Abstract

Low hole mobility and poor film quality always result in poor performance of quantum dot light-emitting diodes (QLEDs). As a p-type dopant into the hole-transport layer (HTL) of the poly[N,N‘-bis(4-butylphenyl)-N,N’-bis(phenyl)benzidine](poly-TPD), B(C6F5)3 is used in hole mobility and film quality improvement for QLEDs. The results show that the hole mobility of the B(C6F5)3 doped poly-TPD layer is risen by 31.6% and excess electron injection is suppressed to balance electron-hole injection. At the same time, B(C6F5)3 doping improves the film quality of both the HTL and quantum dots emitting layer, the parasitic resistance of QLEDs is diminished. The turn-on voltage of the device is reduced from 2.6 V to 2.3 V, and the brightness and current efficiency are increased by 26% and 35.4%, respectively.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29(14), 1607022 (2017).
    [Crossref]
  2. Y.-L. Shi, F. Liang, Y. Hu, X.-D. Wang, Z.-K. Wang, and L.-S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
    [Crossref]
  3. X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
    [Crossref]
  4. J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
    [Crossref]
  5. X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
    [Crossref]
  6. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
    [Crossref]
  7. Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
    [Crossref]
  8. Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, “A low-temperature-annealed and UV-ozoneenhanced combustion derived nickel oxide hole injection layer for flexible quantum dot lightemitting diodes,” Nanoscale 11(3), 1021–1028 (2019).
    [Crossref]
  9. H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
    [Crossref]
  10. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
    [Crossref]
  11. B. Geffroy, P. le Roy, and C. Prat, “Review Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
    [Crossref]
  12. Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
    [Crossref]
  13. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
    [Crossref]
  14. G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
    [Crossref]
  15. F. Marquier, C. Sauvan, and J.-J. Greffet, “Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators,” ACS Photonics 4(9), 2091–2101 (2017).
    [Crossref]
  16. H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
    [Crossref]
  17. G. Zaiats, S. Ikeda, S. Kinge, and P. V. Kamat, “Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels,” ACS Appl. Mater. Interfaces 9(36), 30741–30745 (2017).
    [Crossref]
  18. G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
    [Crossref]
  19. J. Pan, J. Chen, Q. Huang, L. Wang, and W. Lei, “A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport,” RSC Adv. 7(69), 43366–43372 (2017).
    [Crossref]
  20. Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
    [Crossref]
  21. P. Pingel, R. Schwarzl, and D. Neher, “Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene),” Appl. Phys. Lett. 100(14), 143303 (2012).
    [Crossref]
  22. Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
    [Crossref]
  23. A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
    [Crossref]
  24. P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
    [Crossref]
  25. H. Zhou, L. Yang, and W. You, “Rational Design of High Performance Conjugated Polymers for Organic Solar Cells,” Macromolecules 45(2), 607–632 (2012).
    [Crossref]
  26. P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
    [Crossref]
  27. Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
    [Crossref]
  28. T. Ye, J. Wang, W. Chen, Y. Yang, and D. He, “Improved performance and reproducibility of perovskite solar cells by well-soluble tris(pentafluorophenyl)borane as a p-type dopant,” ACS Appl. Mater. Interfaces 9(21), 17923–17931 (2017).
    [Crossref]
  29. G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
    [Crossref]
  30. S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
    [Crossref]
  31. V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B 71(4), 045214 (2005).
    [Crossref]
  32. Y. Zhang, B. de Boer, and P. W. M. Blom, “Controllable Molecular Doping and Charge Transport in Solution-Processed PolymerSemiconducting Layers,” Adv. Funct. Mater. 19(12), 1901–1905 (2009).
    [Crossref]
  33. H. Shimotani, G. Diguet, and Y. Iwasa, “Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene),” Appl. Phys. Lett. 86(2), 022104 (2005).
    [Crossref]
  34. E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
    [Crossref]
  35. Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
    [Crossref]
  36. Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
    [Crossref]
  37. Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
    [Crossref]
  38. J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
    [Crossref]
  39. X. Wang, W. Li, and K. Sun, “Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties,” J. Mater. Chem. 21(24), 8558 (2011).
    [Crossref]
  40. S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
    [Crossref]
  41. W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
    [Crossref]

