Abstract

We investigate the nonlinear optical response of a thin film of ion-implanted VO2 nanocrystals with open aperture z-scans involving femtosecond near-infrared pulses. Beyond the established nonlinearity related to the insulator-metal phase transition of VO2, the metallic state features a pronounced saturable absorption for 100 fs pulses from a modelocked Yb:fiber source at λ = 1036 nm. In contrast, we find a pronounced reverse saturable absorption for 90 fs pulses in the telecom window at λ = 1550 nm. We attribute these nonlinearities to a transient red-shift of the plasmonic resonance of the nanocrystals, in line with the temperature dependence of the linear absorption and the theoretical expectation for electronic heating. Details of the transmissivity characteristics can be tailored by the lattice temperature and/or the size of the nanocrystals. The results hold promise for the use of VO2 nanocrystals as a saturable absorber, e.g., to mode-locked near-infrared lasers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [Crossref]
  2. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
    [Crossref]
  3. G. Seo, B.-J. Kim, Y. W. Lee, and H.-T. Kim, “Photo-assisted bistable switching using Mott transition in two-terminal VO2 device,” Appl. Phys. Lett. 100(1), 011908 (2012).
    [Crossref]
  4. T. V. Son, K. Zongo, C. Ba, G. Beydaghyan, and A. Haché, “Pure optical phase control in vanadium dioxide thin films,” Opt. Commun. 320, 151–155 (2014).
    [Crossref]
  5. A. Rashidi, S. Roshan Entezar, and A. Hatef, “Tunable Multispectral Near-Infrared Absorption with a Phase Transition of VO2 Nanoparticles Hybridized with 1D Photonic Crystals,” Nanotechnology 10(1088), 1361–6528 (2020).
    [Crossref]
  6. Y. Tan, L. Chen, and D. Wang, “Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform,” Sci. Rep. 6(1), 26176 (2016).
    [Crossref]
  7. R. López, R. F. Haglund, and L. C. Feldman, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85(22), 5191–5193 (2004).
    [Crossref]
  8. O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dimitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
    [Crossref]
  9. J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100(23), 231911 (2012).
    [Crossref]
  10. M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30(5), 558–560 (2005).
    [Crossref]
  11. H. Karl, J. Dreher, and B. Stritzker, “Semiconductor-metal Phase Transition in Doped Ion Beam Synthesized VO2 Nanoclusters,” Mater. Res. Soc. Symp. Proc. 1174, 1174-V06-35 (2009).
    [Crossref]
  12. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
    [Crossref]
  13. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  14. M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1-xWxO2 films,” Appl. Opt. 37(10), 1858–1861 (1998).
    [Crossref]
  15. D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998).
    [Crossref]
  16. H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical Properties of Vanadium Dioxide Film during Semiconductive-Metallic Phase Transition,” Jpn. J. Appl. Phys. 46(No. 5), L113–L116 (2007).
    [Crossref]
  17. K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
    [Crossref]
  18. M. Currie, V. D. Wheeler, B. Downey, N. Nepal, S. B. Qadri, J. A. Wollmershauser, J. Avila, and L. Nyakiti, “Asymmetric hysteresis in vanadium dioxide thin films,” Opt. Mater. Express 9(9), 3717–3728 (2019).
    [Crossref]
  19. R. López, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
    [Crossref]
  20. W. Zeng, N. Chena, and W. Xie, “Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows,” CrystEngComm 22(5), 851–869 (2020).
    [Crossref]
  21. S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108(6), 063525 (2010).
    [Crossref]
  22. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10(10), 490–492 (1985).
    [Crossref]
  23. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  24. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
    [Crossref]
  25. Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
    [Crossref]
  26. X. Zheng, Y. Zhang, R. Chen, X. Cheng, Z. Xu, and T. Jiang, “Z-scan measurement of the nonlinear refractive index of monolayer WS2,” Opt. Express 23(12), 15616–15623 (2015).
    [Crossref]
  27. J. Wang, B. Gu, H.-T. Wang, and X.-W. Ni, “Z-scan analytical theory for material with saturable absorption and two-photon absorption,” Opt. Commun. 283(18), 3525–3528 (2010).
    [Crossref]
  28. Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
    [Crossref]
  29. B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
    [Crossref]
  30. M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(1-5), 49–58 (2012).
    [Crossref]
  31. D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of Nd laser radiation in GaAs,” Appl. Phys. Lett. 23(5), 243–244 (1973).
    [Crossref]
  32. N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
    [Crossref]
  33. A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
    [Crossref]
  34. D. H. Hensler, “Transport Properties of Sputtered Vanadium Dioxide Thin Films,” J. Appl. Phys. 39(5), 2354–2360 (1968).
    [Crossref]
  35. D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, “Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition,” Phys. Rev. B 79(15), 153107 (2009).
    [Crossref]

