Abstract

With the rapid development in near / far field thermal radiation and micro- / nano- fabrication, passive radiative cooling has become an intriguing topic in both fundamental scientific research and practical energy engineering. In this paper, we use Amorphous Alumina Nanotubes (AANs) to prepare a flexible material for high-efficient daytime radiative cooling. Instead of applying parallel nanotube array or total randomly distributed nanotubes, we experimentally fabricated a porous membrane by introducing hexagonal lattice roots at the bottom and random agglomeration at the top for AANs. Near-unity emissivity originated from alumina absorption and complex scattering inside the membrane covers the 8-13 µm atmosphere window. Under direct sunlight, the flexible AANs membrane achieves a theoretical net cooling power of 71.0 W/m2, leading to an experimental maximum temperature reduction of 6.7 °C to the ambient air. Our material paves herein a way for producing low-cost and efficient flexible daytime radiative coolers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Addeo, L. Nicolais, G. Romeo, B. Bartoli, B. Coluzzi, and V. Silvestrini, “Light selective structures for large scale natural air conditioning,” Sol. Energy 24(1), 93–98 (1980).
    [Crossref]
  2. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref]
  3. E. E. Bell, L. Eisner, J. Young, and R. A. Oetjen, “Spectral radiance of sky and terrain at wavelengths between 1 and 20 microns. II. Sky measurements,” J. Opt. Soc. Am. 50(12), 1313–1320 (1960).
    [Crossref]
  4. J. Lee, D. Kim, C.-H. Choi, and W. Chung, “Nanoporous anodic alumina oxide layer and its sealing for the enhancement of radiative heat dissipation of aluminum alloy,” Nano Energy 31, 504–513 (2017).
    [Crossref]
  5. J. C. Raymond, D. P. Cox, and B. W. Smith, “Radiative cooling of a low-density plasma,” Astrophys. J. 204, 290–292 (1976).
    [Crossref]
  6. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  7. T. M. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
    [Crossref]
  8. T. M. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
    [Crossref]
  9. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref]
  10. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  11. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  12. M. Hu, G. Pei, L. Li, R. Zheng, J. Li, and J. Ji, “Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling,” Int. J. Photoenergy 2015, 1–9 (2015).
    [Crossref]
  13. J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
    [Crossref]
  14. S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
    [Crossref]
  15. A. Aili, Z. Wei, Y. Chen, D. Zhao, R. Yang, and X. Yin, “Selection of polymers with functional groups for daytime radiative cooling,” Mater. Today Phys. 10, 100127 (2019).
    [Crossref]
  16. Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
    [Crossref]
  17. Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
    [Crossref]
  18. M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  19. J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
    [Crossref]
  20. D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
    [Crossref]
  21. L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
    [Crossref]
  22. A. R. Gentle and G. Smith, “A subambient open roof surface under the Mid-Summer sun,” Adv. Sci. 2(9), 1500119 (2015).
    [Crossref]
  23. G. Hass, “Filmed surfaces for reflecting optics,” J. Opt. Soc. Am. 45(11), 945–952 (1955).
    [Crossref]
  24. Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, “Daytime passive radiative cooler using porous alumina,” Sol. Energy Mater. Sol. Cells 191, 50–54 (2019).
    [Crossref]
  25. M. Planck, “On the law of distribution of energy in the normal spectrum,” Ann. Phys. 4, 82–90 (1901).
    [Crossref]
  26. W. Brown, Light scattering: principles and development (Clarendon Press Oxford, 1996).
  27. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
    [Crossref]
  28. Carla Balocco, Luca Mercatelli, Niccolò Azzali, Marco Meucci, and G. Grazzini, “Comparative evaluation of the infrared transmission of polymer films,” Energy Convers. Manage. 44(18), 2839–2856 (2003).
    [Crossref]

2020 (2)

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
[Crossref]

2019 (2)

A. Aili, Z. Wei, Y. Chen, D. Zhao, R. Yang, and X. Yin, “Selection of polymers with functional groups for daytime radiative cooling,” Mater. Today Phys. 10, 100127 (2019).
[Crossref]

Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, “Daytime passive radiative cooler using porous alumina,” Sol. Energy Mater. Sol. Cells 191, 50–54 (2019).
[Crossref]