2020 (1)

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

2019 (3)

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, “A low-temperature-annealed and UV-ozoneenhanced combustion derived nickel oxide hole injection layer for flexible quantum dot lightemitting diodes,” Nanoscale 11(3), 1021–1028 (2019).
[Crossref]

G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
[Crossref]

2018 (3)

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

2017 (10)

T. Ye, J. Wang, W. Chen, Y. Yang, and D. He, “Improved performance and reproducibility of perovskite solar cells by well-soluble tris(pentafluorophenyl)borane as a p-type dopant,” ACS Appl. Mater. Interfaces 9(21), 17923–17931 (2017).
[Crossref]

J. Pan, J. Chen, Q. Huang, L. Wang, and W. Lei, “A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport,” RSC Adv. 7(69), 43366–43372 (2017).
[Crossref]

F. Marquier, C. Sauvan, and J.-J. Greffet, “Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators,” ACS Photonics 4(9), 2091–2101 (2017).
[Crossref]

G. Zaiats, S. Ikeda, S. Kinge, and P. V. Kamat, “Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels,” ACS Appl. Mater. Interfaces 9(36), 30741–30745 (2017).
[Crossref]

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29(14), 1607022 (2017).
[Crossref]

Y.-L. Shi, F. Liang, Y. Hu, X.-D. Wang, Z.-K. Wang, and L.-S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
[Crossref]

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
[Crossref]

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
[Crossref]

2016 (8)

J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
[Crossref]

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
[Crossref]

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
[Crossref]

G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
[Crossref]

2015 (3)

S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
[Crossref]

H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
[Crossref]

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

2014 (2)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

2013 (1)

A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
[Crossref]

2012 (2)

P. Pingel, R. Schwarzl, and D. Neher, “Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene),” Appl. Phys. Lett. 100(14), 143303 (2012).
[Crossref]

H. Zhou, L. Yang, and W. You, “Rational Design of High Performance Conjugated Polymers for Organic Solar Cells,” Macromolecules 45(2), 607–632 (2012).
[Crossref]

2011 (1)

X. Wang, W. Li, and K. Sun, “Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties,” J. Mater. Chem. 21(24), 8558 (2011).
[Crossref]

2009 (1)

Y. Zhang, B. de Boer, and P. W. M. Blom, “Controllable Molecular Doping and Charge Transport in Solution-Processed PolymerSemiconducting Layers,” Adv. Funct. Mater. 19(12), 1901–1905 (2009).
[Crossref]

2008 (1)

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

2007 (1)

E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
[Crossref]

2006 (1)

B. Geffroy, P. le Roy, and C. Prat, “Review Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

2005 (3)

G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
[Crossref]

H. Shimotani, G. Diguet, and Y. Iwasa, “Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene),” Appl. Phys. Lett. 86(2), 022104 (2005).
[Crossref]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B 71(4), 045214 (2005).
[Crossref]

Ade, H.

A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
[Crossref]

Al.-Hashimi, M.

Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
[Crossref]

AlQaradawi, S. Y.

Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
[Crossref]

Anthopoulos, T. D.

Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
[Crossref]

Arkhipov, V. I.

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B 71(4), 045214 (2005).
[Crossref]

Arvind, M.

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

Aziz, E. F.

E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
[Crossref]

Barnes, J.-P.

Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
[Crossref]

Barnes, Y. a. G.

Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
[Crossref]

Bässler, H.

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B 71(4), 045214 (2005).
[Crossref]

Bawendi, M. G.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

Bazan, G. C.

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

Behrends, J.

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

Blom, P. W. M.

Y. Zhang, B. de Boer, and P. W. M. Blom, “Controllable Molecular Doping and Charge Transport in Solution-Processed PolymerSemiconducting Layers,” Adv. Funct. Mater. 19(12), 1901–1905 (2009).
[Crossref]

Brown, G. J.