2020 (2)

A. Rashidi, S. Roshan Entezar, and A. Hatef, “Tunable Multispectral Near-Infrared Absorption with a Phase Transition of VO2 Nanoparticles Hybridized with 1D Photonic Crystals,” Nanotechnology 10(1088), 1361–6528 (2020).
[Crossref]

W. Zeng, N. Chena, and W. Xie, “Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows,” CrystEngComm 22(5), 851–869 (2020).
[Crossref]

2019 (1)

2016 (1)

Y. Tan, L. Chen, and D. Wang, “Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform,” Sci. Rep. 6(1), 26176 (2016).
[Crossref]

2015 (1)

2014 (1)

T. V. Son, K. Zongo, C. Ba, G. Beydaghyan, and A. Haché, “Pure optical phase control in vanadium dioxide thin films,” Opt. Commun. 320, 151–155 (2014).
[Crossref]

2013 (3)

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dimitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref]

2012 (4)

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(1-5), 49–58 (2012).
[Crossref]

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100(23), 231911 (2012).
[Crossref]

G. Seo, B.-J. Kim, Y. W. Lee, and H.-T. Kim, “Photo-assisted bistable switching using Mott transition in two-terminal VO2 device,” Appl. Phys. Lett. 100(1), 011908 (2012).
[Crossref]

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

2011 (1)

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

2010 (2)

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108(6), 063525 (2010).
[Crossref]

J. Wang, B. Gu, H.-T. Wang, and X.-W. Ni, “Z-scan analytical theory for material with saturable absorption and two-photon absorption,” Opt. Commun. 283(18), 3525–3528 (2010).
[Crossref]

2009 (2)

D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, “Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition,” Phys. Rev. B 79(15), 153107 (2009).
[Crossref]

H. Karl, J. Dreher, and B. Stritzker, “Semiconductor-metal Phase Transition in Doped Ion Beam Synthesized VO2 Nanoclusters,” Mater. Res. Soc. Symp. Proc. 1174, 1174-V06-35 (2009).
[Crossref]

2007 (3)

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical Properties of Vanadium Dioxide Film during Semiconductive-Metallic Phase Transition,” Jpn. J. Appl. Phys. 46(No. 5), L113–L116 (2007).
[Crossref]

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

2005 (2)

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30(5), 558–560 (2005).
[Crossref]

2004 (2)

R. López, R. F. Haglund, and L. C. Feldman, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85(22), 5191–5193 (2004).
[Crossref]

R. López, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref]

1998 (2)

M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1-xWxO2 films,” Appl. Opt. 37(10), 1858–1861 (1998).
[Crossref]

D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1985 (1)

1975 (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

1973 (1)

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of Nd laser radiation in GaAs,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

1968 (2)

D. H. Hensler, “Transport Properties of Sputtered Vanadium Dioxide Thin Films,” J. Appl. Phys. 39(5), 2354–2360 (1968).
[Crossref]

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

1966 (1)

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

1959 (1)

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Ahn, K. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Ahn, Y. H.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Appavoo, K.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Avila, J.

Ba, C.

T. V. Son, K. Zongo, C. Ba, G. Beydaghyan, and A. Haché, “Pure optical phase control in vanadium dioxide thin films,” Opt. Commun. 320, 151–155 (2014).
[Crossref]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Betz, M.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[Crossref]

Beydaghyan, G.

T. V. Son, K. Zongo, C. Ba, G. Beydaghyan, and A. Haché, “Pure optical phase control in vanadium dioxide thin films,” Opt. Commun. 320, 151–155 (2014).
[Crossref]

Boatner, L. A.

Bondarchuk, I. S.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dimitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Bristow, A. D.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[Crossref]

Cavalleri, A.

