Abstract

Silicon nitride (Si3N4) subwavelength medium contrast gratings (MCGs) directly integrated with CMOS photodetectors are a promising option for on-chip label-free biosensing. The narrow spectral features required for sensing are often realized in Si3N4 nanostructures by weakly corrugated gratings which limit design flexibility. We numerically investigate the optical properties of asymmetry-engineered MCG gratings and predict the formation of ultra-sharp spectral features via the excitation of quasi-bound states in continuum (QBIC) resonances. Systematic investigation of the design parameter space shows that sharp spectral features are obtained for a wide range of parameters without requiring ultrathin grating profiles. Transmission-mode refractive index sensing simulations for bulk and surface sensing, considering both wavelength-shift and intensity-shift modalities, indicate performance gains using these structures.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
    [Crossref]
  2. A. Shakoor, J. Grant, M. Grande, and D. R. S. Cumming, “Towards Portable Nanophotonic Sensors,” Sensors 19(7), 1715 (2019).
    [Crossref]
  3. A. Manoliset al, “Bringing Plasmonics Into CMOS Photonic Foundries: Aluminum Plasmonics on Si3N4 for Biosensing Applications,” J. Lightwave Technol. 37(21), 5516–5524 (2019).
    [Crossref]
  4. Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators, B 255, 1711–1715 (2018).
    [Crossref]
  5. Y. Takashima, K. Kusaba, M. Haraguchi, and Y. Naoi, “Highly Sensitive Refractive Index Sensor Using Dual Resonance in Subwavelength Grating/Waveguide With Normally Incident Optical Geometry,” IEEE Sens. J. 19(15), 6147–6153 (2019).
    [Crossref]
  6. A. Shakoor, M. Grande, J. Grant, and D. R. S. Cumming, “One-Dimensional Silicon Nitride Grating Refractive Index Sensor Suitable for Integration With CMOS Detectors,” IEEE Photonics J. 9, 1 (2017).
    [Crossref]
  7. S. H. G. Menon, A. S. Lal Krishna, and V. Raghunathan, “Silicon Nitride based Medium Contrast Gratings for Doubly Resonant Fluorescence Enhancement,” IEEE Photonics J. 11(4), 1–11 (2019).
    [Crossref]
  8. S. Menon, A. S. Lal Krishna, M. V. N. S. Gupta, A. E. B. Pesala, and V. Raghunathan, “Silicon-nitride-based medium-contrast gratings for resonant fluorescence enhancement in the visible wavelength range,” in High Contrast Metastructures VIII, vol. 10928 (SPIE, 2019), pp. 33–38.
  9. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  10. P. Lalanne, J. Hugonin, and P. Chavel, “Optical properties of deep lamellar Gratings: A coupled Bloch-mode insight,” J. Lightwave Technol. 24(6), 2442–2449 (2006).
    [Crossref]
  11. G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent Advances in Resonant Waveguide Gratings,” Laser Photonics Rev. 12(9), 1800017 (2018).
    [Crossref]
  12. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
    [Crossref]
  13. Y. Zhou, X. Li, X. Li, S. Li, Z. Guo, P. Zeng, J. He, D. Wang, R. Zhang, M. Lu, S. Zhang, S. Zhang, X. Wu, and X. Wu, “Symmetric guided-mode resonance sensors in aqueous media with ultrahigh figure of merit,” Opt. Express 27(24), 34788–34802 (2019).
    [Crossref]
  14. Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided Mode Resonance Sensors with Optimized Figure of Merit,” Nanomaterials 9(6), 837 (2019).
    [Crossref]
  15. E. N. Bulgakov and D. N. Maksimov, “Avoided crossings and bound states in the continuum in low-contrast dielectric gratings,” Phys. Rev. A 98(5), 053840 (2018).
    [Crossref]
  16. A. C. Overvig, S. Shrestha, and N. Yu, “Dimerized high contrast gratings,” Nanophotonics 7(6), 1157–1168 (2018).
    [Crossref]
  17. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
    [Crossref]
  18. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
    [Crossref]
  19. B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113(25), 257401 (2014).
    [Crossref]
  20. K. Koshelev, A. Bogdanov, and Y. Kivshar, “Engineering with Bound States in the Continuum,” Opt. Photonics News 31(1), 38 (2020).
    [Crossref]
  21. A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection Rules for Symmetry-Protected Bound States in the Continuum,” arXiv:1903.11125 [physics], (2019).
  22. D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99(6), 063805 (2019).
    [Crossref]
  23. A. Taghizadeh and I.-S. Chung, “Quasi bound states in the continuum with few unit cells of photonic crystal slab,” Appl. Phys. Lett. 111(3), 031114 (2017).
    [Crossref]
  24. K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. 64(12), 836–842 (2019).
    [Crossref]
  25. J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301–8 (2015).
    [Crossref]
  26. Y. Wang, J. Song, L. Dong, and M. Lu, “Optical bound states in slotted high-contrast gratings,” J. Opt. Soc. Am. B 33(12), 2472–2479 (2016).
    [Crossref]
  27. Y. Wang, L. Dong, and M. Lu, “Optical Bound States of 2D High-Contrast Grating for Refractometric Sensing,” in Conference on Lasers and Electro-Optics (OSA, San Jose, California, 2016), p. JW2A.143.
  28. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
    [Crossref]
  29. S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
    [Crossref]
  30. S. Romano, G. Zito, S. N. Lara Yépez, S. Cabrini, E. Penzo, G. Coppola, I. Rendina, and V. Mocellaark, “Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor,” Opt. Express 27(13), 18776 (2019).
    [Crossref]
  31. H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
    [Crossref]
  32. X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Sci. Rep. 6(1), 36066–6 (2016).
    [Crossref]
  33. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23(15), 1149 (1998).
    [Crossref]
  34. B. Zeng, A. Majumdar, and F. Wang, “Tunable dark modes in one-dimensional “diatomic” dielectric gratings,” Opt. Express 23(10), 12478 (2015).
    [Crossref]
  35. A. I. Ovcharenko, C. Blanchard, J.-P. Hugonin, and C. Sauvan, “Bound states in the continuum in symmetric and asymmetric photonic crystal slabs,” in Active Photonic Platforms XI, vol. 11081 (International Society for Optics and Photonics, 2019), p. 110812F.
  36. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref]
  37. B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical Biosensors Based on Plasmonic Nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
    [Crossref]
  38. F. Yesilkoy, “Optical interrogation techniques for nanophotonic biochemical sensors,” Sensors 19(19), 4287 (2019).
    [Crossref]
  39. Y. Ra’Di, D. L. Sounas, and A. Alù, “Metagratings: Beyond the Limits of Graded Metasurfaces for Wave Front Control,” Phys. Rev. Lett. 119, 1–6 (2017).
    [Crossref]
  40. V. Popov, F. Boust, and S. N. Burokur, “Beamforming with Metagratings at Microwave Frequencies: Design Procedure and Experimental Demonstration,” IEEE Trans. Antennas Propag. 68(3), 1533–1541 (2020).
    [Crossref]
  41. X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
    [Crossref]