2018 (3)

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

2017 (3)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

J. Lee, D. Kim, C.-H. Choi, and W. Chung, “Nanoporous anodic alumina oxide layer and its sealing for the enhancement of radiative heat dissipation of aluminum alloy,” Nano Energy 31, 504–513 (2017).
[Crossref]

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

2016 (1)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

2015 (4)

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

M. Hu, G. Pei, L. Li, R. Zheng, J. Li, and J. Ji, “Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling,” Int. J. Photoenergy 2015, 1–9 (2015).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

A. R. Gentle and G. Smith, “A subambient open roof surface under the Mid-Summer sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

2014 (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

2013 (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

2003 (1)

Carla Balocco, Luca Mercatelli, Niccolò Azzali, Marco Meucci, and G. Grazzini, “Comparative evaluation of the infrared transmission of polymer films,” Energy Convers. Manage. 44(18), 2839–2856 (2003).
[Crossref]

1995 (1)

T. M. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

1992 (1)

T. M. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

1981 (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1980 (1)

A. Addeo, L. Nicolais, G. Romeo, B. Bartoli, B. Coluzzi, and V. Silvestrini, “Light selective structures for large scale natural air conditioning,” Sol. Energy 24(1), 93–98 (1980).
[Crossref]

1976 (1)

J. C. Raymond, D. P. Cox, and B. W. Smith, “Radiative cooling of a low-density plasma,” Astrophys. J. 204, 290–292 (1976).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

1960 (1)

1955 (1)

1901 (1)

M. Planck, “On the law of distribution of energy in the normal spectrum,” Ann. Phys. 4, 82–90 (1901).
[Crossref]

Addeo, A.

A. Addeo, L. Nicolais, G. Romeo, B. Bartoli, B. Coluzzi, and V. Silvestrini, “Light selective structures for large scale natural air conditioning,” Sol. Energy 24(1), 93–98 (1980).
[Crossref]

Aili, A.

A. Aili, Z. Wei, Y. Chen, D. Zhao, R. Yang, and X. Yin, “Selection of polymers with functional groups for daytime radiative cooling,” Mater. Today Phys. 10, 100127 (2019).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Azzali, Niccolò

Carla Balocco, Luca Mercatelli, Niccolò Azzali, Marco Meucci, and G. Grazzini, “Comparative evaluation of the infrared transmission of polymer films,” Energy Convers. Manage. 44(18), 2839–2856 (2003).
[Crossref]

Balocco, Carla

Carla Balocco, Luca Mercatelli, Niccolò Azzali, Marco Meucci, and G. Grazzini, “Comparative evaluation of the infrared transmission of polymer films,” Energy Convers. Manage. 44(18), 2839–2856 (2003).
[Crossref]

Bartoli, B.

A. Addeo, L. Nicolais, G. Romeo, B. Bartoli, B. Coluzzi, and V. Silvestrini, “Light selective structures for large scale natural air conditioning,” Sol. Energy 24(1), 93–98 (1980).
[Crossref]

Bell, E. E.

Bozhevolnyi, S. I.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Brown, W.

W. Brown, Light scattering: principles and development (Clarendon Press Oxford, 1996).

Cao, F.

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Chen, G.

Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
[Crossref]

Chen, L.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Chen, Y.

A. Aili, Z. Wei, Y. Chen, D. Zhao, R. Yang, and X. Yin, “Selection of polymers with functional groups for daytime radiative cooling,” Mater. Today Phys. 10, 100127 (2019).
[Crossref]

Chen, Z.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Choi, C.-H.

J. Lee, D. Kim, C.-H. Choi, and W. Chung, “Nanoporous anodic alumina oxide layer and its sealing for the enhancement of radiative heat dissipation of aluminum alloy,” Nano Energy 31, 504–513 (2017).
[Crossref]

Chung, W.

J. Lee, D. Kim, C.-H. Choi, and W. Chung, “Nanoporous anodic alumina oxide layer and its sealing for the enhancement of radiative heat dissipation of aluminum alloy,” Nano Energy 31, 504–513 (2017).
[Crossref]

Coluzzi, B.