Chang, Q.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Chen, J.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Chen, L.

Y. Tan, L. Chen, and D. Wang, “Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform,” Sci. Rep. 6(1), 26176 (2016).
[Crossref]

Chen, R.

Chena, N.

W. Zeng, N. Chena, and W. Xie, “Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows,” CrystEngComm 22(5), 851–869 (2020).
[Crossref]

Cheng, X.

Choi, S. B.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Claflin, B. B.

D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, “Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition,” Phys. Rev. B 79(15), 153107 (2009).
[Crossref]

Currie, M.

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref]

de Abajo, F. J. G.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref]

Dimitruk, I. M.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dimitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Downey, B.

Dreher, J.

H. Karl, J. Dreher, and B. Stritzker, “Semiconductor-metal Phase Transition in Doped Ion Beam Synthesized VO2 Nanoclusters,” Mater. Res. Soc. Symp. Proc. 1174, 1174-V06-35 (2009).
[Crossref]

Fan, Y.-X.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Fang, Z.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref]

Feldman, L.

R. López, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref]

Feldman, L. C.

Gao, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Granqvist, C. G.

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108(6), 063525 (2010).
[Crossref]

Gu, B.

J. Wang, B. Gu, H.-T. Wang, and X.-W. Ni, “Z-scan analytical theory for material with saturable absorption and two-photon absorption,” Opt. Commun. 283(18), 3525–3528 (2010).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Guggenheim, H. J.

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Gurin, V. S.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dimitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Haché, A.

T. V. Son, K. Zongo, C. Ba, G. Beydaghyan, and A. Haché, “Pure optical phase control in vanadium dioxide thin films,” Opt. Commun. 320, 151–155 (2014).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Haglund, R. F.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30(5), 558–560 (2005).
[Crossref]

R. López, R. F. Haglund, and L. C. Feldman, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85(22), 5191–5193 (2004).
[Crossref]

R. López, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref]

Halas, N. J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref]

Hari, M.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(1-5), 49–58 (2012).
[Crossref]

Hatef, A.

A. Rashidi, S. Roshan Entezar, and A. Hatef, “Tunable Multispectral Near-Infrared Absorption with a Phase Transition of VO2 Nanoparticles Hybridized with 1D Photonic Crystals,” Nanotechnology 10(1088), 1361–6528 (2020).
[Crossref]

Haynes, T. E.

He, J.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Heiman, D.

D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, “Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition,” Phys. Rev. B 79(15), 153107 (2009).
[Crossref]

Hensler, D. H.

D. H. Hensler, “Transport Properties of Sputtered Vanadium Dioxide Thin Films,” J. Appl. Phys. 39(5), 2354–2360 (1968).
[Crossref]

Ji, W.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Jiang, T.

Jiao, W.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Jin, P.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical Properties of Vanadium Dioxide Film during Semiconductive-Metallic Phase Transition,” Jpn. J. Appl. Phys. 46(No. 5), L113–L116 (2007).
[Crossref]

M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1-xWxO2 films,” Appl. Opt. 37(10), 1858–1861 (1998).
[Crossref]

Joseph, S. A.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(1-5), 49–58 (2012).
[Crossref]

Kakiuchida, H.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical Properties of Vanadium Dioxide Film during Semiconductive-Metallic Phase Transition,” Jpn. J. Appl. Phys. 46(No. 5), L113–L116 (2007).
[Crossref]

Karl, H.

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100(23), 231911 (2012).
[Crossref]

H. Karl, J. Dreher, and B. Stritzker, “Semiconductor-metal Phase Transition in Doped Ion Beam Synthesized VO2 Nanoclusters,” Mater. Res. Soc. Symp. Proc. 1174, 1174-V06-35 (2009).
[Crossref]

Kim, B.-J.

G. Seo, B.-J. Kim, Y. W. Lee, and H.-T. Kim, “Photo-assisted bistable switching using Mott transition in two-terminal VO2 device,” Appl. Phys. Lett. 100(1), 011908 (2012).
[Crossref]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Kim, D. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Kim, H. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Kim, H.-T.

G. Seo, B.-J. Kim, Y. W. Lee, and H.-T. Kim, “Photo-assisted bistable switching using Mott transition in two-terminal VO2 device,” Appl. Phys. Lett. 100(1), 011908 (2012).
[Crossref]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Kleinman, D. A.