J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
[Crossref]

Bulovic, V.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

Butch, C. J.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Cao, W.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Cao, Y.

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Caruge, J. M.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

Chen, J.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

J. Pan, J. Chen, Q. Huang, L. Wang, and W. Lei, “A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport,” RSC Adv. 7(69), 43366–43372 (2017).
[Crossref]

Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
[Crossref]

G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
[Crossref]

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Chen, L.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Chen, S.

Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, “A low-temperature-annealed and UV-ozoneenhanced combustion derived nickel oxide hole injection layer for flexible quantum dot lightemitting diodes,” Nanoscale 11(3), 1021–1028 (2019).
[Crossref]

Chen, W.

Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, “A low-temperature-annealed and UV-ozoneenhanced combustion derived nickel oxide hole injection layer for flexible quantum dot lightemitting diodes,” Nanoscale 11(3), 1021–1028 (2019).
[Crossref]

T. Ye, J. Wang, W. Chen, Y. Yang, and D. He, “Improved performance and reproducibility of perovskite solar cells by well-soluble tris(pentafluorophenyl)borane as a p-type dopant,” ACS Appl. Mater. Interfaces 9(21), 17923–17931 (2017).
[Crossref]

Chen, W. X.

G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
[Crossref]

Chen, Y.

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Chen, Z.

Cheng, Y.

S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
[Crossref]

Choi, W. K.

H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
[Crossref]

Cui, Z.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

Cun, Y.

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Dai, X.

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29(14), 1607022 (2017).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Das, A.

J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
[Crossref]

Dasscd, C. K.

J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
[Crossref]

de Boer, B.

Y. Zhang, B. de Boer, and P. W. M. Blom, “Controllable Molecular Doping and Charge Transport in Solution-Processed PolymerSemiconducting Layers,” Adv. Funct. Mater. 19(12), 1901–1905 (2009).
[Crossref]

Deng, Y.

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29(14), 1607022 (2017).
[Crossref]

Diguet, G.

H. Shimotani, G. Diguet, and Y. Iwasa, “Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene),” Appl. Phys. Lett. 86(2), 022104 (2005).
[Crossref]

Du, Z.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
[Crossref]

Eberhardt, W.

E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
[Crossref]

Eisebitt, S.

E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
[Crossref]

Emelianova, E. V.

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B 71(4), 045214 (2005).
[Crossref]

Fan, F.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Fan, J. Z.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Fang, Y.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
[Crossref]

Feng, D.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
[Crossref]

Geffroy, B.

B. Geffroy, P. le Roy, and C. Prat, “Review Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Geng, D.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

Gong, G.

G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
[Crossref]

Gong, X.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Greffet, J.-J.

F. Marquier, C. Sauvan, and J.-J. Greffet, “Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators,” ACS Photonics 4(9), 2091–2101 (2017).
[Crossref]

Gu, X.

Guo, F.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Guo, W.

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

Guo, Y.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
[Crossref]

Halpert, J. E.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

He, C.

He, D.

T. Ye, J. Wang, W. Chen, Y. Yang, and D. He, “Improved performance and reproducibility of perovskite solar cells by well-soluble tris(pentafluorophenyl)borane as a p-type dopant,” ACS Appl. Mater. Interfaces 9(21), 17923–17931 (2017).
[Crossref]

He, X.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

He, Z.

Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, “A low-temperature-annealed and UV-ozoneenhanced combustion derived nickel oxide hole injection layer for flexible quantum dot lightemitting diodes,” Nanoscale 11(3), 1021–1028 (2019).
[Crossref]

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Heeney, M.

Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
[Crossref]

Hendricksonc, J. R.

J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
[Crossref]

Henson, Z. B.

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

Heremans, P.

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B 71(4), 045214 (2005).
[Crossref]

Hirsch, L.

Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
[Crossref]

Holloway, P. H.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Hoogland, S.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Hu, Y.

