Abstract

We compared the photoluminescence (PL) of perovskite-polymer composite films on gold nanoparticle (AuNPs) substrates without and with a buffer layer of polymethyl methacrylate (PMMA). It is found that a 1.8-fold PL enhancement can be experienced due to surface plasmons with solely AuNPs substrates. With PMMA placed between the emissive layer and AuNPs, the plasmonic effect is reduced while reflectance and interface enhanced emission is increased, which results in a final PL increase of 2-fold. Such enhancements provide potential strategies to enhance the light-emitting properties of in-situ fabricated perovskite quantum dots films for light conversion applications such as LCD backlights, silicon solar cells, and photodetectors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chang, H. Zhong, and Z. Bai, “In-situ fabricated perovskite nanocrystals: A revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
    [Crossref]
  2. M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
    [Crossref]
  3. H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
    [Crossref]
  4. J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
    [Crossref]
  5. X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
    [Crossref]
  6. Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
    [Crossref]
  7. Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In-situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
    [Crossref]
  8. Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
    [Crossref]
  9. H. Juan, C. Haiwei, C. Hao, W. Yanan, W. Shin-Tson, and D. Yajie, “Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays,” Opt. Express 25(11), 12915–12925 (2017).
    [Crossref]
  10. N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
    [Crossref]
  11. L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
    [Crossref]
  12. M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
    [Crossref]
  13. L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
    [Crossref]
  14. M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen, and S. Ruan, “Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer,” ACS Appl. Mater. Interfaces 7(33), 18866–18871 (2015).
    [Crossref]
  15. J. Greffet, “Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
    [Crossref]
  16. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  17. R. Ozaki, T. Yamada, S. Yudate, K. Kadowaki, and H. Sato, “Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer,” Sci. Rep. 8(1), 17119 (2018).
    [Crossref]
  18. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
    [Crossref]
  19. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1-2, 693–701 (1970).
    [Crossref]
  20. J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247(1), 1–9 (1999).
    [Crossref]
  21. J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
    [Crossref]
  22. T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13(14), 5522–5527 (2005).
    [Crossref]
  23. D. Zhang and R.-I. Murakami, “Effect of spacer layer on enhancement and quenching of photoluminescence by surface plasmon,” Mod. Phys. Lett. B 29(06n07), 1540034 (2015).
    [Crossref]
  24. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref]
  25. R. J. Aroca, G. J. Kovacs, C. A. Jennings, R. O. Loutfy, and P. S. Vincett, “Fluorescence enhancement from Langmuir-Blodgett monolayers on silver island films,” Langmuir 4(3), 518–521 (1988).
    [Crossref]
  26. S. V. Gaponenko and D. V. Guzatov, “Colloidal plasmonics for active nanophotonics,” Proc. IEEE (Early Access), 1–17 (2020).
  27. L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
    [Crossref]
  28. G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, and O. T. A. Jansen, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  29. O. Kvitek, J. Siegel, V. Hnatowicz, and V. Svorcik, “Noble metal nanostructures influence of structure and environment on their optical properties,” J. Nanomater. 2013(2013), 1–15 (2013).
    [Crossref]
  30. A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
    [Crossref]
  31. P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
    [Crossref]
  32. L. Zhang and Z.-S. Wang, “Gold nanoparticles as an ultrathin scattering layer for efficient dye-sensitized solar cells,” J. Mater. Chem. C 4(16), 3614–3620 (2016).
    [Crossref]
  33. V. Amendola, “Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method,” Phys. Chem. Chem. Phys. 18(3), 2230–2241 (2016).
    [Crossref]
  34. V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti, “Synthesis of gold nanoparticles by laser ablation in toluene: Quenching and recovery of the surface plasmon absorption,” J. Phys. Chem. B 109(49), 23125–23128 (2005).
    [Crossref]
  35. K. Rahme and J. D. Holmes, ‘Gold nanoparticles: Synthesis, characterization, and bioconjugation,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, S. E. Lyshevski, ed. (Taylor & Francis, 2015).
  36. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  37. H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, and J. Martorell, “Natural random nanotexturing of the Au interface for light backscattering enhanced performance in perovskite solar cells,” ACS Photonics 5(6), 2243–2250 (2018).
    [Crossref]
  38. D. Bergstrom, J. Powell, and A. F. H. Kaplan, “The absorption of light by rough metal surfaces- A three-dimensional ray-tracing analysis,” J. Appl. Phys. 103(10), 103515 (2008).
    [Crossref]
  39. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metalnanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
    [Crossref]
  40. S. V. Gaponenko, P.-M. Adam, D. V. Guzatov, and A. Muravitskaya, “Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics,” Sci. Rep. 9(1), 7138 (2019).
    [Crossref]
  41. S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
    [Crossref]
  42. J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle nanocomposite light- emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chem. Mater. 16(4), 688–692 (2004).
    [Crossref]
  43. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]