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of Nd laser radiation in GaAs,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

Kotko, A. V.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dimitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Krenner, H. J.

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100(23), 231911 (2012).
[Crossref]

Kyoung, J. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref]

Lee, Y. W.

G. Seo, B.-J. Kim, Y. W. Lee, and H.-T. Kim, “Photo-assisted bistable switching using Mott transition in two-terminal VO2 device,” Appl. Phys. Lett. 100(1), 011908 (2012).
[Crossref]

Lei, D. Y.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Li, S.-Y.

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108(6), 063525 (2010).
[Crossref]

Li, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Liu, H.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

López, R.

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30(5), 558–560 (2005).
[Crossref]

R. López, R. F. Haglund, and L. C. Feldman, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85(22), 5191–5193 (2004).
[Crossref]

R. López, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref]

Maier, S. A.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Mathew, S.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(1-5), 49–58 (2012).
[Crossref]

Miller, R. C.

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of Nd laser radiation in GaAs,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

Morin, F. J.

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Mott, N. F.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Nakao, S.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical Properties of Vanadium Dioxide Film during Semiconductive-Metallic Phase Transition,” Jpn. J. Appl. Phys. 46(No. 5), L113–L116 (2007).
[Crossref]

Nampoori, V. P. N.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(1-5), 49–58 (2012).
[Crossref]

Narayanamurti, V.

D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, “Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition,” Phys. Rev. B 79(15), 153107 (2009).
[Crossref]

Nepal, N.

Neumann, O.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref]

Ni, X.-W.

J. Wang, B. Gu, H.-T. Wang, and X.-W. Ni, “Z-scan analytical theory for material with saturable absorption and two-photon absorption,” Opt. Commun. 283(18), 3525–3528 (2010).
[Crossref]

Niklasson, G. A.

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108(6), 063525 (2010).
[Crossref]

Nithyaja, B.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(1-5), 49–58 (2012).
[Crossref]

Nordland, W. A.

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of Nd laser radiation in GaAs,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

Nordlander, P.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref]

Nyakiti, L.

Pantelides, S. T.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Park, D. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Park, H. R.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Pfeiffer, M.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[Crossref]

Polman, A.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref]

Qadri, S. B.

Radhakrishnan, P.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(1-5), 49–58 (2012).
[Crossref]

Ramanathan, S.

D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, “Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition,” Phys. Rev. B 79(15), 153107 (2009).
[Crossref]

Rashidi, A.

A. Rashidi, S. Roshan Entezar, and A. Hatef, “Tunable Multispectral Near-Infrared Absorption with a Phase Transition of VO2 Nanoparticles Hybridized with 1D Photonic Crystals,” Nanotechnology 10(1088), 1361–6528 (2020).
[Crossref]

Rini, M.

Roshan Entezar, S.

A. Rashidi, S. Roshan Entezar, and A. Hatef, “Tunable Multispectral Near-Infrared Absorption with a Phase Transition of VO2 Nanoparticles Hybridized with 1D Photonic Crystals,” Nanotechnology 10(1088), 1361–6528 (2020).
[Crossref]

Rotenberg, N.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[Crossref]

Rotermund, F.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Ruzmetov, D.

D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, “Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition,” Phys. Rev. B 79(15), 153107 (2009).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Schoenlein, R. W.

Seo, G.

G. Seo, B.-J. Kim, Y. W. Lee, and H.-T. Kim, “Photo-assisted bistable switching using Mott transition in two-terminal VO2 device,” Appl. Phys. Lett. 100(1), 011908 (2012).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Soileau, M. J.

Son, T. V.

T. V. Son, K. Zongo, C. Ba, G. Beydaghyan, and A. Haché, “Pure optical phase control in vanadium dioxide thin films,” Opt. Commun. 320, 151–155 (2014).
[Crossref]

Song, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Sonnefraud, Y.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Stritzker, B.

H. Karl, J. Dreher, and B. Stritzker, “Semiconductor-metal Phase Transition in Doped Ion Beam Synthesized VO2 Nanoclusters,” Mater. Res. Soc. Symp. Proc. 1174, 1174-V06-35 (2009).
[Crossref]

Stroud, D.

