]

Li, J. F.

J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, “Core-shell nanoparticle-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 5002–5069 (2017).
[Crossref]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Li, S.

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

Liberman, V.

Liz-Marzán, L. M.

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

Lombardi, A.

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
[Crossref]

Losurdo, M.

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Luo, D.

D. Luo, B. Shi, Q. Zhu, L. Qian, Y. Qin, and J. Xie, “Optical properties of Au-Ag nanosphere dimer: influence interparticle spacing,” Opt. Commun. 458, 124746 (2020).
[Crossref]

Ma, L.

Y. Huang, L. Ma, J. Li, and Z. Zhang, “Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement,” Nanotechnology 28(10), 105203 (2017).
[Crossref]

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref]

Y. Huang, L. Ma, M. Hou, Z. Xie, and Z. Zhang, “Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers,” Phys. Chem. Chem. Phys. 18(4), 2319–2323 (2016).
[Crossref]

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17(43), 29293–29298 (2015).
[Crossref]

Y. Huang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes,” AIP Adv. 5(10), 107221 (2015).
[Crossref]

Mahmoud, M.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref]

Maioli, P.

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

Marsal, L. F.

I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
[Crossref]

McMahon, J. M.

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

Mivelle, M.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

Mock, J. J.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref]

Moparthi, S. B.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

Moreno, F.

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Mulvaney, P.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

Murali, R.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref]

Nordlander, P.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Novo, C.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

Ortiz, D.

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Pal, U.

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C 115(14), 6410–6414 (2011).
[Crossref]

Panneerselvam, R.

J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, “Core-shell nanoparticle-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 5002–5069 (2017).
[Crossref]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Pastoriza-Santos, I.

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

Pathak, H.

S. Roopak, N. K. Pathak, R. Sharma, A. Ji, H. Pathak, and R. P. Sharma, “Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry,” Plasmonics 11(6), 1603–1612 (2016).
[Crossref]

Pathak, N. K.

R. Sharma, N. K. Pathak, and R. P. Sharma, “Computational study of plasmon interaction in organic media: a comparison between analytical and numerical model for dimer,” Plasmonics 13(5), 1775–1784 (2018).
[Crossref]

S. Roopak, N. K. Pathak, R. Sharma, A. Ji, H. Pathak, and R. P. Sharma, “Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry,” Plasmonics 11(6), 1603–1612 (2016).
[Crossref]

Pavaskar, P.

Peña-Rodríguez, O.

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C 115(14), 6410–6414 (2011).
[Crossref]

Perez-Juste, J.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

Pertreux, E.

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

Petrova, H.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Punj, D.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

Qian, L.

D. Luo, B. Shi, Q. Zhu, L. Qian, Y. Qin, and J. Xie, “Optical properties of Au-Ag nanosphere dimer: influence interparticle spacing,” Opt. Commun. 458, 124746 (2020).
[Crossref]

Qin, Y.

D. Luo, B. Shi, Q. Zhu, L. Qian, Y. Qin, and J. Xie, “Optical properties of Au-Ag nanosphere dimer: influence interparticle spacing,” Opt. Commun. 458, 124746 (2020).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Rakic, A. D.

Reismann, M.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

Ren, B.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Rigneault, H.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

Ringe, E.

Y. Huang, Y. Chen, L. L. Wang, and E. Ringe, “Small morphology variations effects on plasmonic nanoparticle dimer hotspots,” J. Mater. Chem. C 6(36), 9607–9614 (2018).
[Crossref]

Y. Huang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes,” AIP Adv. 5(10), 107221 (2015).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Rodríguez-Fernández, L.

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C 115(14), 6410–6414 (2011).
[Crossref]

Romero, I.

Roopak, S.

S. Roopak, N. K. Pathak, R. Sharma, A. Ji, H. Pathak, and R. P. Sharma, “Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry,” Plasmonics 11(6), 1603–1612 (2016).
[Crossref]

Rothschild, M.