2020 (1)

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

2019 (4)

P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
[Crossref]

S. V. Gaponenko, P.-M. Adam, D. V. Guzatov, and A. Muravitskaya, “Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics,” Sci. Rep. 9(1), 7138 (2019).
[Crossref]

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

2018 (7)

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

R. Ozaki, T. Yamada, S. Yudate, K. Kadowaki, and H. Sato, “Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer,” Sci. Rep. 8(1), 17119 (2018).
[Crossref]

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

S. Chang, H. Zhong, and Z. Bai, “In-situ fabricated perovskite nanocrystals: A revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, and J. Martorell, “Natural random nanotexturing of the Au interface for light backscattering enhanced performance in perovskite solar cells,” ACS Photonics 5(6), 2243–2250 (2018).
[Crossref]

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

2017 (3)

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

H. Juan, C. Haiwei, C. Hao, W. Yanan, W. Shin-Tson, and D. Yajie, “Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays,” Opt. Express 25(11), 12915–12925 (2017).
[Crossref]

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

2016 (6)

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In-situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref]

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

L. Zhang and Z.-S. Wang, “Gold nanoparticles as an ultrathin scattering layer for efficient dye-sensitized solar cells,” J. Mater. Chem. C 4(16), 3614–3620 (2016).
[Crossref]

V. Amendola, “Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method,” Phys. Chem. Chem. Phys. 18(3), 2230–2241 (2016).
[Crossref]

2015 (3)

D. Zhang and R.-I. Murakami, “Effect of spacer layer on enhancement and quenching of photoluminescence by surface plasmon,” Mod. Phys. Lett. B 29(06n07), 1540034 (2015).
[Crossref]

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen, and S. Ruan, “Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer,” ACS Appl. Mater. Interfaces 7(33), 18866–18871 (2015).
[Crossref]

2014 (1)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

2013 (2)

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, and O. T. A. Jansen, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

O. Kvitek, J. Siegel, V. Hnatowicz, and V. Svorcik, “Noble metal nanostructures influence of structure and environment on their optical properties,” J. Nanomater. 2013(2013), 1–15 (2013).
[Crossref]

2011 (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

2008 (1)

D. Bergstrom, J. Powell, and A. F. H. Kaplan, “The absorption of light by rough metal surfaces- A three-dimensional ray-tracing analysis,” J. Appl. Phys. 103(10), 103515 (2008).
[Crossref]

2007 (1)

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metalnanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

2005 (3)

V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti, “Synthesis of gold nanoparticles by laser ablation in toluene: Quenching and recovery of the surface plasmon absorption,” J. Phys. Chem. B 109(49), 23125–23128 (2005).
[Crossref]

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13(14), 5522–5527 (2005).
[Crossref]

J. Greffet, “Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[Crossref]

2004 (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle nanocomposite light- emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chem. Mater. 16(4), 688–692 (2004).
[Crossref]

2000 (1)

J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
[Crossref]

1999 (2)

J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247(1), 1–9 (1999).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

1988 (1)

R. J. Aroca, G. J. Kovacs, C. A. Jennings, R. O. Loutfy, and P. S. Vincett, “Fluorescence enhancement from Langmuir-Blodgett monolayers on silver island films,” Langmuir 4(3), 518–521 (1988).
[Crossref]

1974 (1)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
[Crossref]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1-2, 693–701 (1970).
[Crossref]

Adam, P.-M.