2020 (3)

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Engineering with Bound States in the Continuum,” Opt. Photonics News 31(1), 38 (2020).
[Crossref]

V. Popov, F. Boust, and S. N. Burokur, “Beamforming with Metagratings at Microwave Frequencies: Design Procedure and Experimental Demonstration,” IEEE Trans. Antennas Propag. 68(3), 1533–1541 (2020).
[Crossref]

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

2019 (10)

F. Yesilkoy, “Optical interrogation techniques for nanophotonic biochemical sensors,” Sensors 19(19), 4287 (2019).
[Crossref]

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. 64(12), 836–842 (2019).
[Crossref]

S. Romano, G. Zito, S. N. Lara Yépez, S. Cabrini, E. Penzo, G. Coppola, I. Rendina, and V. Mocellaark, “Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor,” Opt. Express 27(13), 18776 (2019).
[Crossref]

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99(6), 063805 (2019).
[Crossref]

Y. Zhou, X. Li, X. Li, S. Li, Z. Guo, P. Zeng, J. He, D. Wang, R. Zhang, M. Lu, S. Zhang, S. Zhang, X. Wu, and X. Wu, “Symmetric guided-mode resonance sensors in aqueous media with ultrahigh figure of merit,” Opt. Express 27(24), 34788–34802 (2019).
[Crossref]

Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided Mode Resonance Sensors with Optimized Figure of Merit,” Nanomaterials 9(6), 837 (2019).
[Crossref]

A. Shakoor, J. Grant, M. Grande, and D. R. S. Cumming, “Towards Portable Nanophotonic Sensors,” Sensors 19(7), 1715 (2019).
[Crossref]

A. Manoliset al, “Bringing Plasmonics Into CMOS Photonic Foundries: Aluminum Plasmonics on Si3N4 for Biosensing Applications,” J. Lightwave Technol. 37(21), 5516–5524 (2019).
[Crossref]

Y. Takashima, K. Kusaba, M. Haraguchi, and Y. Naoi, “Highly Sensitive Refractive Index Sensor Using Dual Resonance in Subwavelength Grating/Waveguide With Normally Incident Optical Geometry,” IEEE Sens. J. 19(15), 6147–6153 (2019).
[Crossref]

S. H. G. Menon, A. S. Lal Krishna, and V. Raghunathan, “Silicon Nitride based Medium Contrast Gratings for Doubly Resonant Fluorescence Enhancement,” IEEE Photonics J. 11(4), 1–11 (2019).
[Crossref]

2018 (8)

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent Advances in Resonant Waveguide Gratings,” Laser Photonics Rev. 12(9), 1800017 (2018).
[Crossref]

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators, B 255, 1711–1715 (2018).
[Crossref]

E. N. Bulgakov and D. N. Maksimov, “Avoided crossings and bound states in the continuum in low-contrast dielectric gratings,” Phys. Rev. A 98(5), 053840 (2018).
[Crossref]

A. C. Overvig, S. Shrestha, and N. Yu, “Dimerized high contrast gratings,” Nanophotonics 7(6), 1157–1168 (2018).
[Crossref]

A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
[Crossref]

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
[Crossref]

2017 (3)

Y. Ra’Di, D. L. Sounas, and A. Alù, “Metagratings: Beyond the Limits of Graded Metasurfaces for Wave Front Control,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

A. Taghizadeh and I.-S. Chung, “Quasi bound states in the continuum with few unit cells of photonic crystal slab,” Appl. Phys. Lett. 111(3), 031114 (2017).
[Crossref]

