Abstract

Large reflection losses at interfaces in light-emitting semiconductor devices cause a significant reduction in their light emission and energy efficiencies. Metal nanoparticle (NP) surface coatings have been demonstrated to increase the light extraction efficiency from planar high refractive index semiconductor surfaces. This emission enhancement in Au NP-coated ZnO is widely attributed to involvement of a green (∼ 2.5 eV) deep level ZnO defect exciting localized surface plasmons in the NPs. In this work, we achieve a 6 times enhancement of the ultra-violet excitonic emission in ZnO nanorods coated with 5 nm Au NPs without the aid of ZnO defects. Cathodoluminescence (CL) and photoluminescence (PL) spectroscopy revealed that the increased UV emission is due to the formation of an additional fast excitonic relaxation pathway. Concurrent CL-PL measurements ruled out the presence of charge transfer mechanism in the emission enhancement process. While time-resolved PL confirmed the existence of a new excitonic recombination channel that is attributed to exciton relaxation via the excitation of rapid non-radiative Au interband transitions that increases the UV spontaneous emission rate. Our results establish that ZnO defect levels ∼ 2.5 eV are not required to facilitate Au NP induced enhancement of the ZnO UV emission.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Amin, “ZnO and CuO nanostructures: low temperature growth, characterization, their optoelectronic and sensing applications,” (2012).
  2. N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
    [Crossref]
  3. A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,” Adv. Mater. 22(36), 4059–4063 (2010).
    [Crossref]
  4. H. Li, Y. Huang, Q. Zhang, J. Liu, and Y. Zhang, “Influence of electromechanical coupling and electron irradiation on the conductivity of individual ZnO nanowire,” Solid State Sci. 13(3), 658–661 (2011).
    [Crossref]
  5. P. Miller, “Zinc Oxide: A spectroscopic investigation of bulk crystals and thin films,” (2008).
  6. Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [Crossref]
  7. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
    [Crossref]
  8. D. G. Thomas, “The exciton spectrum of zinc oxide,” J. Phys. Chem. Solids 15(1-2), 86–96 (1960).
    [Crossref]
  9. Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
    [Crossref]
  10. V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
    [Crossref]
  11. G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
    [Crossref]
  12. W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
    [Crossref]
  13. M. Mahanti and D. Basak, “Enhanced ultraviolet photoresponse in Au/ZnO nanorods,” Chem. Phys. Lett. 612, 101–105 (2014).
    [Crossref]
  14. L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
    [Crossref]
  15. C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
    [Crossref]
  16. D.-R. Hang, S. E. Islam, C.-H. Chen, and K. H. Sharma, “Full Solution-Processed Synthesis and Mechanisms of a Recyclable and Bifunctional Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties,” Chem. - Eur. J. 22(42), 14950–14961 (2016).
    [Crossref]
  17. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006).
    [Crossref]
  18. M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
    [Crossref]
  19. E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
    [Crossref]
  20. D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
    [Crossref]
  21. A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
    [Crossref]
  22. N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices,” Sci. Rep. 4(1), 6483 (2015).
    [Crossref]
  23. Y. Zhang, X. Li, and X. Ren, “Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films,” Opt. Express 17(11), 8735–8740 (2009).
    [Crossref]
  24. S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-Plasmon-Enhanced Band Emission of ZnO Nanoflowers Decorated with Au Nanoparticles,” Chem. - Eur. J. 18(24), 7467–7472 (2012).
    [Crossref]
  25. T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
    [Crossref]
  26. L. Su and N. Qin, “A facile method for fabricating Au-nanoparticles-decorated ZnO nanorods with greatly enhanced near-band-edge emission,” Ceram. Int. 41(2), 2673–2679 (2015).
    [Crossref]
  27. S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
    [Crossref]
  28. V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
    [Crossref]
  29. Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
    [Crossref]
  30. Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
    [Crossref]
  31. J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
    [Crossref]
  32. B. G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles (Springer Science & Business Media, 2003).
  33. S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, “Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing,” J. Phys. Chem. C 118(46), 27150–27156 (2014).
    [Crossref]
  34. G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission Surface-Plasmon Resonance (T-SPR) Measurements for Monitoring Adsorption on Ultrathin Gold Island Films,” Chem. - Eur. J. 8(17), 3849–3857 (2002).
    [Crossref]
  35. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
    [Crossref]
  36. X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124 (2014).
    [Crossref]
  37. A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
    [Crossref]
  38. A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
    [Crossref]
  39. H. Berrezoug, A. E. Merad, M. Aillerie, and A. Zerga, “First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations,” Mater. Res. Express 4, 035901 (2017).
    [Crossref]
  40. S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
    [Crossref]
  41. S. Choi, M. R. Phillips, I. Aharonovich, S. Pornsuwan, B. C. C. Cowie, and C. Ton-That, “Photophysics of Point Defects in ZnO Nanoparticles,” Adv. Opt. Mater. 3(6), 821–827 (2015).
    [Crossref]
  42. M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
    [Crossref]
  43. M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
    [Crossref]
  44. E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
    [Crossref]
  45. W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
    [Crossref]
  46. J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
    [Crossref]
  47. J.-D. Hwang, M. J. Lai, H. Z. Chen, and M. C. Kao, “Au-Mediated Surface Plasmon Enhanced Ultraviolet Response of p-Si/n-ZnO Nanorods Photodetectors,” IEEE Photonics Technol. Lett. 26(10), 1023–1026 (2014).
    [Crossref]
  48. X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
    [Crossref]
  49. C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
    [Crossref]
  50. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
    [Crossref]
  51. G. V. Hartland, “Optical Studies of Dynamics in Noble Metal Nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
    [Crossref]
  52. L. Le Thi Ngoc, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure,” Opt. Express 23(5), 5547–5564 (2015).
    [Crossref]
  53. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
    [Crossref]
  54. E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
    [Crossref]
  55. J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl Phys Lett 96, 053105 (2010).
    [Crossref]
  56. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
    [Crossref]