A. Addeo, L. Nicolais, G. Romeo, B. Bartoli, B. Coluzzi, and V. Silvestrini, “Light selective structures for large scale natural air conditioning,” Sol. Energy 24(1), 93–98 (1980).
[Crossref]

Cox, D. P.

J. C. Raymond, D. P. Cox, and B. W. Smith, “Radiative cooling of a low-density plasma,” Astrophys. J. 204, 290–292 (1976).
[Crossref]

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Denisuk, N.

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
[Crossref]

Ding, F.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Du, W.

Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, “Daytime passive radiative cooler using porous alumina,” Sol. Energy Mater. Sol. Cells 191, 50–54 (2019).
[Crossref]

Eisner, L.

Fan, S.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Fu, Y.

Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, “Daytime passive radiative cooler using porous alumina,” Sol. Energy Mater. Sol. Cells 191, 50–54 (2019).
[Crossref]

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. Smith, “A subambient open roof surface under the Mid-Summer sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

Granqvist, C. G.

T. M. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Grazzini, G.

Carla Balocco, Luca Mercatelli, Niccolò Azzali, Marco Meucci, and G. Grazzini, “Comparative evaluation of the infrared transmission of polymer films,” Energy Convers. Manage. 44(18), 2839–2856 (2003).
[Crossref]

Gu, M.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Hass, G.

Hjortsberg, A.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Hossain, M. M.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Hu, M.

M. Hu, G. Pei, L. Li, R. Zheng, J. Li, and J. Ji, “Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling,” Int. J. Photoenergy 2015, 1–9 (2015).
[Crossref]

Ji, J.

M. Hu, G. Pei, L. Li, R. Zheng, J. Li, and J. Ji, “Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling,” Int. J. Photoenergy 2015, 1–9 (2015).
[Crossref]

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Jia, M.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Jurado, Z.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kim, D.

J. Lee, D. Kim, C.-H. Choi, and W. Chung, “Nanoporous anodic alumina oxide layer and its sealing for the enhancement of radiative heat dissipation of aluminum alloy,” Nano Energy 31, 504–513 (2017).
[Crossref]

Kou, J.-l.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Lee, J.

J. Lee, D. Kim, C.-H. Choi, and W. Chung, “Nanoporous anodic alumina oxide layer and its sealing for the enhancement of radiative heat dissipation of aluminum alloy,” Nano Energy 31, 504–513 (2017).
[Crossref]

Li, J.

M. Hu, G. Pei, L. Li, R. Zheng, J. Li, and J. Ji, “Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling,” Int. J. Photoenergy 2015, 1–9 (2015).
[Crossref]

Li, L.

M. Hu, G. Pei, L. Li, R. Zheng, J. Li, and J. Ji, “Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling,” Int. J. Photoenergy 2015, 1–9 (2015).
[Crossref]

Li, R.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Liu, C.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Liu, Y.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Long, L.

Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
[Crossref]

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Ma, R.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Ma, Y. G.

Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, “Daytime passive radiative cooler using porous alumina,” Sol. Energy Mater. Sol. Cells 191, 50–54 (2019).
[Crossref]

Mandal, J.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Meng, S.

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
[Crossref]

Mercatelli, Luca

Carla Balocco, Luca Mercatelli, Niccolò Azzali, Marco Meucci, and G. Grazzini, “Comparative evaluation of the infrared transmission of polymer films,” Energy Convers. Manage. 44(18), 2839–2856 (2003).
[Crossref]

Meucci, Marco

Carla Balocco, Luca Mercatelli, Niccolò Azzali, Marco Meucci, and G. Grazzini, “Comparative evaluation of the infrared transmission of polymer films,” Energy Convers. Manage. 44(18), 2839–2856 (2003).
[Crossref]

Minnich, A. J.

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Nicolais, L.

A. Addeo, L. Nicolais, G. Romeo, B. Bartoli, B. Coluzzi, and V. Silvestrini, “Light selective structures for large scale natural air conditioning,” Sol. Energy 24(1), 93–98 (1980).
[Crossref]

Niklasson, G. A.

T. M. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

T. M. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

Nilsson, T. M.

T. M. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

T. M. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

Oetjen, R. A.