A. Shakoor, M. Grande, J. Grant, and D. R. S. Cumming, “One-Dimensional Silicon Nitride Grating Refractive Index Sensor Suitable for Integration With CMOS Detectors,” IEEE Photonics J. 9, 1 (2017).
[Crossref]

2016 (3)

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Sci. Rep. 6(1), 36066–6 (2016).
[Crossref]

Y. Wang, J. Song, L. Dong, and M. Lu, “Optical bound states in slotted high-contrast gratings,” J. Opt. Soc. Am. B 33(12), 2472–2479 (2016).
[Crossref]

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical Biosensors Based on Plasmonic Nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

2015 (3)

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301–8 (2015).
[Crossref]

B. Zeng, A. Majumdar, and F. Wang, “Tunable dark modes in one-dimensional “diatomic” dielectric gratings,” Opt. Express 23(10), 12478 (2015).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

2014 (1)

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113(25), 257401 (2014).
[Crossref]

2013 (1)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

2008 (1)

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref]

2006 (1)

2001 (1)

1998 (1)

1990 (1)

Alonso-Ramos, C.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Al-Rawhani, M. A.

A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
[Crossref]

Alù, A.

Y. Ra’Di, D. L. Sounas, and A. Alù, “Metagratings: Beyond the Limits of Graded Metasurfaces for Wave Front Control,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

B. Pesala, A. E.

S. Menon, A. S. Lal Krishna, M. V. N. S. Gupta, A. E. B. Pesala, and V. Raghunathan, “Silicon-nitride-based medium-contrast gratings for resonant fluorescence enhancement in the visible wavelength range,” in High Contrast Metastructures VIII, vol. 10928 (SPIE, 2019), pp. 33–38.

Bagby, J. S.

Basset, G.

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent Advances in Resonant Waveguide Gratings,” Laser Photonics Rev. 12(9), 1800017 (2018).
[Crossref]

Bezus, E. A.

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99(6), 063805 (2019).
[Crossref]

Blanchard, C.

A. I. Ovcharenko, C. Blanchard, J.-P. Hugonin, and C. Sauvan, “Bound states in the continuum in symmetric and asymmetric photonic crystal slabs,” in Active Photonic Platforms XI, vol. 11081 (International Society for Optics and Photonics, 2019), p. 110812F.

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Bockova, M.

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical Biosensors Based on Plasmonic Nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Bogdanov, A.

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Engineering with Bound States in the Continuum,” Opt. Photonics News 31(1), 38 (2020).
[Crossref]

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. 64(12), 836–842 (2019).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref]

Boust, F.

V. Popov, F. Boust, and S. N. Burokur, “Beamforming with Metagratings at Microwave Frequencies: Design Procedure and Experimental Demonstration,” IEEE Trans. Antennas Propag. 68(3), 1533–1541 (2020).
[Crossref]

Bulgakov, E. N.

E. N. Bulgakov and D. N. Maksimov, “Avoided crossings and bound states in the continuum in low-contrast dielectric gratings,” Phys. Rev. A 98(5), 053840 (2018).
[Crossref]

Burokur, S. N.

V. Popov, F. Boust, and S. N. Burokur, “Beamforming with Metagratings at Microwave Frequencies: Design Procedure and Experimental Demonstration,” IEEE Trans. Antennas Propag. 68(3), 1533–1541 (2020).
[Crossref]

Bykov, D. A.

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99(6), 063805 (2019).
[Crossref]

Cabrini, S.

S. Romano, G. Zito, S. N. Lara Yépez, S. Cabrini, E. Penzo, G. Coppola, I. Rendina, and V. Mocellaark, “Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor,” Opt. Express 27(13), 18776 (2019).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
[Crossref]

Carter, M. J.

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection Rules for Symmetry-Protected Bound States in the Continuum,” arXiv:1903.11125 [physics], (2019).

Chavel, P.

Cheah, B. C.

A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
[Crossref]

Cheben, P.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Chua, S.-L.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Chung, I.-S.

A. Taghizadeh and I.-S. Chung, “Quasi bound states in the continuum with few unit cells of photonic crystal slab,” Appl. Phys. Lett. 111(3), 031114 (2017).
[Crossref]

Coppola, G.

Cueff, S.

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Cui, N.

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

Cui, X.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Sci. Rep. 6(1), 36066–6 (2016).
[Crossref]

Cumming, D. R. S.

A. Shakoor, J. Grant, M. Grande, and D. R. S. Cumming, “Towards Portable Nanophotonic Sensors,” Sensors 19(7), 1715 (2019).
[Crossref]

A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
[Crossref]

A. Shakoor, M. Grande, J. Grant, and D. R. S. Cumming, “One-Dimensional Silicon Nitride Grating Refractive Index Sensor Suitable for Integration With CMOS Detectors,” IEEE Photonics J. 9, 1 (2017).
[Crossref]

Deschamps, T.

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Dong, L.

Y. Wang, J. Song, L. Dong, and M. Lu, “Optical bound states in slotted high-contrast gratings,” J. Opt. Soc. Am. B 33(12), 2472–2479 (2016).
[Crossref]

Y. Wang, L. Dong, and M. Lu, “Optical Bound States of 2D High-Contrast Grating for Refractometric Sensing,” in Conference on Lasers and Electro-Optics (OSA, San Jose, California, 2016), p. JW2A.143.