Y.-L. Shi, F. Liang, Y. Hu, X.-D. Wang, Z.-K. Wang, and L.-S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Huang, Q.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

J. Pan, J. Chen, Q. Huang, L. Wang, and W. Lei, “A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport,” RSC Adv. 7(69), 43366–43372 (2017).
[Crossref]

Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
[Crossref]

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Hwang, D. K.

H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
[Crossref]

Hwang, E.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

Hyvonen, J.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Ikeda, S.

G. Zaiats, S. Ikeda, S. Kinge, and P. V. Kamat, “Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels,” ACS Appl. Mater. Interfaces 9(36), 30741–30745 (2017).
[Crossref]

Iwasa, Y.

H. Shimotani, G. Diguet, and Y. Iwasa, “Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene),” Appl. Phys. Lett. 86(2), 022104 (2005).
[Crossref]

Jang, J.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

Janietz, S.

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

Jeong, J. H.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Jiang, C.

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Jiang, J.

Jiang, Y.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Jin, X.

Jin, Y.

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29(14), 1607022 (2017).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Kamat, P. V.

G. Zaiats, S. Ikeda, S. Kinge, and P. V. Kamat, “Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels,” ACS Appl. Mater. Interfaces 9(36), 30741–30745 (2017).
[Crossref]

Khan, Q.

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Kim, H. H.

H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
[Crossref]

Kim, H. M.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

Kim, J.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

Kinge, S.

G. Zaiats, S. Ikeda, S. Kinge, and P. V. Kamat, “Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels,” ACS Appl. Mater. Interfaces 9(36), 30741–30745 (2017).
[Crossref]

Koch, N.

E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
[Crossref]

Kölln, L.

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

Kraffert, F.

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

Kuik, M.

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

Langer, E.

Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
[Crossref]

Laurent, J.-Y.

Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
[Crossref]

le Roy, P.

B. Geffroy, P. le Roy, and C. Prat, “Review Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Lee, B. R.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Lei, W.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

J. Pan, J. Chen, Q. Huang, L. Wang, and W. Lei, “A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport,” RSC Adv. 7(69), 43366–43372 (2017).
[Crossref]

Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
[Crossref]

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Levina, L.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Li, F.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
[Crossref]

Li, J.

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

Li, Q.

Li, W.

A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
[Crossref]

X. Wang, W. Li, and K. Sun, “Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties,” J. Mater. Chem. 21(24), 8558 (2011).
[Crossref]

Li, X.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Li, Z.

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

Lian, H.

G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
[Crossref]

Liang, F.

Y.-L. Shi, F. Liang, Y. Hu, X.-D. Wang, Z.-K. Wang, and L.-S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Liang, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Liao, L.-S.

Y.-L. Shi, F. Liang, Y. Hu, X.-D. Wang, Z.-K. Wang, and L.-S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Lin, Y.-H.

Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
[Crossref]

Liu, C.

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

Liu, J.

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Liu, M.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Liu, S.

A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
[Crossref]

Liu, X.

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Liu, Y.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Lu, Q.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Lu, Z.-H.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Ma, G. L.

G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
[Crossref]

Ma, S.

S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
[Crossref]

Mai, C.

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Maindron, T.

Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
[Crossref]

Manders, J. R.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Marquier, F.

F. Marquier, C. Sauvan, and J.-J. Greffet, “Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators,” ACS Photonics 4(9), 2091–2101 (2017).
[Crossref]

Martin, J.

Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
[Crossref]

Mu, L.

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Murat, Y.

Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
[Crossref]

Nathan, A.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Neher, D.

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

P. Pingel, R. Schwarzl, and D. Neher, “Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene),” Appl. Phys. Lett. 100(14), 143303 (2012).
[Crossref]

E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
[Crossref]

Nguyen, T. Q.

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

Ni, D.

G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
[Crossref]

Niu, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Pan, J.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

J. Pan, J. Chen, Q. Huang, L. Wang, and W. Lei, “A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport,” RSC Adv. 7(69), 43366–43372 (2017).
[Crossref]

Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
[Crossref]

Pan, Y. J.

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Park, C.

H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
[Crossref]

Park, S.