Overvig, A. C.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Pei, G.

M. Hu, G. Pei, L. Li, R. Zheng, J. Li, and J. Ji, “Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling,” Int. J. Photoenergy 2015, 1–9 (2015).
[Crossref]

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Planck, M.

M. Planck, “On the law of distribution of energy in the normal spectrum,” Ann. Phys. 4, 82–90 (1901).
[Crossref]

Pors, A.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Raman, A.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Raman, A. P.

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Raymond, J. C.

J. C. Raymond, D. P. Cox, and B. W. Smith, “Radiative cooling of a low-density plasma,” Astrophys. J. 204, 290–292 (1976).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Romeo, G.

A. Addeo, L. Nicolais, G. Romeo, B. Bartoli, B. Coluzzi, and V. Silvestrini, “Light selective structures for large scale natural air conditioning,” Sol. Energy 24(1), 93–98 (1980).
[Crossref]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Shi, N. N.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Silvestrini, V.

A. Addeo, L. Nicolais, G. Romeo, B. Bartoli, B. Coluzzi, and V. Silvestrini, “Light selective structures for large scale natural air conditioning,” Sol. Energy 24(1), 93–98 (1980).
[Crossref]

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Smith, B. W.

J. C. Raymond, D. P. Cox, and B. W. Smith, “Radiative cooling of a low-density plasma,” Astrophys. J. 204, 290–292 (1976).
[Crossref]

Smith, G.

A. R. Gentle and G. Smith, “A subambient open roof surface under the Mid-Summer sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

Su, Y. S.

Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, “Daytime passive radiative cooler using porous alumina,” Sol. Energy Mater. Sol. Cells 191, 50–54 (2019).
[Crossref]

Sun, K.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Wang, L.

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
[Crossref]

Wei, Z.

A. Aili, Z. Wei, Y. Chen, D. Zhao, R. Yang, and X. Yin, “Selection of polymers with functional groups for daytime radiative cooling,” Mater. Today Phys. 10, 100127 (2019).
[Crossref]

Wu, D.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Wu, Z.

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Xiao, X.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Xu, Z.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yang, J.

Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, “Daytime passive radiative cooler using porous alumina,” Sol. Energy Mater. Sol. Cells 191, 50–54 (2019).
[Crossref]

Yang, R.

A. Aili, Z. Wei, Y. Chen, D. Zhao, R. Yang, and X. Yin, “Selection of polymers with functional groups for daytime radiative cooling,” Mater. Today Phys. 10, 100127 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yang, Y.

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
[Crossref]

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Ye, H.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yin, X.

A. Aili, Z. Wei, Y. Chen, D. Zhao, R. Yang, and X. Yin, “Selection of polymers with functional groups for daytime radiative cooling,” Mater. Today Phys. 10, 100127 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Young, J.

Yu, L.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yu, N.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Yu, Z.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhao, D.

A. Aili, Z. Wei, Y. Chen, D. Zhao, R. Yang, and X. Yin, “Selection of polymers with functional groups for daytime radiative cooling,” Mater. Today Phys. 10, 100127 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zheng, R.

M. Hu, G. Pei, L. Li, R. Zheng, J. Li, and J. Ji, “Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling,” Int. J. Photoenergy 2015, 1–9 (2015).
[Crossref]

Zhou, H.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Zhu, L.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Zhu, Y.

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
[Crossref]

ACS Photonics (1)

J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Adv. Opt. Mater. (1)

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Adv. Sci. (1)

A. R. Gentle and G. Smith, “A subambient open roof surface under the Mid-Summer sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

Ann. Phys. (1)

M. Planck, “On the law of distribution of energy in the normal spectrum,” Ann. Phys. 4, 82–90 (1901).
[Crossref]

Astrophys. J. (1)

J. C. Raymond, D. P. Cox, and B. W. Smith, “Radiative cooling of a low-density plasma,” Astrophys. J. 204, 290–292 (1976).
[Crossref]

Energy Convers. Manage. (1)

Carla Balocco, Luca Mercatelli, Niccolò Azzali, Marco Meucci, and G. Grazzini, “Comparative evaluation of the infrared transmission of polymer films,” Energy Convers. Manage. 44(18), 2839–2856 (2003).
[Crossref]