Doskolovich, L. L.

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99(6), 063805 (2019).
[Crossref]

Du, Y.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Sci. Rep. 6(1), 36066–6 (2016).
[Crossref]

Dubois, F.

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Gallinet, B.

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent Advances in Resonant Waveguide Gratings,” Laser Photonics Rev. 12(9), 1800017 (2018).
[Crossref]

Giovannini, H.

Gouveia, L. C. P.

A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
[Crossref]

Grande, M.

A. Shakoor, J. Grant, M. Grande, and D. R. S. Cumming, “Towards Portable Nanophotonic Sensors,” Sensors 19(7), 1715 (2019).
[Crossref]

A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
[Crossref]

A. Shakoor, M. Grande, J. Grant, and D. R. S. Cumming, “One-Dimensional Silicon Nitride Grating Refractive Index Sensor Suitable for Integration With CMOS Detectors,” IEEE Photonics J. 9, 1 (2017).
[Crossref]

Grant, J.

A. Shakoor, J. Grant, M. Grande, and D. R. S. Cumming, “Towards Portable Nanophotonic Sensors,” Sensors 19(7), 1715 (2019).
[Crossref]

A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
[Crossref]

A. Shakoor, M. Grande, J. Grant, and D. R. S. Cumming, “One-Dimensional Silicon Nitride Grating Refractive Index Sensor Suitable for Integration With CMOS Detectors,” IEEE Photonics J. 9, 1 (2017).
[Crossref]

Guo, Z.

Halir, R.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Haraguchi, M.

Y. Takashima, K. Kusaba, M. Haraguchi, and Y. Naoi, “Highly Sensitive Refractive Index Sensor Using Dual Resonance in Subwavelength Grating/Waveguide With Normally Incident Optical Geometry,” IEEE Sens. J. 19(15), 6147–6153 (2019).
[Crossref]

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators, B 255, 1711–1715 (2018).
[Crossref]

He, J.

Homola, J.

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical Biosensors Based on Plasmonic Nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Hsu, C. W.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113(25), 257401 (2014).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Hugonin, J.

Hugonin, J.-P.

A. I. Ovcharenko, C. Blanchard, J.-P. Hugonin, and C. Sauvan, “Bound states in the continuum in symmetric and asymmetric photonic crystal slabs,” in Active Photonic Platforms XI, vol. 11081 (International Society for Optics and Photonics, 2019), p. 110812F.

Janz, S.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref]

Kivshar, Y.

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Engineering with Bound States in the Continuum,” Opt. Photonics News 31(1), 38 (2020).
[Crossref]

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. 64(12), 836–842 (2019).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Koshelev, K.

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Engineering with Bound States in the Continuum,” Opt. Photonics News 31(1), 38 (2020).
[Crossref]

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. 64(12), 836–842 (2019).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Kusaba, K.

Y. Takashima, K. Kusaba, M. Haraguchi, and Y. Naoi, “Highly Sensitive Refractive Index Sensor Using Dual Resonance in Subwavelength Grating/Waveguide With Normally Incident Optical Geometry,” IEEE Sens. J. 19(15), 6147–6153 (2019).
[Crossref]

Lal Krishna, A. S.

S. H. G. Menon, A. S. Lal Krishna, and V. Raghunathan, “Silicon Nitride based Medium Contrast Gratings for Doubly Resonant Fluorescence Enhancement,” IEEE Photonics J. 11(4), 1–11 (2019).
[Crossref]

S. Menon, A. S. Lal Krishna, M. V. N. S. Gupta, A. E. B. Pesala, and V. Raghunathan, “Silicon-nitride-based medium-contrast gratings for resonant fluorescence enhancement in the visible wavelength range,” in High Contrast Metastructures VIII, vol. 10928 (SPIE, 2019), pp. 33–38.

Lalanne, P.

Lamberti, A.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
[Crossref]

Lapointe, J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Lara Yépez, S. N.

Leclercq, J.-L.

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Lemarchand, F.

Lepeshov, S.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Letartre, X.

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Li, S.

Li, X.

Liu, M.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Lu, L.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113(25), 257401 (2014).
[Crossref]

Lu, M.

Magnusson, R.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301–8 (2015).
[Crossref]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
[Crossref]

Majumdar, A.

Maksimov, D. N.

E. N. Bulgakov and D. N. Maksimov, “Avoided crossings and bound states in the continuum in low-contrast dielectric gratings,” Phys. Rev. A 98(5), 053840 (2018).
[Crossref]

Malek, S. C.

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection Rules for Symmetry-Protected Bound States in the Continuum,” arXiv:1903.11125 [physics], (2019).

Manolis, A.

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref]

Martin, O. J. F.

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent Advances in Resonant Waveguide Gratings,” Laser Photonics Rev. 12(9), 1800017 (2018).
[Crossref]

Masullo, M.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
[Crossref]

Menon, S.

S. Menon, A. S. Lal Krishna, M. V. N. S. Gupta, A. E. B. Pesala, and V. Raghunathan, “Silicon-nitride-based medium-contrast gratings for resonant fluorescence enhancement in the visible wavelength range,” in High Contrast Metastructures VIII, vol. 10928 (SPIE, 2019), pp. 33–38.

Menon, S. H. G.