Russier-Antoine, I.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Saiz, J. M.

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Salamo, G. J.

Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
[Crossref]

Sancho-Parramon, J.

I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
[Crossref]

Sanz, J. M.

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Schatz, G. C.

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Sharma, R.

R. Sharma, N. K. Pathak, and R. P. Sharma, “Computational study of plasmon interaction in organic media: a comparison between analytical and numerical model for dimer,” Plasmonics 13(5), 1775–1784 (2018).
[Crossref]

S. Roopak, N. K. Pathak, R. Sharma, A. Ji, H. Pathak, and R. P. Sharma, “Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry,” Plasmonics 11(6), 1603–1612 (2016).
[Crossref]

Sharma, R. P.

R. Sharma, N. K. Pathak, and R. P. Sharma, “Computational study of plasmon interaction in organic media: a comparison between analytical and numerical model for dimer,” Plasmonics 13(5), 1775–1784 (2018).
[Crossref]

S. Roopak, N. K. Pathak, R. Sharma, A. Ji, H. Pathak, and R. P. Sharma, “Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry,” Plasmonics 11(6), 1603–1612 (2016).
[Crossref]

Shi, B.

D. Luo, B. Shi, Q. Zhu, L. Qian, Y. Qin, and J. Xie, “Optical properties of Au-Ag nanosphere dimer: influence interparticle spacing,” Opt. Commun. 458, 124746 (2020).
[Crossref]

Smith, D. R.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Tabor, C.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Tavassoli, S. H.

H. Khadem and S. H. Tavassoli, “The effect of size-asymmetry of plasmonic heterodimers in surface-enhanced Raman scattering,” Appl. Phys. Lett. 114(25), 251901 (2019).
[Crossref]

Thacker, V. V.

L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
[Crossref]

Theiss, J.

Tian, Z. Q.

J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, “Core-shell nanoparticle-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 5002–5069 (2017).
[Crossref]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Vallée, F.

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

van Hulst, N. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

van Zanten, T. S.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

Wang, L.

Wang, L. L.

Y. Huang, Y. Chen, L. L. Wang, and E. Ringe, “Small morphology variations effects on plasmonic nanoparticle dimer hotspots,” J. Mater. Chem. C 6(36), 9607–9614 (2018).
[Crossref]

Ware, M. E.

Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
[Crossref]

Welander, P. B.

Weller, L.

L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
[Crossref]

Wenger, J.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

Wolter, S. D.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref]

Wu, D. Y.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Xie, J.

D. Luo, B. Shi, Q. Zhu, L. Qian, Y. Qin, and J. Xie, “Optical properties of Au-Ag nanosphere dimer: influence interparticle spacing,” Opt. Commun. 458, 124746 (2020).
[Crossref]

Xie, Z.

Y. Huang, L. Ma, M. Hou, Z. Xie, and Z. Zhang, “Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers,” Phys. Chem. Chem. Phys. 18(4), 2319–2323 (2016).
[Crossref]

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref]

Xu, H.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Xue, X.

Yan, Q.

Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
[Crossref]

Yi, J.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Zhai, Y.

Zhang, Y. J.

J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, “Core-shell nanoparticle-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 5002–5069 (2017).
[Crossref]

Zhang, Z.

Y. Huang, Y. Chen, X. Xue, Y. Zhai, L. Wang, and Z. Zhang, “Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement,” Opt. Lett. 43(10), 2332–2335 (2018).
[Crossref]

Y. Huang, L. Ma, J. Li, and Z. Zhang, “Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement,” Nanotechnology 28(10), 105203 (2017).
[Crossref]

Y. Huang, L. Ma, M. Hou, Z. Xie, and Z. Zhang, “Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers,” Phys. Chem. Chem. Phys. 18(4), 2319–2323 (2016).
[Crossref]

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref]

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17(43), 29293–29298 (2015).
[Crossref]

Y. Huang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes,” AIP Adv. 5(10), 107221 (2015).
[Crossref]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhou, Q.