H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
[Crossref]

Park, S. H.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Peng, J.

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Peng, X.

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29(14), 1607022 (2017).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Pingel, P.

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

P. Pingel, R. Schwarzl, and D. Neher, “Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene),” Appl. Phys. Lett. 100(14), 143303 (2012).
[Crossref]

E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
[Crossref]

Prat, C.

B. Geffroy, P. le Roy, and C. Prat, “Review Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Qian, L.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Qiao, Y. P.

G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
[Crossref]

Qin, G. G.

G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
[Crossref]

Qin, Y.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Quan, L. N.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Quintero-Bermudez, R.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Ran, G. Z.

G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
[Crossref]

Ruan, S.

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

Sargent, E. H.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Sauvan, C.

F. Marquier, C. Sauvan, and J.-J. Greffet, “Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators,” ACS Photonics 4(9), 2091–2101 (2017).
[Crossref]

Schwarzl, R.

P. Pingel, R. Schwarzl, and D. Neher, “Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene),” Appl. Phys. Lett. 100(14), 143303 (2012).
[Crossref]

Sharenko, A.

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

Shen, H.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
[Crossref]

Shen, L.

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

Shen, Y.

G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
[Crossref]

S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
[Crossref]

Shi, G.

G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
[Crossref]

Shi, Y.-L.

Y.-L. Shi, F. Liang, Y. Hu, X.-D. Wang, Z.-K. Wang, and L.-S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Shimotani, H.

H. Shimotani, G. Diguet, and Y. Iwasa, “Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene),” Appl. Phys. Lett. 86(2), 022104 (2005).
[Crossref]

Son, D. I.

H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
[Crossref]

Song, C.

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Song, Y.

Steyrleuthner, R.

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

Stuart, A. C.

A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
[Crossref]

Su, W.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

Sun, H.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Sun, K.

X. Wang, W. Li, and K. Sun, “Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties,” J. Mater. Chem. 21(24), 8558 (2011).
[Crossref]

Sun, Y.

Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, “A low-temperature-annealed and UV-ozoneenhanced combustion derived nickel oxide hole injection layer for flexible quantum dot lightemitting diodes,” Nanoscale 11(3), 1021–1028 (2019).
[Crossref]

Tao, Z.

Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
[Crossref]

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Titov, A.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Tu, G.

G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
[Crossref]

S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
[Crossref]

Tu, Y.

Tumbleston, J. R.

A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
[Crossref]

Ullrich, B.

J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
[Crossref]

Vollmer, A.

E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
[Crossref]

Voznyy, O.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Wai, C. M.

J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
[Crossref]

Wan, M.

G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
[Crossref]

Wang, J.

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

T. Ye, J. Wang, W. Chen, Y. Yang, and D. He, “Improved performance and reproducibility of perovskite solar cells by well-soluble tris(pentafluorophenyl)borane as a p-type dopant,” ACS Appl. Mater. Interfaces 9(21), 17923–17931 (2017).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Wang, J. S.

J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
[Crossref]

Wang, L.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

J. Pan, J. Chen, Q. Huang, L. Wang, and W. Lei, “A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport,” RSC Adv. 7(69), 43366–43372 (2017).
[Crossref]

Wang, M.

G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
[Crossref]

S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
[Crossref]

Wang, P.

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Wang, R.

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Wang, S.

G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
[Crossref]

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
[Crossref]

Wang, X.

X. Wang, W. Li, and K. Sun, “Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties,” J. Mater. Chem. 21(24), 8558 (2011).
[Crossref]

Wang, X.-D.

Y.-L. Shi, F. Liang, Y. Hu, X.-D. Wang, Z.-K. Wang, and L.-S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Wang, Y.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Wang, Z.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Wang, Z.-K.

Y.-L. Shi, F. Liang, Y. Hu, X.-D. Wang, Z.-K. Wang, and L.-S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Wantz, G.

Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
[Crossref]

Wei, C.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

Wei, J.

Wei, X.

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Woellner, C.