S. H. G. Menon, A. S. Lal Krishna, and V. Raghunathan, “Silicon Nitride based Medium Contrast Gratings for Doubly Resonant Fluorescence Enhancement,” IEEE Photonics J. 11(4), 1–11 (2019).
[Crossref]

Mocella, V.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
[Crossref]

Mocellaark, V.

Moharam, M. G.

Molina-Fernández, Í.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Naoi, Y.

Y. Takashima, K. Kusaba, M. Haraguchi, and Y. Naoi, “Highly Sensitive Refractive Index Sensor Using Dual Resonance in Subwavelength Grating/Waveguide With Normally Incident Optical Geometry,” IEEE Sens. J. 19(15), 6147–6153 (2019).
[Crossref]

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators, B 255, 1711–1715 (2018).
[Crossref]

Nguyen, H. S.

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Ortega-Monux, A.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Ovcharenko, A. I.

A. I. Ovcharenko, C. Blanchard, J.-P. Hugonin, and C. Sauvan, “Bound states in the continuum in symmetric and asymmetric photonic crystal slabs,” in Active Photonic Platforms XI, vol. 11081 (International Society for Optics and Photonics, 2019), p. 110812F.

Overvig, A. C.

A. C. Overvig, S. Shrestha, and N. Yu, “Dimerized high contrast gratings,” Nanophotonics 7(6), 1157–1168 (2018).
[Crossref]

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection Rules for Symmetry-Protected Bound States in the Continuum,” arXiv:1903.11125 [physics], (2019).

Pardon, A.

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Penzo, E.

S. Romano, G. Zito, S. N. Lara Yépez, S. Cabrini, E. Penzo, G. Coppola, I. Rendina, and V. Mocellaark, “Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor,” Opt. Express 27(13), 18776 (2019).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
[Crossref]

Popov, V.

V. Popov, F. Boust, and S. N. Burokur, “Beamforming with Metagratings at Microwave Frequencies: Design Procedure and Experimental Demonstration,” IEEE Trans. Antennas Propag. 68(3), 1533–1541 (2020).
[Crossref]

Quaranta, G.

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent Advances in Resonant Waveguide Gratings,” Laser Photonics Rev. 12(9), 1800017 (2018).
[Crossref]

Ra’Di, Y.

Y. Ra’Di, D. L. Sounas, and A. Alù, “Metagratings: Beyond the Limits of Graded Metasurfaces for Wave Front Control,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

Raghunathan, V.

S. H. G. Menon, A. S. Lal Krishna, and V. Raghunathan, “Silicon Nitride based Medium Contrast Gratings for Doubly Resonant Fluorescence Enhancement,” IEEE Photonics J. 11(4), 1–11 (2019).
[Crossref]

S. Menon, A. S. Lal Krishna, M. V. N. S. Gupta, A. E. B. Pesala, and V. Raghunathan, “Silicon-nitride-based medium-contrast gratings for resonant fluorescence enhancement in the visible wavelength range,” in High Contrast Metastructures VIII, vol. 10928 (SPIE, 2019), pp. 33–38.

Rendina, I.

S. Romano, G. Zito, S. N. Lara Yépez, S. Cabrini, E. Penzo, G. Coppola, I. Rendina, and V. Mocellaark, “Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor,” Opt. Express 27(13), 18776 (2019).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
[Crossref]

Romano, S.

S. Romano, G. Zito, S. N. Lara Yépez, S. Cabrini, E. Penzo, G. Coppola, I. Rendina, and V. Mocellaark, “Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor,” Opt. Express 27(13), 18776 (2019).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
[Crossref]

S. Gupta, M. V. N.

S. Menon, A. S. Lal Krishna, M. V. N. S. Gupta, A. E. B. Pesala, and V. Raghunathan, “Silicon-nitride-based medium-contrast gratings for resonant fluorescence enhancement in the visible wavelength range,” in High Contrast Metastructures VIII, vol. 10928 (SPIE, 2019), pp. 33–38.

Sauvan, C.

A. I. Ovcharenko, C. Blanchard, J.-P. Hugonin, and C. Sauvan, “Bound states in the continuum in symmetric and asymmetric photonic crystal slabs,” in Active Photonic Platforms XI, vol. 11081 (International Society for Optics and Photonics, 2019), p. 110812F.

Schmid, J. H.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Seassal, C.

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Sentenac, A.

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref]

Shakoor, A.

A. Shakoor, J. Grant, M. Grande, and D. R. S. Cumming, “Towards Portable Nanophotonic Sensors,” Sensors 19(7), 1715 (2019).
[Crossref]

A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
[Crossref]

A. Shakoor, M. Grande, J. Grant, and D. R. S. Cumming, “One-Dimensional Silicon Nitride Grating Refractive Index Sensor Suitable for Integration With CMOS Detectors,” IEEE Photonics J. 9, 1 (2017).
[Crossref]

Shi, G.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Sci. Rep. 6(1), 36066–6 (2016).
[Crossref]

Shrestha, S.

A. C. Overvig, S. Shrestha, and N. Yu, “Dimerized high contrast gratings,” Nanophotonics 7(6), 1157–1168 (2018).
[Crossref]

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection Rules for Symmetry-Protected Bound States in the Continuum,” arXiv:1903.11125 [physics], (2019).

Soljacic, M.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113(25), 257401 (2014).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Song, J.

Song, S. H.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301–8 (2015).
[Crossref]

Sounas, D. L.