D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998).
[Crossref]

Tan, Y.

Y. Tan, L. Chen, and D. Wang, “Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform,” Sci. Rep. 6(1), 26176 (2016).
[Crossref]

Tanemura, S.

Tazawa, M.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical Properties of Vanadium Dioxide Film during Semiconductive-Metallic Phase Transition,” Jpn. J. Appl. Phys. 46(No. 5), L113–L116 (2007).
[Crossref]

M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1-xWxO2 films,” Appl. Opt. 37(10), 1858–1861 (1998).
[Crossref]

Urban, A. S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref]

van Driel, H. M.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10(10), 490–492 (1985).
[Crossref]

Vanherzeele, H.

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Wang, B.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Wang, D.

Y. Tan, L. Chen, and D. Wang, “Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform,” Sci. Rep. 6(1), 26176 (2016).
[Crossref]

Wang, H.-T.

J. Wang, B. Gu, H.-T. Wang, and X.-W. Ni, “Z-scan analytical theory for material with saturable absorption and two-photon absorption,” Opt. Commun. 283(18), 3525–3528 (2010).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Wang, J.

J. Wang, B. Gu, H.-T. Wang, and X.-W. Ni, “Z-scan analytical theory for material with saturable absorption and two-photon absorption,” Opt. Commun. 283(18), 3525–3528 (2010).
[Crossref]

Wang, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wheeler, V. D.

Wixforth, A.

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100(23), 231911 (2012).
[Crossref]

Wollmershauser, J. A.

Woodall, M. A.

Xie, W.

W. Zeng, N. Chena, and W. Xie, “Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows,” CrystEngComm 22(5), 851–869 (2020).
[Crossref]

Xu, Z.

Yeshchenko, O. A.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dimitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Zeng, W.

W. Zeng, N. Chena, and W. Xie, “Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows,” CrystEngComm 22(5), 851–869 (2020).
[Crossref]

Zhang, X.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Zhang, Y.

Zhen, Y.-R.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref]

Zheng, X.

Zimmer, J.

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100(23), 231911 (2012).
[Crossref]

Zongo, K.

T. V. Son, K. Zongo, C. Ba, G. Beydaghyan, and A. Haché, “Pure optical phase control in vanadium dioxide thin films,” Opt. Commun. 320, 151–155 (2014).
[Crossref]

Zylbersztejn, A.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

ACS Nano (1)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of Nd laser radiation in GaAs,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

G. Seo, B.-J. Kim, Y. W. Lee, and H.-T. Kim, “Photo-assisted bistable switching using Mott transition in two-terminal VO2 device,” Appl. Phys. Lett. 100(1), 011908 (2012).
[Crossref]

R. López, R. F. Haglund, and L. C. Feldman, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85(22), 5191–5193 (2004).
[Crossref]

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100(23), 231911 (2012).
[Crossref]

CrystEngComm (1)

W. Zeng, N. Chena, and W. Xie, “Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows,” CrystEngComm 22(5), 851–869 (2020).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Appl. Phys. (3)

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108(6), 063525 (2010).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

D. H. Hensler, “Transport Properties of Sputtered Vanadium Dioxide Thin Films,” J. Appl. Phys. 39(5), 2354–2360 (1968).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical Properties of Vanadium Dioxide Film during Semiconductive-Metallic Phase Transition,” Jpn. J. Appl. Phys. 46(No. 5), L113–L116 (2007).
[Crossref]

Mater. Res. Soc. Symp. Proc. (1)

H. Karl, J. Dreher, and B. Stritzker, “Semiconductor-metal Phase Transition in Doped Ion Beam Synthesized VO2 Nanoclusters,” Mater. Res. Soc. Symp. Proc. 1174, 1174-V06-35 (2009).
[Crossref]

Nano Lett. (2)

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, “Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref]

Nanotechnology (1)

A. Rashidi, S. Roshan Entezar, and A. Hatef, “Tunable Multispectral Near-Infrared Absorption with a Phase Transition of VO2 Nanoparticles Hybridized with 1D Photonic Crystals,” Nanotechnology 10(1088), 1361–6528 (2020).
[Crossref]

Opt. Commun. (3)