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

Wood, V.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

Wu, J.

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Wu, Y.

Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, “A low-temperature-annealed and UV-ozoneenhanced combustion derived nickel oxide hole injection layer for flexible quantum dot lightemitting diodes,” Nanoscale 11(3), 1021–1028 (2019).
[Crossref]

Xu, A. G.

G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
[Crossref]

Xu, R.

G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
[Crossref]

Xu, Y. H.

G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
[Crossref]

Xue, J.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Yamada-Takamura, Y.

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Yang, L.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

H. Zhou, L. Yang, and W. You, “Rational Design of High Performance Conjugated Polymers for Organic Solar Cells,” Macromolecules 45(2), 607–632 (2012).
[Crossref]

Yang, M.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Yang, Y.

T. Ye, J. Wang, W. Chen, Y. Yang, and D. He, “Improved performance and reproducibility of perovskite solar cells by well-soluble tris(pentafluorophenyl)borane as a p-type dopant,” ACS Appl. Mater. Interfaces 9(21), 17923–17931 (2017).
[Crossref]

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Yang, Z.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Ye, T.

T. Ye, J. Wang, W. Chen, Y. Yang, and D. He, “Improved performance and reproducibility of perovskite solar cells by well-soluble tris(pentafluorophenyl)borane as a p-type dopant,” ACS Appl. Mater. Interfaces 9(21), 17923–17931 (2017).
[Crossref]

Yi, Y.

H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
[Crossref]

You, W.

A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
[Crossref]

H. Zhou, L. Yang, and W. You, “Rational Design of High Performance Conjugated Polymers for Organic Solar Cells,” Macromolecules 45(2), 607–632 (2012).
[Crossref]

Zaiats, G.

G. Zaiats, S. Ikeda, S. Kinge, and P. V. Kamat, “Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels,” ACS Appl. Mater. Interfaces 9(36), 30741–30745 (2017).
[Crossref]

Zalar, P.

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

Zhang, H.

S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
[Crossref]

Zhang, Q.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
[Crossref]

Zhang, S.

Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, “A low-temperature-annealed and UV-ozoneenhanced combustion derived nickel oxide hole injection layer for flexible quantum dot lightemitting diodes,” Nanoscale 11(3), 1021–1028 (2019).
[Crossref]

Zhang, W.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Zhang, X.

G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
[Crossref]

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

Zhang, Y.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
[Crossref]

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

Y. Zhang, B. de Boer, and P. W. M. Blom, “Controllable Molecular Doping and Charge Transport in Solution-Processed PolymerSemiconducting Layers,” Adv. Funct. Mater. 19(12), 1901–1905 (2009).
[Crossref]

Zhang, Z.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
[Crossref]

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Zhao, N.

G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
[Crossref]

S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
[Crossref]

Zhao, Y.-B.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Zheng, Y.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Zhong, W.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Zhong, Z.

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

Zhou, D.

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Zhou, H.

A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
[Crossref]

H. Zhou, L. Yang, and W. You, “Rational Design of High Performance Conjugated Polymers for Organic Solar Cells,” Macromolecules 45(2), 607–632 (2012).
[Crossref]

Zhou, K.

Zhu, W.

G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
[Crossref]

Zhuang, J.

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (4)

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

G. Zaiats, S. Ikeda, S. Kinge, and P. V. Kamat, “Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels,” ACS Appl. Mater. Interfaces 9(36), 30741–30745 (2017).
[Crossref]

T. Ye, J. Wang, W. Chen, Y. Yang, and D. He, “Improved performance and reproducibility of perovskite solar cells by well-soluble tris(pentafluorophenyl)borane as a p-type dopant,” ACS Appl. Mater. Interfaces 9(21), 17923–17931 (2017).
[Crossref]

Z. Li, X. Zhang, C. Liu, Z. Zhang, J. Li, L. Shen, W. Guo, and S. Ruan, “Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer,” ACS Appl. Mater. Interfaces 8(12), 8224–8231 (2016).
[Crossref]

ACS Nano (1)

Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano 12(2), 1564–1570 (2018).
[Crossref]

ACS Photonics (2)

F. Marquier, C. Sauvan, and J.-J. Greffet, “Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators,” ACS Photonics 4(9), 2091–2101 (2017).
[Crossref]

Y. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Adv. Electron. Mater. (1)

P. Pingel, M. Arvind, L. Kölln, R. Steyrleuthner, F. Kraffert, J. Behrends, S. Janietz, and D. Neher, “p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane,” Adv. Electron. Mater. 2(10), 1600204 (2016).
[Crossref]

Adv. Funct. Mater. (1)

Y. Zhang, B. de Boer, and P. W. M. Blom, “Controllable Molecular Doping and Charge Transport in Solution-Processed PolymerSemiconducting Layers,” Adv. Funct. Mater. 19(12), 1901–1905 (2009).
[Crossref]

Adv. Mater. (3)

P. Zalar, M. Kuik, Z. B. Henson, C. Woellner, Y. Zhang, A. Sharenko, G. C. Bazan, and T. Q. Nguyen, “Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer,” Adv. Mater. 26(5), 724–727 (2014).
[Crossref]

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29(14), 1607022 (2017).
[Crossref]

E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, and N. Koch, “Localized Charge Transfer in a Molecularly Doped Conducting Polymer,” Adv. Mater. 19(20), 3257–3260 (2007).
[Crossref]

Adv. Sci. (1)

X. He, Y. Liu, C. J. Butch, B. R. Lee, F. Guo, J. Wu, Z. Wang, Q. Lu, J. H. Jeong, Y. Wang, and S. H. Park, “One-Pot Exfoliation of Graphitic C3N4 Quantum Dots for Blue QLEDs by Methylamine Intercalation,” Adv. Sci. 15, 1902735 (2019).
[Crossref]

Appl. Phys. Lett. (2)

H. Shimotani, G. Diguet, and Y. Iwasa, “Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene),” Appl. Phys. Lett. 86(2), 022104 (2005).
[Crossref]

P. Pingel, R. Schwarzl, and D. Neher, “Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene),” Appl. Phys. Lett. 100(14), 143303 (2012).
[Crossref]

Chem. Mater. (1)

Y. a. G. Barnes, Y.-H. Lin, J. Martin, M. Al.-Hashimi, S. Y. AlQaradawi, T. D. Anthopoulos, and M. Heeney, “Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors,” Chem. Mater. 28(21), 8016–8024 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells,” J. Am. Chem. Soc. 135(5), 1806–1815 (2013).
[Crossref]

J. Mater. Chem. (1)

X. Wang, W. Li, and K. Sun, “Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties,” J. Mater. Chem. 21(24), 8558 (2011).
[Crossref]

J. Mater. Chem. A (2)

G. Gong, N. Zhao, D. Ni, J. Chen, Y. Shen, M. Wang, and G. Tu, “Dopant-free 3,30-bithiophene derivatives as hole transport materials for perovskite solar cells,” J. Mater. Chem. A 4(10), 3661–3666 (2016).
[Crossref]

S. Ma, H. Zhang, N. Zhao, Y. Cheng, M. Wang, Y. Shen, and G. Tu, “Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells,” J. Mater. Chem. A 3(23), 12139–12144 (2015).
[Crossref]

J. Mater. Chem. C (3)

Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Yamada-Takamura, and Y. Wang, “n-Doping-Induced Efficient Electron-Injection for High Efficiency Inverted Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter,” J. Mater. Chem. C 5(33), 8400–8407 (2017).
[Crossref]

Y.-L. Shi, F. Liang, Y. Hu, X.-D. Wang, Z.-K. Wang, and L.-S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap Tunable Zn1-xMgxO Thin Films as Electron Transport Layer for High Performance Quantum Dot Light-emitting Diodes,” J. Mater. Chem. C 5(19), 4724–4730 (2017).
[Crossref]

Macromolecules (1)