S. V. Gaponenko, P.-M. Adam, D. V. Guzatov, and A. Muravitskaya, “Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics,” Sci. Rep. 9(1), 7138 (2019).
[Crossref]

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Amendola, V.

V. Amendola, “Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method,” Phys. Chem. Chem. Phys. 18(3), 2230–2241 (2016).
[Crossref]

V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti, “Synthesis of gold nanoparticles by laser ablation in toluene: Quenching and recovery of the surface plasmon absorption,” J. Phys. Chem. B 109(49), 23125–23128 (2005).
[Crossref]

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Aroca, R. J.

R. J. Aroca, G. J. Kovacs, C. A. Jennings, R. O. Loutfy, and P. S. Vincett, “Fluorescence enhancement from Langmuir-Blodgett monolayers on silver island films,” Langmuir 4(3), 518–521 (1988).
[Crossref]

Bae, J. H.

P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
[Crossref]

Bai, Z.

S. Chang, H. Zhong, and Z. Bai, “In-situ fabricated perovskite nanocrystals: A revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In-situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref]

Barnes, W. L.

J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
[Crossref]

Beauregard, E. M.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Bergstrom, D.

D. Bergstrom, J. Powell, and A. F. H. Kaplan, “The absorption of light by rough metal surfaces- A three-dimensional ray-tracing analysis,” J. Appl. Phys. 103(10), 103515 (2008).
[Crossref]

Cai, Y.

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Cao, C.

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

Chang, S.

S. Chang, H. Zhong, and Z. Bai, “In-situ fabricated perovskite nanocrystals: A revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

Chen, D.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

Chen, H.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Chen, J.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Chen, L.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

Chen, N.

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

Chen, Q.

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

Chen, Y.

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Cho, H.

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Chu, Z.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

Ciraci, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Comin, R.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Dai, G.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

Demir, H. V.

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

Deng, J.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

Deng, L.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

Dong, Y.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Drexhage, K. H.

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
[Crossref]

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1-2, 693–701 (1970).
[Crossref]

Du, H.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

Du, K.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

El-Sayed, M. A.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metalnanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Enderlein, J.

J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247(1), 1–9 (1999).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Gaponenko, S.

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

Gaponenko, S. V.

S. V. Gaponenko, P.-M. Adam, D. V. Guzatov, and A. Muravitskaya, “Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics,” Sci. Rep. 9(1), 7138 (2019).
[Crossref]

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

S. V. Gaponenko and D. V. Guzatov, “Colloidal plasmonics for active nanophotonics,” Proc. IEEE (Early Access), 1–17 (2020).

Gesquiere, A. J.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Glukhov, Y. F.

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Greffet, J.

J. Greffet, “Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[Crossref]

Guo, W.

M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen, and S. Ruan, “Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer,” ACS Appl. Mater. Interfaces 7(33), 18866–18871 (2015).
[Crossref]

Guzatov, D.

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

Guzatov, D. V.

S. V. Gaponenko, P.-M. Adam, D. V. Guzatov, and A. Muravitskaya, “Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics,” Sci. Rep. 9(1), 7138 (2019).
[Crossref]

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

S. V. Gaponenko and D. V. Guzatov, “Colloidal plasmonics for active nanophotonics,” Proc. IEEE (Early Access), 1–17 (2020).

Haiwei, C.

Han, D.

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

Han, J.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

Hao, C.

He, H.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

He, J.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

He, Z.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

Heo, J. H.

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Hnatowicz, V.

O. Kvitek, J. Siegel, V. Hnatowicz, and V. Svorcik, “Noble metal nanostructures influence of structure and environment on their optical properties,” J. Nanomater. 2013(2013), 1–15 (2013).
[Crossref]

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Holmes, J. D.