2017 (1)

H. Berrezoug, A. E. Merad, M. Aillerie, and A. Zerga, “First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations,” Mater. Res. Express 4, 035901 (2017).
[Crossref]

2016 (7)

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
[Crossref]

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
[Crossref]

D.-R. Hang, S. E. Islam, C.-H. Chen, and K. H. Sharma, “Full Solution-Processed Synthesis and Mechanisms of a Recyclable and Bifunctional Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties,” Chem. - Eur. J. 22(42), 14950–14961 (2016).
[Crossref]

2015 (11)

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref]

L. Su and N. Qin, “A facile method for fabricating Au-nanoparticles-decorated ZnO nanorods with greatly enhanced near-band-edge emission,” Ceram. Int. 41(2), 2673–2679 (2015).
[Crossref]

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

L. Le Thi Ngoc, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure,” Opt. Express 23(5), 5547–5564 (2015).
[Crossref]

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

S. Choi, M. R. Phillips, I. Aharonovich, S. Pornsuwan, B. C. C. Cowie, and C. Ton-That, “Photophysics of Point Defects in ZnO Nanoparticles,” Adv. Opt. Mater. 3(6), 821–827 (2015).
[Crossref]

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

2014 (8)

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

J.-D. Hwang, M. J. Lai, H. Z. Chen, and M. C. Kao, “Au-Mediated Surface Plasmon Enhanced Ultraviolet Response of p-Si/n-ZnO Nanorods Photodetectors,” IEEE Photonics Technol. Lett. 26(10), 1023–1026 (2014).
[Crossref]

A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, “Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing,” J. Phys. Chem. C 118(46), 27150–27156 (2014).
[Crossref]

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124 (2014).
[Crossref]

S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
[Crossref]

M. Mahanti and D. Basak, “Enhanced ultraviolet photoresponse in Au/ZnO nanorods,” Chem. Phys. Lett. 612, 101–105 (2014).
[Crossref]

2013 (3)

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
[Crossref]

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

2012 (3)

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-Plasmon-Enhanced Band Emission of ZnO Nanoflowers Decorated with Au Nanoparticles,” Chem. - Eur. J. 18(24), 7467–7472 (2012).
[Crossref]

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

2011 (4)

H. Li, Y. Huang, Q. Zhang, J. Liu, and Y. Zhang, “Influence of electromechanical coupling and electron irradiation on the conductivity of individual ZnO nanowire,” Solid State Sci. 13(3), 658–661 (2011).
[Crossref]

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

G. V. Hartland, “Optical Studies of Dynamics in Noble Metal Nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
[Crossref]

2010 (4)

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl Phys Lett 96, 053105 (2010).
[Crossref]

N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
[Crossref]

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,” Adv. Mater. 22(36), 4059–4063 (2010).
[Crossref]

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

2009 (1)

2007 (3)

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

2006 (1)

2005 (3)

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref]

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

2004 (1)

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

2002 (1)

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission Surface-Plasmon Resonance (T-SPR) Measurements for Monitoring Adsorption on Ultrathin Gold Island Films,” Chem. - Eur. J. 8(17), 3849–3857 (2002).
[Crossref]

2000 (1)

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

1960 (1)

D. G. Thomas, “The exciton spectrum of zinc oxide,” J. Phys. Chem. Solids 15(1-2), 86–96 (1960).
[Crossref]

Adamo, G.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

Aharonovich, I.