Y. Ra’Di, D. L. Sounas, and A. Alù, “Metagratings: Beyond the Limits of Graded Metasurfaces for Wave Front Control,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

Spackova, B.

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical Biosensors Based on Plasmonic Nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Stone, A. D.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113(25), 257401 (2014).
[Crossref]

Taghizadeh, A.

A. Taghizadeh and I.-S. Chung, “Quasi bound states in the continuum with few unit cells of photonic crystal slab,” Appl. Phys. Lett. 111(3), 031114 (2017).
[Crossref]

Takashima, Y.

Y. Takashima, K. Kusaba, M. Haraguchi, and Y. Naoi, “Highly Sensitive Refractive Index Sensor Using Dual Resonance in Subwavelength Grating/Waveguide With Normally Incident Optical Geometry,” IEEE Sens. J. 19(15), 6147–6153 (2019).
[Crossref]

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators, B 255, 1711–1715 (2018).
[Crossref]

Tang, X.

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

Tian, H.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Sci. Rep. 6(1), 36066–6 (2016).
[Crossref]

Viktorovitch, P.

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Wang, B.

Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided Mode Resonance Sensors with Optimized Figure of Merit,” Nanomaterials 9(6), 837 (2019).
[Crossref]

Wang, D.

Wang, F.

Wang, S. S.

Wang, Y.

Y. Wang, J. Song, L. Dong, and M. Lu, “Optical bound states in slotted high-contrast gratings,” J. Opt. Soc. Am. B 33(12), 2472–2479 (2016).
[Crossref]

Y. Wang, L. Dong, and M. Lu, “Optical Bound States of 2D High-Contrast Grating for Refractometric Sensing,” in Conference on Lasers and Electro-Optics (OSA, San Jose, California, 2016), p. JW2A.143.

Wangüemert-Pérez, J. G.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Wrobel, P.

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical Biosensors Based on Plasmonic Nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Wu, X.

Xi, L.

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

Xu, D.-X.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Yesilkoy, F.

F. Yesilkoy, “Optical interrogation techniques for nanophotonic biochemical sensors,” Sensors 19(19), 4287 (2019).
[Crossref]

Yoon, J. W.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301–8 (2015).
[Crossref]

Yu, N.

A. C. Overvig, S. Shrestha, and N. Yu, “Dimerized high contrast gratings,” Nanophotonics 7(6), 1157–1168 (2018).
[Crossref]

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection Rules for Symmetry-Protected Bound States in the Continuum,” arXiv:1903.11125 [physics], (2019).

Zeng, B.

Zeng, P.

Zhang, H.

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

Zhang, N.

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

Zhang, R.

Zhang, S.

Zhang, W.

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

Zhang, X.

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

Zhen, B.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113(25), 257401 (2014).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Zheng, Z.

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

Zhou, Y.

Zhou, Z.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Sci. Rep. 6(1), 36066–6 (2016).
[Crossref]

Zito, G.

Appl. Phys. Lett. (1)

A. Taghizadeh and I.-S. Chung, “Quasi bound states in the continuum with few unit cells of photonic crystal slab,” Appl. Phys. Lett. 111(3), 031114 (2017).
[Crossref]

IEEE Photonics J. (2)

A. Shakoor, M. Grande, J. Grant, and D. R. S. Cumming, “One-Dimensional Silicon Nitride Grating Refractive Index Sensor Suitable for Integration With CMOS Detectors,” IEEE Photonics J. 9, 1 (2017).
[Crossref]

S. H. G. Menon, A. S. Lal Krishna, and V. Raghunathan, “Silicon Nitride based Medium Contrast Gratings for Doubly Resonant Fluorescence Enhancement,” IEEE Photonics J. 11(4), 1–11 (2019).
[Crossref]

IEEE Sens. J. (2)

Y. Takashima, K. Kusaba, M. Haraguchi, and Y. Naoi, “Highly Sensitive Refractive Index Sensor Using Dual Resonance in Subwavelength Grating/Waveguide With Normally Incident Optical Geometry,” IEEE Sens. J. 19(15), 6147–6153 (2019).
[Crossref]

A. Shakoor, B. C. Cheah, M. A. Al-Rawhani, M. Grande, J. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “CMOS Nanophotonic Sensor With Integrated Readout System,” IEEE Sens. J. 18(22), 9188–9194 (2018).
[Crossref]

IEEE Trans. Antennas Propag. (1)

V. Popov, F. Boust, and S. N. Burokur, “Beamforming with Metagratings at Microwave Frequencies: Design Procedure and Experimental Demonstration,” IEEE Trans. Antennas Propag. 68(3), 1533–1541 (2020).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent Advances in Resonant Waveguide Gratings,” Laser Photonics Rev. 12(9), 1800017 (2018).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Materials (1)

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum,” Materials 11(4), 526 (2018).
[Crossref]

Nanomaterials (1)

Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided Mode Resonance Sensors with Optimized Figure of Merit,” Nanomaterials 9(6), 837 (2019).
[Crossref]

Nanophotonics (1)

A. C. Overvig, S. Shrestha, and N. Yu, “Dimerized high contrast gratings,” Nanophotonics 7(6), 1157–1168 (2018).
[Crossref]

Nature (1)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Opt. Commun. (1)