T. V. Son, K. Zongo, C. Ba, G. Beydaghyan, and A. Haché, “Pure optical phase control in vanadium dioxide thin films,” Opt. Commun. 320, 151–155 (2014).
[Crossref]

J. Wang, B. Gu, H.-T. Wang, and X.-W. Ni, “Z-scan analytical theory for material with saturable absorption and two-photon absorption,” Opt. Commun. 283(18), 3525–3528 (2010).
[Crossref]

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(1-5), 49–58 (2012).
[Crossref]

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. B (3)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[Crossref]

D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, “Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition,” Phys. Rev. B 79(15), 153107 (2009).
[Crossref]

Phys. Rev. Lett. (3)

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

R. López, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref]

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Sci. Rep. (1)

Y. Tan, L. Chen, and D. Wang, “Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform,” Sci. Rep. 6(1), 26176 (2016).
[Crossref]

Superlattices Microstruct. (1)

D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998).
[Crossref]

Surf. Sci. (1)

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dimitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Cross-section transmission electron microscope image of ion beam synthesized VO2 nanocrystals (NCs) embedded into a fused silica (SiO2) matrix. (b) Real and imaginary part of the refractive index of VO2 NCs in SiO2 as determined by spectral ellipsometry for different sample temperatures. Blue: 28°C (insulating). Red: 100°C (metallic). (c) Thermally induced insulator-metal phase transition (IMT) and hysteresis recorded by tracking the 1036 nm probe transmission for increasing (blue) and decreasing (red) sample temperatures. The IMT from insulating to metallic VO2 is triggered at a transition temperature of TC ≈ 80°C. Upon cooling, a supercooled metallic phase persists almost down to room temperature. (d) Spectrally resolved data for the relative decrease of the optical transmissivity related to the phase transition from insulating to metallic VO2 NCs. The red line is a Gaussian fit to the data.
Fig. 2.
Fig. 2. (a) Series of room temperature z-scan traces recorded for 1036 nm pulses with translation direction to positive z-values. The top panel shows enlarged versions of three low-power z-scans for better visibility. (b) Transmissivity for various powers at the position z = 0 extracted from Fig. 2(a). The spectral position of the laser wavelength of this particular measurement with respect to the NCs resonance is shown in Fig. 1(d).
Fig. 3.
Fig. 3. (a) Series of room temperature z-scan traces recorded for 1550 nm pulses. The sample is translated towards positive z-values. The top panel shows enlarged versions of four low-power z-scans for better visibility. (b) Transmissivity values at z = 0 for various power levels, as extracted from Fig. 3(a). The spectral position of the laser wavelength of this particular measurement with respect to the NCs resonance is shown in Fig. 1(d).
Fig. 4.
Fig. 4. (a) & (c) Show series of high temperature (T = 100°C > TC) z-scan traces recorded for (a) 1036 nm and (c) 1550 nm pulses with translation direction to positive z-values. (b) Saturation intensity IS for VO2 NCs in the metallic state and 1036 nm laser wavelength extracted from Fig. 4(a) using Eq. (2). (d) Saturation intensity IS and two-photon absorption coefficient β for VO2 NCs in the metallic state and 1550 nm laser wavelength extracted from Fig. 4(c) using Eq. (2).
Fig. 5.
Fig. 5. Evolution of the IMT transmission decrease (normalized transmission difference between the metallic phase and the insulating state) at different lattice temperatures. The visible reduction of the resonance’s amplitude partially occurs from a degeneration process of the hot sample in air environment. To partly compensate for this effect, a vertical offset aligns the traces outside the resonance. The sample investigated here originates from a different batch such that center energy, width and amplitude of the resonance slightly differ from the data shown in Fig. 1(d).
Fig. 6.
Fig. 6. (a) & (b) Show series of low temperature (T = -35°C < TC) z-scan traces recorded for (a) 1550 nm and (b) 1036 nm pulses with translation direction to positive z-values. The dashed graphs show z-scan traces with triggered IMT.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α ( I ) = α 0 1 + I / I I S I S + β I
T ( z ) = m = 0 [ ( α 0 1 + I ( z ) / I S β I ( z ) ) L e f f ] m ( m + 1 ) 3 / 2  with  I ( z ) = I 0 1 + z 2 / z 0 2  and  L e f f = ( 1 e α 0 L ) α 1