K. Rahme and J. D. Holmes, ‘Gold nanoparticles: Synthesis, characterization, and bioconjugation,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, S. E. Lyshevski, ed. (Taylor & Francis, 2015).

Hoogland, S.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Huang, S.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metalnanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Jain, P. K.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metalnanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Jang, J.

P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
[Crossref]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, and O. T. A. Jansen, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Jennings, C. A.

R. J. Aroca, G. J. Kovacs, C. A. Jennings, R. O. Loutfy, and P. S. Vincett, “Fluorescence enhancement from Langmuir-Blodgett monolayers on silver island films,” Langmuir 4(3), 518–521 (1988).
[Crossref]

Jeong, S.-H

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Ji, H.

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

Ji, W.

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

Jia, X.

M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen, and S. Ruan, “Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer,” ACS Appl. Mater. Interfaces 7(33), 18866–18871 (2015).
[Crossref]

Jiang, F.

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Jiang, Q.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

Juan, H.

Kadowaki, K.

R. Ozaki, T. Yamada, S. Yudate, K. Kadowaki, and H. Sato, “Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer,” Sci. Rep. 8(1), 17119 (2018).
[Crossref]

Kang, I. M.

P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
[Crossref]

Kanjanaboos, P.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Kaplan, A. F. H.

D. Bergstrom, J. Powell, and A. F. H. Kaplan, “The absorption of light by rough metal surfaces- A three-dimensional ray-tracing analysis,” J. Appl. Phys. 103(10), 103515 (2008).
[Crossref]

Kelestemur, Y.

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

Kerner, R. A.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

Kim, H.

P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
[Crossref]

Kim, J. K.

J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle nanocomposite light- emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chem. Mater. 16(4), 688–692 (2004).
[Crossref]

Kim, Y. C.

J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle nanocomposite light- emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chem. Mater. 16(4), 688–692 (2004).
[Crossref]

Kim, Y.-H.

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Koh, T.-W.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

Kovacs, G. J.

R. J. Aroca, G. J. Kovacs, C. A. Jennings, R. O. Loutfy, and P. S. Vincett, “Fluorescence enhancement from Langmuir-Blodgett monolayers on silver island films,” Langmuir 4(3), 518–521 (1988).
[Crossref]

Kramarenko, M.

H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, and J. Martorell, “Natural random nanotexturing of the Au interface for light backscattering enhanced performance in perovskite solar cells,” ACS Photonics 5(6), 2243–2250 (2018).
[Crossref]

Kulakovich, O.

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

Kulakovich, O. S.

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Kvitek, O.

O. Kvitek, J. Siegel, V. Hnatowicz, and V. Svorcik, “Noble metal nanostructures influence of structure and environment on their optical properties,” J. Nanomater. 2013(2013), 1–15 (2013).
[Crossref]

Lang, P.

P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
[Crossref]

Lee, C.-L.

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Lee, K. M.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

Li, J.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

Liang, W.

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Lim, Y. T.

J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle nanocomposite light- emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chem. Mater. 16(4), 688–692 (2004).
[Crossref]

Lin, Y.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Liu, R.

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

Liu, Y.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen, and S. Ruan, “Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer,” ACS Appl. Mater. Interfaces 7(33), 18866–18871 (2015).
[Crossref]

Loutfy, R. O.

R. J. Aroca, G. J. Kovacs, C. A. Jennings, R. O. Loutfy, and P. S. Vincett, “Fluorescence enhancement from Langmuir-Blodgett monolayers on silver island films,” Langmuir 4(3), 518–521 (1988).
[Crossref]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, and O. T. A. Jansen, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, and O. T. A. Jansen, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lu, W. G.

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In-situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref]

Lunevich, A. Y.

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Ma, P.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Ma, S.

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

Martorell, J.