X. Li, X. Zhang, Z. Zheng, N. Cui, N. Zhang, W. Zhang, X. Tang, H. Zhang, and L. Xi, “Polarization demultiplexing scheme for probabilistic shaping Stokes vector direct detection system using extended Kalman filter,” Opt. Commun. 461, 125192 (2020).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Photonics News (1)

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Engineering with Bound States in the Continuum,” Opt. Photonics News 31(1), 38 (2020).
[Crossref]

Phys. Rev. A (2)

D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings,” Phys. Rev. A 99(6), 063805 (2019).
[Crossref]

E. N. Bulgakov and D. N. Maksimov, “Avoided crossings and bound states in the continuum in low-contrast dielectric gratings,” Phys. Rev. A 98(5), 053840 (2018).
[Crossref]

Phys. Rev. Lett. (5)

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113(25), 257401 (2014).
[Crossref]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Y. Ra’Di, D. L. Sounas, and A. Alù, “Metagratings: Beyond the Limits of Graded Metasurfaces for Wave Front Control,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J.-L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, “Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones,” Phys. Rev. Lett. 120(6), 066102 (2018).
[Crossref]

Proc. IEEE (1)

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical Biosensors Based on Plasmonic Nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Sci. Bull. (1)

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. 64(12), 836–842 (2019).
[Crossref]

Sci. Rep. (2)

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301–8 (2015).
[Crossref]

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Sci. Rep. 6(1), 36066–6 (2016).
[Crossref]

Sens. Actuators, B (1)

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators, B 255, 1711–1715 (2018).
[Crossref]

Sensors (2)

A. Shakoor, J. Grant, M. Grande, and D. R. S. Cumming, “Towards Portable Nanophotonic Sensors,” Sensors 19(7), 1715 (2019).
[Crossref]

F. Yesilkoy, “Optical interrogation techniques for nanophotonic biochemical sensors,” Sensors 19(19), 4287 (2019).
[Crossref]

Other (4)

Y. Wang, L. Dong, and M. Lu, “Optical Bound States of 2D High-Contrast Grating for Refractometric Sensing,” in Conference on Lasers and Electro-Optics (OSA, San Jose, California, 2016), p. JW2A.143.

A. I. Ovcharenko, C. Blanchard, J.-P. Hugonin, and C. Sauvan, “Bound states in the continuum in symmetric and asymmetric photonic crystal slabs,” in Active Photonic Platforms XI, vol. 11081 (International Society for Optics and Photonics, 2019), p. 110812F.

S. Menon, A. S. Lal Krishna, M. V. N. S. Gupta, A. E. B. Pesala, and V. Raghunathan, “Silicon-nitride-based medium-contrast gratings for resonant fluorescence enhancement in the visible wavelength range,” in High Contrast Metastructures VIII, vol. 10928 (SPIE, 2019), pp. 33–38.

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection Rules for Symmetry-Protected Bound States in the Continuum,” arXiv:1903.11125 [physics], (2019).

Supplementary Material (6)

NameDescription
» Visualization 1       Visualization 1 shows magnetic field variation with input light phase in the asymmetrical Medium Contrast Grating. The field is observed at wavelength ( marked as A in figure 2 (a)) representing Quasi-bound states in the continuum resonance under p-
» Visualization 2       Visualization 2 shows magnetic field variation with input light phase in the asymmetrical Medium Contrast Grating. The field is observed at wavelength ( marked as B in figure 2 (a)) representing Guided Mode Resonance under p-polarized light illuminat
» Visualization 3       Visualization 3 shows magnetic field variation with input light phase in the asymmetrical Medium Contrast Grating. The field is observed at wavelength ( marked as G in figure 2 (c)) representing Guided Mode Resonance under p-polarized light illuminat
» Visualization 4       Visualization 4 shows electric field variation with input light phase in the asymmetrical Medium Contrast Grating. The field is observed at wavelength ( marked as C in figure 2 (a)) representing Guided Mode Resonance under s-polarized light illumin
» Visualization 5       Visualization 5 shows electric field variation with input light phase in the asymmetrical Medium Contrast Grating. The field is observed at wavelength ( marked as D in figure 2 (a)) representing quasi-Bound states in the continuum resonance under s
» Visualization 6       Visualization 6 shows electric field variation with input light phase in the asymmetrical Medium Contrast Grating. The field is observed at wavelength ( marked as ß in figure 3 (a)) representing Electromagnetically Induced Transparency under s-pola