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17(43), 29293–29298 (2015).
[Crossref]

Zhu, Q.

D. Luo, B. Shi, Q. Zhu, L. Qian, Y. Qin, and J. Xie, “Optical properties of Au-Ag nanosphere dimer: influence interparticle spacing,” Opt. Commun. 458, 124746 (2020).
[Crossref]

Zhu, W.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5(1), 5228 (2014).
[Crossref]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref]

ACS Nano (2)

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref]

C. David, F. J, and G. de Abajo, “Surface plasmon dependence on the electron density profile at metal surfaces,” ACS Nano 8(9), 9558–9566 (2014).
[Crossref]

ACS Photonics (1)

L. Weller, V. V. Thacker, L. O. Herrmann, E. A. Hemmig, A. Lombardi, U. F. Keyser, and J. J. Baumberg, “Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly,” ACS Photonics 3(9), 1589–1595 (2016).
[Crossref]

Adv. Electro. (1)

J. Katyal, “Plasmonic coupling in Au, Ag and Al nanosphere homo-dimers for sensing and SERS,” Adv. Electro. 7(2), 83–90 (2018).
[Crossref]

AIP Adv. (2)

F. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

Y. Huang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes,” AIP Adv. 5(10), 107221 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Khadem and S. H. Tavassoli, “The effect of size-asymmetry of plasmonic heterodimers in surface-enhanced Raman scattering,” Appl. Phys. Lett. 114(25), 251901 (2019).
[Crossref]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

Chem. Rev. (1)

J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, “Core-shell nanoparticle-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 5002–5069 (2017).
[Crossref]

Coatings (1)

I. Fabijanić, V. Janicki, J. Ferré-Borrull, M. Bubaš, V. B. Bregović, L. F. Marsal, and J. Sancho-Parramon, “Plasmonic nanoparticles and island films for solar energy harvesting: a comparative study of Cu, Al, Ag and Au performance,” Coatings 9(6), 382 (2019).
[Crossref]

J. Mater. Chem. C (1)

Y. Huang, Y. Chen, L. L. Wang, and E. Ringe, “Small morphology variations effects on plasmonic nanoparticle dimer hotspots,” J. Mater. Chem. C 6(36), 9607–9614 (2018).
[Crossref]

J. Phys. Chem. A (1)

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (4)

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C 115(14), 6410–6414 (2011).
[Crossref]

E. R. Encina and E. A. Coronado, “On the far field optical properties of Ag-Au nanosphere pairs,” J. Phys. Chem. C 114(39), 16278–16284 (2010).
[Crossref]

J. M. Sanz, D. Ortiz, R. A. de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

Mater. Lett. (1)

Q. Yan, D. T. Debu, P. K. Ghosh, J. B. Herzog, M. E. Ware, M. Benamara, and G. J. Salamo, “Plasmonic emission of hybrid Au/Ag bullseye nanostructures,” Mater. Lett. 247, 131–134 (2019).
[Crossref]

Nano Lett. (5)

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

A. Lombardi, M. P. Grzelczak, E. Pertreux, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, F. Vallée, and N. D. Fatti, “Fano interference in the optical absorption of an individual gold-silver nanodimer,” Nano Lett. 16(10), 6311–6316 (2016).
[Crossref]

Nanophotonics (1)

S. Dickreuter, D. P. Kern, and M. Fleischer, “Single particle dark-field spectroscopy of spherical dimers with down to sub-10 nm gaps fabricated by the annealing of nano-pillars,” Nanophotonics 7(7), 1317–1324 (2018).
[Crossref]

Nanotechnology (1)

Y. Huang, L. Ma, J. Li, and Z. Zhang, “Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement,” Nanotechnology 28(10), 105203 (2017).
[Crossref]

Nat. Commun. (1)

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5(1), 5228 (2014).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Nat. Nanotechnol. (2)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref]

Nat. Rev. Mater. (1)

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Opt. Commun. (1)