S. Choi, M. R. Phillips, I. Aharonovich, S. Pornsuwan, B. C. C. Cowie, and C. Ton-That, “Photophysics of Point Defects in ZnO Nanoparticles,” Adv. Opt. Mater. 3(6), 821–827 (2015).
[Crossref]

Aillerie, M.

H. Berrezoug, A. E. Merad, M. Aillerie, and A. Zerga, “First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations,” Mater. Res. Express 4, 035901 (2017).
[Crossref]

Alivov, Y. I.

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Amin, G.

G. Amin, “ZnO and CuO nanostructures: low temperature growth, characterization, their optoelectronic and sensing applications,” (2012).

Anantachaisilp, S.

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, “Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing,” J. Phys. Chem. C 118(46), 27150–27156 (2014).
[Crossref]

Aplin, D. P. R.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Avrutin, V.

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Baffa, O.

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

Balakrishnan, S. R.

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

Bano, N.

N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
[Crossref]

Bao, X. Y.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Basak, D.

M. Mahanti and D. Basak, “Enhanced ultraviolet photoresponse in Au/ZnO nanorods,” Chem. Phys. Lett. 612, 101–105 (2014).
[Crossref]

Battie, Y.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Berrezoug, H.

H. Berrezoug, A. E. Merad, M. Aillerie, and A. Zerga, “First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations,” Mater. Res. Express 4, 035901 (2017).
[Crossref]

Bertoni, G.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

Bi, P.

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Burda, C.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref]

Buyanova, I. A.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

Calestani, D.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

Callsen, G.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Cammi, D.

A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Carlen, E. T.

Caruso, F.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Chai, J.

X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
[Crossref]

Chamorro, W.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Chan, W. K.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Cheah, K. W.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Chen, C.-H.

D.-R. Hang, S. E. Islam, C.-H. Chen, and K. H. Sharma, “Full Solution-Processed Synthesis and Mechanisms of a Recyclable and Bifunctional Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties,” Chem. - Eur. J. 22(42), 14950–14961 (2016).
[Crossref]

Chen, H. Z.

J.-D. Hwang, M. J. Lai, H. Z. Chen, and M. C. Kao, “Au-Mediated Surface Plasmon Enhanced Ultraviolet Response of p-Si/n-ZnO Nanorods Photodetectors,” IEEE Photonics Technol. Lett. 26(10), 1023–1026 (2014).
[Crossref]

Chen, J.

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Chen, L.-J.

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,” Adv. Mater. 22(36), 4059–4063 (2010).
[Crossref]

Chen, R.

X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
[Crossref]

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

Chen, S. L.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

Chen, T. P.

Chen, W. M.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

Chen, X.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref]

Chen, Y. F.

Cheng, C. L.

Cheng, C. W.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Chi, D.

X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
[Crossref]

Cho, S.-J.

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Choi, S.

S. Choi, M. R. Phillips, I. Aharonovich, S. Pornsuwan, B. C. C. Cowie, and C. Ton-That, “Photophysics of Point Defects in ZnO Nanoparticles,” Adv. Opt. Mater. 3(6), 821–827 (2015).
[Crossref]

Chou, Y. Y.

Chua, S. J.

X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
[Crossref]

Clarke, D. R.

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

Cobet, M.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Cornet, A.

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl Phys Lett 96, 053105 (2010).
[Crossref]

Corolewski, C. D.

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

Cowie, B. C. C.

S. Choi, M. R. Phillips, I. Aharonovich, S. Pornsuwan, B. C. C. Cowie, and C. Ton-That, “Photophysics of Point Defects in ZnO Nanoparticles,” Adv. Opt. Mater. 3(6), 821–827 (2015).
[Crossref]

Dai, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

Dayeh, S. A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Devika, M.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

Ding, L.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Djurišic, A. B.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Do, Y. R.

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-Plasmon-Enhanced Band Emission of ZnO Nanoflowers Decorated with Au Nanoparticles,” Chem. - Eur. J. 18(24), 7467–7472 (2012).
[Crossref]

Dogan, S.