H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, and J. Martorell, “Natural random nanotexturing of the Au interface for light backscattering enhanced performance in perovskite solar cells,” ACS Photonics 5(6), 2243–2250 (2018).
[Crossref]

Meneghetti, M.

V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti, “Synthesis of gold nanoparticles by laser ablation in toluene: Quenching and recovery of the surface plasmon absorption,” J. Phys. Chem. B 109(49), 23125–23128 (2005).
[Crossref]

Meng, J.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

Meng, L.

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, and O. T. A. Jansen, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Murakami, R.-I.

D. Zhang and R.-I. Murakami, “Effect of spacer layer on enhancement and quenching of photoluminescence by surface plasmon,” Mod. Phys. Lett. B 29(06n07), 1540034 (2015).
[Crossref]

Muravitskaya, A.

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

S. V. Gaponenko, P.-M. Adam, D. V. Guzatov, and A. Muravitskaya, “Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics,” Sci. Rep. 9(1), 7138 (2019).
[Crossref]

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Myoung, N.

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Neal, T. D.

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Okamoto, K.

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13(14), 5522–5527 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Osmond, J.

H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, and J. Martorell, “Natural random nanotexturing of the Au interface for light backscattering enhanced performance in perovskite solar cells,” ACS Photonics 5(6), 2243–2250 (2018).
[Crossref]

Ozaki, R.

R. Ozaki, T. Yamada, S. Yudate, K. Kadowaki, and H. Sato, “Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer,” Sci. Rep. 8(1), 17119 (2018).
[Crossref]

Park, J. H.

J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle nanocomposite light- emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chem. Mater. 16(4), 688–692 (2004).
[Crossref]

Park, M.-H.

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Park, O. O.

J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle nanocomposite light- emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chem. Mater. 16(4), 688–692 (2004).
[Crossref]

Perveen, A.

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

Polizzi, S.

V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti, “Synthesis of gold nanoparticles by laser ablation in toluene: Quenching and recovery of the surface plasmon absorption,” J. Phys. Chem. B 109(49), 23125–23128 (2005).
[Crossref]

Powell, J.

D. Bergstrom, J. Powell, and A. F. H. Kaplan, “The absorption of light by rough metal surfaces- A three-dimensional ray-tracing analysis,” J. Appl. Phys. 103(10), 103515 (2008).
[Crossref]

Quan, L. N.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Rahme, K.

K. Rahme and J. D. Holmes, ‘Gold nanoparticles: Synthesis, characterization, and bioconjugation,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, S. E. Lyshevski, ed. (Taylor & Francis, 2015).

Ramanenka, A.

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

Ramanenka, A. A.

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Rand, G. D.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

Rizzi, G. A.

V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti, “Synthesis of gold nanoparticles by laser ablation in toluene: Quenching and recovery of the surface plasmon absorption,” J. Phys. Chem. B 109(49), 23125–23128 (2005).
[Crossref]

Rodriguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, and O. T. A. Jansen, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Ruan, S.

M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen, and S. Ruan, “Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer,” ACS Appl. Mater. Interfaces 7(33), 18866–18871 (2015).
[Crossref]

Sabatini, R.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Sadhanala, A.

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Sato, H.

R. Ozaki, T. Yamada, S. Yudate, K. Kadowaki, and H. Sato, “Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer,” Sci. Rep. 8(1), 17119 (2018).
[Crossref]

Scherer, A.

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13(14), 5522–5527 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Scholes, B. P.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

Shen, L.

M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen, and S. Ruan, “Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer,” ACS Appl. Mater. Interfaces 7(33), 18866–18871 (2015).
[Crossref]

Shi, L.

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

Shim, J. W.

P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
[Crossref]

Shin-Tson, W.

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Si, J.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

Siegel, J.

O. Kvitek, J. Siegel, V. Hnatowicz, and V. Svorcik, “Noble metal nanostructures influence of structure and environment on their optical properties,” J. Nanomater. 2013(2013), 1–15 (2013).
[Crossref]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Svorcik, V.