Int. J. Photoenergy (1)

M. Hu, G. Pei, L. Li, R. Zheng, J. Li, and J. Ji, “Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling,” Int. J. Photoenergy 2015, 1–9 (2015).
[Crossref]

J. Appl. Phys. (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

J. Opt. Soc. Am. (2)

Mater. Des. (1)

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Mater. Today Phys. (1)

A. Aili, Z. Wei, Y. Chen, D. Zhao, R. Yang, and X. Yin, “Selection of polymers with functional groups for daytime radiative cooling,” Mater. Today Phys. 10, 100127 (2019).
[Crossref]

Nano Energy (1)

J. Lee, D. Kim, C.-H. Choi, and W. Chung, “Nanoporous anodic alumina oxide layer and its sealing for the enhancement of radiative heat dissipation of aluminum alloy,” Nano Energy 31, 504–513 (2017).
[Crossref]

Nano Lett. (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Nat. Commun. (1)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

Rep. Prog. Phys. (1)

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Science (2)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Sol. Energy (2)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

A. Addeo, L. Nicolais, G. Romeo, B. Bartoli, B. Coluzzi, and V. Silvestrini, “Light selective structures for large scale natural air conditioning,” Sol. Energy 24(1), 93–98 (1980).
[Crossref]

Sol. Energy Mater. Sol. Cells (5)

Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, “Daytime passive radiative cooler using porous alumina,” Sol. Energy Mater. Sol. Cells 191, 50–54 (2019).
[Crossref]

T. M. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

T. M. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, “Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 208, 110393 (2020).
[Crossref]

Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, and Y. Zhu, “Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling,” Sol. Energy Mater. Sol. Cells 211, 110548 (2020).
[Crossref]

Other (1)

W. Brown, Light scattering: principles and development (Clarendon Press Oxford, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic diagram of the daytime passive radiative cooling effect and configuration of the flexible AANs membrane. (b) Photo of the flexible AANs membrane. The silver region marked by the white circle is the flexible AANs membrane, bending at almost 40 degree.
Fig. 2.
Fig. 2. (a) Fabrication diagram of the flexible AANs membrane. (b-f) SEM images for the membrane samples (t = 20 µm) dissolved in acid solution after 0 min (b), 15 min (c), 25 min (d) and 30 min (e) (f). Note that image (f) is the zoom-out of the image (e).
Fig. 3.
Fig. 3. (a-b) Measured spectral absorptivity / emissivity of the hard samples and flexible sample from the visible to the mid-infrared. Solar spectrum (light yellow region) and atmospheric transmittance (light blue region) are plotted for references. The hard samples have t = 5 µm, 10 µm, and 20 µm, while the flexible sample has t = 20 µm. (c) Measured refractive index (n) and extinction coefficient (k) of the amorphous alumina in the mid-infrared. (d) Relationship between the cooling power, Pnet, and the temperature difference, ΔT, in the hard samples and flexible sample. The numerical results are obtained with hc= 0.
Fig. 4.
Fig. 4. (a) Schematic diagram of the experimental setup for radiative cooling measurement. Inset: photo of the experimental setup (upper left corner). (b) Rooftop temperature measurement (solid line) and the corresponding temperature difference (dash-dot line) of the 5 µm (green),10 µm (yellow), and 20 µm (blue) thick hard samples against atmosphere temperature (red) in late July 2019, Chengdu. (c) Measured 24 h temperature for the flexible sample (blue) and atmosphere (red), and the corresponding temperature difference (black). The sun sign indicates continuous direct sunlight. The sun sign with a cloud indicates intermittent direct sunlight.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P net  =  P rad P atm P nonrad P sun ,
P rad  =  d Ω cos θ 0 I B ( T , λ ) e ( λ , θ ) d λ .
P atm  =  d Ω cos θ 0 I B ( T , λ ) e ( λ , θ ) e a t m ( λ , θ ) d λ .
P s u n  =  0 I A M 1.5 ( λ , θ s u n ) e ( λ , θ ) d λ .
e a t m ( λ , θ ) = 1 t ( λ ) 1 / cos θ