D. Luo, B. Shi, Q. Zhu, L. Qian, Y. Qin, and J. Xie, “Optical properties of Au-Ag nanosphere dimer: influence interparticle spacing,” Opt. Commun. 458, 124746 (2020).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (3)

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[Crossref]

Y. Huang, L. Ma, M. Hou, Z. Xie, and Z. Zhang, “Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers,” Phys. Chem. Chem. Phys. 18(4), 2319–2323 (2016).
[Crossref]

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17(43), 29293–29298 (2015).
[Crossref]

Phys. Rev. (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

Phys. Rev. Lett. (2)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. D. Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Plasmonics (2)

S. Roopak, N. K. Pathak, R. Sharma, A. Ji, H. Pathak, and R. P. Sharma, “Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry,” Plasmonics 11(6), 1603–1612 (2016).
[Crossref]

R. Sharma, N. K. Pathak, and R. P. Sharma, “Computational study of plasmon interaction in organic media: a comparison between analytical and numerical model for dimer,” Plasmonics 13(5), 1775–1784 (2018).
[Crossref]

Sci. Rep. (1)

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. A dimer structure composed of heterodimer nanospheres with the radius of R = 60 nm, and the inter-particle separation of g = 2-20 nm. Calculated extinction cross-section, ${\sigma _{ext}}$, for heterodimers made of (a) Au-Ag, (c) Au-Al, and (e) Al-Ag, respectively. And the corresponding average near-field Raman enhancement spectra, $\overline {EF} $, for (b) Au-Ag, (d) Au-Al, and (f) Al-Ag heterodimers.
Fig. 2.
Fig. 2. Local electric field distributions at resonance wavelengths in the form of logarithmic ${|E |^4}/{|{{E_0}} |^4}$ for the Au-Ag heterodimer with R = 60 nm and g = 2 nm. From left to right, (a) λ = 660 nm, (b) λ = 470 nm and (c) λ = 370 nm. k is the wave vector, and ${E_0}$ is the incident polarization. (d)–(f) Corresponding 3D surface charge distributions. The red color represents the positive charge while the blue relates to the negative charge.
Fig. 3.
Fig. 3. Local electric field distributions and surface charge distributions of Al-Au and Al-Ag heterodimers with R = 60 nm, and g = 2 nm. Calculated results for the Au-Al heterodimer at λ = 632 nm (a and e), and the Al-Ag heterodimer at λ = 622 nm (c and g); their corresponding near-field enhancements at λ = 460 nm (b and d) and λ = 410 nm (f and h) are dominated by BQD modes.
Fig. 4.
Fig. 4. Dependence of the BDP mode resonant wavelength on the gap for heterodimers with R = 60 nm. The peak wavelengths were taken from the near-field (red dotes) and the far-field (blue dotes) of the individual heterodimers. The figure shows a strong red-shift for decreasing gaps. The solid lines (red and blue) indicate an exponential fit using the universal scaling law. The fitting values (near-field, far-field) are aAu-Ag = (87.7, 129.8), aAu-Al = (57.8, 88.8), aAl-Ag = (71.9, 142.2); lAu-Ag = (6.5, 6.7) nm, lAu-Al = (7.4, 6.9), lAl-Ag = (10.7, 9.8) nm; and λ0, Au-Ag = (594, 562) nm, λ0, Au-Al= (586, 552) nm, λ0, Al-Ag= (560, 483) nm.
Fig. 5.
Fig. 5. Log-log plots of the ${\overline {EF} _{max}}$ enhancement of BDP modes as a function of the gap size for R = 60 nm. Blue for Au-Ag, red for Au-Al and pink for Al-Ag heterodimers. The solid lines indicate fitted model.
Fig. 6.
Fig. 6. Calculated size-dependent results of the far-field extinction spectra and average near-field Raman enhancement as a function of the wavelength for heterodimers made of Au-Ag (a and b), Au-Al (c and d), and Al-Ag (e and f) with g = 2 nm and R = 10–80 nm.