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the asymmetric 1D gratings and their optical properties. (a) shows the fill-fraction preserving transformation steps for a 1D ${Si_{3}N_{4 }}$ MCG lying on a silica ($SiO_2$) substrate following the dimerization terminology of [16]). (b) even and odd symmetry modes in an unperturbed MCG (i,iv), gap-perturbed DMCG (ii,v) and width-perturbed DMCG (iii,vi). (c) calculated band diagrams of infinitely-extended versions of the 4 kinds of MCGs with $a$ denoting the period of the plain MCG (GP=$a$). The white area is accessible where zeroth order beams are considered. Modes excitable by $p$ ($s$) polarized light are marked black (red). In the case of $w+g$-DMCG, the asymmetry enables $p$ and $s$ polarized light to couple to both modes. The modes at the Gamma point are labelled with letters to help compare with exact numerical simulation results. The geometrical parameters for the $g$-DMCG was $g_1 = 0.06*a$, for the $w$-DMCG was $w_1 = 0.15*a$, and for the $w+g$-DMCA was $w_1=0.15*a, g_1=0.06*a$.
Fig. 2.
Fig. 2. Numerically simulated spectra and near-field plots at resonances for various Si$_3$N$_4 $ on silica-DMCG structures clad in water. (a), (b), (c) show the reflectance spectra for $s$ (red) and $p$ (black) polarized plane-wave illuminations for $w+g$-DMCG, $g$-DMCG and $w$-DMCG respectively. Each figure also shows the reflection response of a symmetric MCG with the same periodicity and fill-fraction in dotted line. (d), (e) show the normalized near field enhancement of the electric and magnetic fields in the $xz$-plane of the gratings at various wavelengths marked A-J. See Visualization 1, Visualization 2, and Visualization 3 for animation of magnetic field ($H_y$) variation with input phase at wavelengths A,B,G shown in (e). See Visualization 4 and Visualization 5 for animation of electric field ($E_y$) variation with input phase at C,D shown in (d). Rib width $w$ is 97.5 nm, gap $g$ is 107.5 nm. The perturbations in width $w_1$ and gap $g_1$ are 40 nm, 97 nm for $w+g$-DMCG. For $g$-DMCG, the width perturbation is zero, for $w$-DMCG, the gap perturbation is zero, the remaining design parameters being same as that for $w+g$-DMCG. For the MCG, the rib width $w$ and gap $g$ are 205 nm each. The gratings are 220 nm thick with grating period of 410 nm.
Fig. 3.
Fig. 3. Numerically simulation results of a particular $w+g$-DMCG structure when illuminated by a $s$-polarized light showing Electromagnetically Induced Transparency (EIT) window. (a) shows the transmission spectrum. (b), (c) show the electric and magnetic field enhancements in the near field at wavelengths marked by $\alpha ,\beta ,\gamma$. The rib width $w$ and gap $g$ are 102.5 nm each, width perturbation $w_1$=70 nm, gap perturbation $g_1$=82 nm, grating thickness $t_g$=140 nm, periodicity $GP$=510 nm. See Visualization 6 for animation of electric field ($E_y$) variation with input phase at wavelength $\beta$ shown in (b).
Fig. 4.
Fig. 4. Effect of geometrical parameters of a width and gap perturbed Medium Contrast Grating ($w+g$-DMCG) on the transmission and reflection spectra. (a) shows variation in grating thickness. Grating Period is varied in (b). (c) shows variation in rib width perturbation $w_1$. Perturbation in gap between the ribs $g_1$ is varied in (d). The grating is illuminated by a $p$ polarized light. The fixed design parameters are same as that used for $w+g$-DMCG in Fig. 2.
Fig. 5.
Fig. 5. Effect of change in geometrical parameters on the transmission spectrum Electromagnetically Induced of Transparency (EIT) resonant $w+g$-DMCG structure.(a) shows variation in grating thickness. Grating Period is varied in (b). (c) shows variation in rib width perturbation $w_1$. Perturbation in gap between the ribs $g_1$ is varied in (d). The fixed design parameters are same as that used for $w+g$-DMCG in Fig. 3.
Fig. 6.
Fig. 6. A comparative study of the sensing performance of $w+g$-DMCG for the spectral-shift modality. (a), (c) and (e) show bulk sensing and (b), (d) and (e) show surface sensing. The transmission spectra progression as a function of analyte RI for a $w+g$-DMCG showing the behavior of the QBIC dip for bulk (a) and surface (b) analytes. In (c) and (d), the shifts of the dip as a function of analyte RI are plotted for four cases: (1) QBIC, (2) GMR resonances of the $w+g$-DMCG, (3) GMR resonance of a 50% duty cycle plain MCG and (4) EIT peak in a second $w+g$-DMCG structure. Differential Sensitivity and FOM performance for quasi-BIC is shown in (c), (f). All the 3 structures are 220 nm thick with grating period of 410 nm. For the first $w+g$-DMCG, rib width and gap are 97.5 nm each. Perturbation in width is 40 nm and gap perturbation is 47.5 nm. The design parameters for the second $w+g$-DMCG with an EIT peak are same as those in Fig. 3.
Fig. 7.
Fig. 7. Comparison of intensity-shift sensing scheme performance for quasi-BIC, GMR, EIT resonances exhibited by $w+g$-DMCG and GMR exhibited by MCG. (a) and (b) show the transmission spectra of $w+g$-DMCG showing EIT and quasi-BIC for surface sensing. Intensity shift for EIT resonance is observed at 740.6 nm, quasi-BIC at 643 nm wavelength. (c) shows intensity shift for all the resonances corresponding to varying refractive indices of analyte. (d) shows sensitivity for quasi-BIC and EIT resonant gratings. The design parameters for each of the gratings are same as that used for spectrum shift modality in Fig. 6.

Tables (1)

Tables Icon

Table 1. Summary of bulk RI sensing performance of recently reported Si 3 N 4 based nanostructures. λ 0 , Λ and FOM specify the operating wavelength, typical linewidth of resonance and sensing Figure of Merit respectively. Exp/Sim indicates if these are reported simulation or experimental results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S λ ( n 1 ) = Δ λ Δ n
F O M ( n 1 ) = S λ ( n 1 ) F W H M ( n 1 )
S I ( n 1 ) = Δ I I 1 Δ n