O. Kvitek, J. Siegel, V. Hnatowicz, and V. Svorcik, “Noble metal nanostructures influence of structure and environment on their optical properties,” J. Nanomater. 2013(2013), 1–15 (2013).
[Crossref]

Tan, Q.

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Tang, J.

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

Tian, H.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

Toudert, J.

H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, and J. Martorell, “Natural random nanotexturing of the Au interface for light backscattering enhanced performance in perovskite solar cells,” ACS Photonics 5(6), 2243–2250 (2018).
[Crossref]

Towers, A.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Tran, N. L.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

Trotsiuk, L.

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Vaschenko, S. V.

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Vincent, P.

P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
[Crossref]

Vincett, P. S.

R. J. Aroca, G. J. Kovacs, C. A. Jennings, R. O. Loutfy, and P. S. Vincett, “Fluorescence enhancement from Langmuir-Blodgett monolayers on silver island films,” Langmuir 4(3), 518–521 (1988).
[Crossref]

Voznyy, O.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Walters, G.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Wang, H.

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

Wang, L.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Wang, P.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

Wang, Y.

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In-situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref]

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Wang, Z.

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

Wang, Z.-S.

L. Zhang and Z.-S. Wang, “Gold nanoparticles as an ultrathin scattering layer for efficient dye-sensitized solar cells,” J. Mater. Chem. C 4(16), 3614–3620 (2016).
[Crossref]

Wasey, J. A. E.

J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
[Crossref]

Wolf, C.

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Wu, S.-T.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Wu, X.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

Wu, X.-G.

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Xiao, Z.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

Xu, M.

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

Yajie, D.

Yamada, T.

R. Ozaki, T. Yamada, S. Yudate, K. Kadowaki, and H. Sato, “Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer,” Sci. Rep. 8(1), 17119 (2018).
[Crossref]

Yanan, W.

Yang, X.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

Yao, M.

M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen, and S. Ruan, “Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer,” ACS Appl. Mater. Interfaces 7(33), 18866–18871 (2015).
[Crossref]

Yin, Z.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

Yoo, S.

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

You, J.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

Yu, J.-W.

J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle nanocomposite light- emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chem. Mater. 16(4), 688–692 (2004).
[Crossref]

Yuan, M.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Yudate, S.

R. Ozaki, T. Yamada, S. Yudate, K. Kadowaki, and H. Sato, “Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer,” Sci. Rep. 8(1), 17119 (2018).
[Crossref]

Zhang, C.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

Zhang, D.

D. Zhang and R.-I. Murakami, “Effect of spacer layer on enhancement and quenching of photoluminescence by surface plasmon,” Mod. Phys. Lett. B 29(06n07), 1540034 (2015).
[Crossref]

Zhang, H.

H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, and J. Martorell, “Natural random nanotexturing of the Au interface for light backscattering enhanced performance in perovskite solar cells,” ACS Photonics 5(6), 2243–2250 (2018).
[Crossref]

Zhang, L.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

L. Zhang and Z.-S. Wang, “Gold nanoparticles as an ultrathin scattering layer for efficient dye-sensitized solar cells,” J. Mater. Chem. C 4(16), 3614–3620 (2016).
[Crossref]

Zhang, M.

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Zhang, X.

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

Zhao, L.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

Zhao, Y.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Zhong, H.

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

S. Chang, H. Zhong, and Z. Bai, “In-situ fabricated perovskite nanocrystals: A revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In-situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref]

Zhou, Q.

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In-situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref]

Zhu, R.