H. Zhou, L. Yang, and W. You, “Rational Design of High Performance Conjugated Polymers for Organic Solar Cells,” Macromolecules 45(2), 607–632 (2012).
[Crossref]

Nanoscale (2)

Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, “A low-temperature-annealed and UV-ozoneenhanced combustion derived nickel oxide hole injection layer for flexible quantum dot lightemitting diodes,” Nanoscale 11(3), 1021–1028 (2019).
[Crossref]

J. Pan, C. Wei, L. Wang, J. Zhuang, Q. Huang, W. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale 10(2), 592–602 (2018).
[Crossref]

Nat. Photonics (3)

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(4), 259–266 (2015).
[Crossref]

Nature (1)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Opt. Express (2)

Org. Electron. (2)

W. Zhang, Q. Zhang, H. Sun, M. Yang, F. Li, Y. Zhang, Y. Qin, D. Zhou, L. Yang, Z. Zhang, Y. Jiang, and W. Zhong, “Emission layer of F4TCNQ-Doped nanorods for high-effcient red light-emitting diodes,” Org. Electron. 76, 105460 (2020).
[Crossref]

Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, “Bright and efficient inverted organic light-emitting diodes with improved solution processed electron-transport interlayers,” Org. Electron. 48, 377–381 (2017).
[Crossref]

Phys. Rev. B (1)

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B 71(4), 045214 (2005).
[Crossref]

Polym. Int. (1)

B. Geffroy, P. le Roy, and C. Prat, “Review Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

RSC Adv. (3)

G. Shi, X. Zhang, M. Wan, S. Wang, H. Lian, R. Xu, and W. Zhu, “High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer,” RSC Adv. 9(11), 6042–6047 (2019).
[Crossref]

J. Pan, J. Chen, Q. Huang, L. Wang, and W. Lei, “A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport,” RSC Adv. 7(69), 43366–43372 (2017).
[Crossref]

J. S. Wang, B. Ullrich, A. Das, C. M. Wai, G. J. Brown, C. K. Dasscd, and J. R. Hendricksonc, “Luminescence studies for energy transfer of lead sulfide QD films,” RSC Adv. 6(54), 48651–48660 (2016).
[Crossref]

Sci. Rep. (1)

H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, and W. K. Choi, “Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO,” Sci. Rep. 5(1), 8968 (2015).
[Crossref]

Semicond. Sci. Technol. (1)

G. Z. Ran, Y. H. Xu, G. L. Ma, A. G. Xu, Y. P. Qiao, W. X. Chen, and G. G. Qin, “Organic light-emitting diodes with n-type silicon anode,” Semicond. Sci. Technol. 20(8), 761–764 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The schematic diagrams of (a) structure and (b) energy-level of the QLEDs, and the (c) cyclic voltammograms behaviors and (d) chemical structure of B(C6F5)3.
Fig. 2.
Fig. 2. The absorption spectra of B(C6F5)3:poly-TPD with different doping ratios.
Fig. 3.
Fig. 3. Current density–voltage curves for single-carrier devices: (a) hole-only devices, (b) electron-only devices.
Fig. 4.
Fig. 4. The SEM and AFM images of B(C6F5)3 doped poly-TPD and the AFM images of QDs films above the B(C6F5)3:poly-TPD layers at different doping ratios of (a) 0%, (b) 4%, (c) 8%, and (d) 16%.
Fig. 5.
Fig. 5. Contact angles of QDs against poly-TPD film with different B(C6F5)3 doping ratios: (a) 0%, (b) 4%, (c) 8%, and (d) 16%.
Fig. 6.
Fig. 6. The external quantum efficiency (a), current density (b), current efficiency (c), and luminance (d) versus voltage curves of the QLED devices.
Fig. 7.
Fig. 7. (a) The PL spectrum of poly-TPD film, (b) the EL spectra of undoped QLED, and (c) the EL spectra of doped QLED.
Fig. 8.
Fig. 8. Current-voltage curves of QLEDs at different doping ratios in the range of 0-6 V.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R P dV / dI | near origin
R S dV / dI | at voltages exceeding turn on