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Zou, B.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In-situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen, and S. Ruan, “Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer,” ACS Appl. Mater. Interfaces 7(33), 18866–18871 (2015).
[Crossref]

ACS Nano (1)

J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, and H. He, “Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses,” ACS Nano 11(11), 11100–11107 (2017).
[Crossref]

ACS Photonics (1)

H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, and J. Martorell, “Natural random nanotexturing of the Au interface for light backscattering enhanced performance in perovskite solar cells,” ACS Photonics 5(6), 2243–2250 (2018).
[Crossref]

Adv. Mater. (2)

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In-situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref]

Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films,” Adv. Mater. 28(48), 10710–10717 (2016).
[Crossref]

Adv. Opt. Mater. (2)

S. Chang, H. Zhong, and Z. Bai, “In-situ fabricated perovskite nanocrystals: A revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

M. Zhang, L. Wang, L. Meng, X.-G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Chem. Mater. (1)

J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle nanocomposite light- emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chem. Mater. 16(4), 688–692 (2004).
[Crossref]

Chem. Phys. (1)

J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247(1), 1–9 (1999).
[Crossref]

Chin. Phys. B (1)

A. Perveen, X. Zhang, J. Tang, D. Han, S. Chang, L. Deng, W. Ji, and H. Zhong, “Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes,” Chin. Phys. B 27(8), 086101 (2018).
[Crossref]

Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. (1)

N. Chen, Z. Bai, Z. Wang, H. Ji, R. Liu, C. Cao, H. Wang, F. Jiang, and H. Zhong, “Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49, 1657–1659 (2018).
[Crossref]

Energies (1)

P. Vincent, J. W. Shim, J. Jang, I. M. Kang, P. Lang, J. H. Bae, and H. Kim, “The crucial role of quaternary mixtures of active layer in organic indoor solar cells,” Energies 12(10), 1838 (2019).
[Crossref]

J. Appl. Phys. (1)

D. Bergstrom, J. Powell, and A. F. H. Kaplan, “The absorption of light by rough metal surfaces- A three-dimensional ray-tracing analysis,” J. Appl. Phys. 103(10), 103515 (2008).
[Crossref]

J. Lumin. (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1-2, 693–701 (1970).
[Crossref]

J. Mater. Chem. C (1)

L. Zhang and Z.-S. Wang, “Gold nanoparticles as an ultrathin scattering layer for efficient dye-sensitized solar cells,” J. Mater. Chem. C 4(16), 3614–3620 (2016).
[Crossref]

J. Mod. Opt. (1)

J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
[Crossref]

J. Nanomater. (1)

O. Kvitek, J. Siegel, V. Hnatowicz, and V. Svorcik, “Noble metal nanostructures influence of structure and environment on their optical properties,” J. Nanomater. 2013(2013), 1–15 (2013).
[Crossref]

J. Phys. Chem. B (2)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti, “Synthesis of gold nanoparticles by laser ablation in toluene: Quenching and recovery of the surface plasmon absorption,” J. Phys. Chem. B 109(49), 23125–23128 (2005).
[Crossref]

J. Phys. Chem. Lett. (1)

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10(12), 3248–3253 (2019).
[Crossref]

Langmuir (1)

R. J. Aroca, G. J. Kovacs, C. A. Jennings, R. O. Loutfy, and P. S. Vincett, “Fluorescence enhancement from Langmuir-Blodgett monolayers on silver island films,” Langmuir 4(3), 518–521 (1988).
[Crossref]

Light: Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, and O. T. A. Jansen, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Mod. Phys. Lett. B (1)

D. Zhang and R.-I. Murakami, “Effect of spacer layer on enhancement and quenching of photoluminescence by surface plasmon,” Mod. Phys. Lett. B 29(06n07), 1540034 (2015).
[Crossref]

Nano Lett. (1)

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metalnanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Nanophotonics (1)

L. Meng, X. Wu, S. Ma, L. Shi, M. Zhang, L. Wang, Y. Chen, Q. Chen, and H. Zhong, “Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials,” Nanophotonics 9(1), 93–100 (2019).
[Crossref]

Nanotechnology (1)

L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, “Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems,” Nanotechnology 31(10), 105201 (2020).
[Crossref]

Nat. Commun. (1)

X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation,” Nat. Commun. 9(1), 570 (2018).
[Crossref]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Nat. Nanotechnol. (1)

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, and P. Kanjanaboos, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11(10), 872–877 (2016).
[Crossref]

Nat. Photonics (3)

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Rand, and B. P. Scholes, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites,” Nat. Photonics 11(2), 108–115 (2017).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

V. Amendola, “Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method,” Phys. Chem. Chem. Phys. 18(3), 2230–2241 (2016).
[Crossref]

Procedia Eng. (1)

S. V. Vaschenko, A. A. Ramanenka, O. S. Kulakovich, A. Muravitskaya, D. V. Guzatov, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Prog. Opt. (1)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
[Crossref]

Sci. Rep. (2)

R. Ozaki, T. Yamada, S. Yudate, K. Kadowaki, and H. Sato, “Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer,” Sci. Rep. 8(1), 17119 (2018).
[Crossref]

S. V. Gaponenko, P.-M. Adam, D. V. Guzatov, and A. Muravitskaya, “Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics,” Sci. Rep. 9(1), 7138 (2019).
[Crossref]

Science (2)

J. Greffet, “Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[Crossref]

H. Cho, S.-H Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Other (2)

K. Rahme and J. D. Holmes, ‘Gold nanoparticles: Synthesis, characterization, and bioconjugation,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, S. E. Lyshevski, ed. (Taylor & Francis, 2015).

S. V. Gaponenko and D. V. Guzatov, “Colloidal plasmonics for active nanophotonics,” Proc. IEEE (Early Access), 1–17 (2020).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Schematic of the lab setup for angular measurements.
Fig. 2.
Fig. 2. AuNPs size and density observations: (a-c) SEM micrographs for AuNPs densities Nd-A, Nd-B, Nd-C grown for various sputtering times, (d) Extinction spectra of AuNPs films, (e) Simulated scattering intensity of AuNPs for various NP spacing.
Fig. 3.
Fig. 3. (a) Schematic model of the devices without (on the left side) and with PMMA (on the right side), (b-c) PL enhancement of the devices without and with PMMA respectively.
Fig. 4.
Fig. 4. (a-b) Experimental reflectance from the devices with AuNPs (NdA - NdC) without and with PMMA, respectively, (c-d) Represents experimental reflectance vs theoretical reflecting intensity at peak emission for the respective devices.
Fig. 5.
Fig. 5. (a-b) Theoretical PA of PQDs-PAN films without and with PMMA, respectively, (c) PA of PQDs-PAN film on flat and structured (with AuNPs) substrates.
Fig. 6.
Fig. 6. Experimental angular PL intensity for the devices without (a) and with PMMA (b) respectively.
Fig. 7.
Fig. 7. Simulated scattering intensity for the emitted light at 520 nm for devices (a) without PMMA and (b) with PMMA.
Fig. 8.
Fig. 8. (a) Simulated far-field angular emission for the different dipole orientations near the AuNPs (Nd-B), (b) Simulated far-field angular emission for the averaged dipole orientation from various AuNPs sputtered substrates.
Fig. 9.
Fig. 9. (a) SEM for 40 s (Nd-D-film D) of AuNPs (b) Red-shift in the extinction for 40 s sputtering time.
Fig. 10.
Fig. 10. (a-c) AFM of AuNPs sputtered for 10s (Nd-A), 20s (Nd-B), 30s (Nd-C) respectively. (d) Variation of AuNPs boundary with respect to the sputtering time.
Fig. 11.
Fig. 11. SEM cross-section image for PQDs-PAN composite film coated on PMMA/AuNPs.
Fig. 12.
Fig. 12. (a) PL emission for Nd-A to Nd-D of sputtered AuNPs without PMMA (b) PL emission for Nd-A to Nd-D of sputtered AuNPs with PMMA.
Fig. 13.
Fig. 13. (a)-(b) Transmittance of the devices without and with PMMA respectively.
Fig. 14.
Fig. 14. (a)-(b) Simulation of QE for devices over glass and Au and for devices over PMMA and over PMMA containing Au at its bottom, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P a b s = 0.5 ω | E | 2 Im ( ε )