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Eisermann, S.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

El-Sayed, M. A.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref]

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

Fabbri, F.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

Fan, H. J.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Filippov, S.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

Fisher, M.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

Gao, F. L.

S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
[Crossref]

Gao, X.

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Ge, W. K.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Ghanbaja, J.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Gittins, D.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Gogurla, N.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref]

Gopinath, S. C.

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

Gopinath, S. C. B.

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

Gradecak, S.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

Güell, F.

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl Phys Lett 96, 053105 (2010).
[Crossref]

Guidelli, E. J.

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

Guo, X.

L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
[Crossref]

Ha, S.

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

Haarindraprasad, R.

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

Han, X.

L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
[Crossref]

Hang, D.-R.

D.-R. Hang, S. E. Islam, C.-H. Chen, and K. H. Sharma, “Full Solution-Processed Synthesis and Mechanisms of a Recyclable and Bifunctional Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties,” Chem. - Eur. J. 22(42), 14950–14961 (2016).
[Crossref]

Harrison, K. W.

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

Hartland, G. V.

G. V. Hartland, “Optical Studies of Dynamics in Noble Metal Nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
[Crossref]

Hashim, U.

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

He, X.

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

Hira, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

Hoffmann, A.

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl Phys Lett 96, 053105 (2010).
[Crossref]

Hopkins, B.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

Horwat, D.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Hsu, Y. F.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Huan, C. H. A.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Huang, L. L.

Huang, X.

X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
[Crossref]

Huang, Y.

H. Li, Y. Huang, Q. Zhang, J. Liu, and Y. Zhang, “Influence of electromechanical coupling and electron irradiation on the conductivity of individual ZnO nanowire,” Solid State Sci. 13(3), 658–661 (2011).
[Crossref]

Hussain, I.

N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
[Crossref]

Hussain, S.

N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
[Crossref]

Hwang, J.-D.

J.-D. Hwang, M. J. Lai, H. Z. Chen, and M. C. Kao, “Au-Mediated Surface Plasmon Enhanced Ultraviolet Response of p-Si/n-ZnO Nanorods Photodetectors,” IEEE Photonics Technol. Lett. 26(10), 1023–1026 (2014).
[Crossref]

Iacopino, D.

A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Islam, S. E.

D.-R. Hang, S. E. Islam, C.-H. Chen, and K. H. Sharma, “Full Solution-Processed Synthesis and Mechanisms of a Recyclable and Bifunctional Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties,” Chem. - Eur. J. 22(42), 14950–14961 (2016).
[Crossref]

Janotti, A.

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

Javier, A.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

Jennings, T.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

Ji, Y.

L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
[Crossref]

Juska, G.

A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Kaiser, M.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Kalyuzhny, G.

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission Surface-Plasmon Resonance (T-SPR) Measurements for Monitoring Adsorption on Ultrathin Gold Island Films,” Chem. - Eur. J. 8(17), 3849–3857 (2002).
[Crossref]

Kang, J.

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

Kang, X.

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Kao, M. C.

J.-D. Hwang, M. J. Lai, H. Z. Chen, and M. C. Kao, “Au-Mediated Surface Plasmon Enhanced Ultraviolet Response of p-Si/n-ZnO Nanorods Photodetectors,” IEEE Photonics Technol. Lett. 26(10), 1023–1026 (2014).
[Crossref]

Kim, D. H.

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-Plasmon-Enhanced Band Emission of ZnO Nanoflowers Decorated with Au Nanoparticles,” Chem. - Eur. J. 18(24), 7467–7472 (2012).
[Crossref]

Kirste, R.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Klar, T.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Kochuveedu, S. T.

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-Plasmon-Enhanced Band Emission of ZnO Nanoflowers Decorated with Au Nanoparticles,” Chem. - Eur. J. 18(24), 7467–7472 (2012).
[Crossref]

Kolská, Z.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[Crossref]

Koteeswara Reddy, N.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

Kwok, W. M.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Lai, M. J.

J.-D. Hwang, M. J. Lai, H. Z. Chen, and M. C. Kao, “Au-Mediated Surface Plasmon Enhanced Ultraviolet Response of p-Si/n-ZnO Nanorods Photodetectors,” IEEE Photonics Technol. Lett. 26(10), 1023–1026 (2014).
[Crossref]

Lautenschläger, S.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Lazzarini, L.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

Le Thi Ngoc, L.

Leong, K. C.

Leung, Y. H.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Li, G. Q.

S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
[Crossref]

Li, H.

H. Li, Y. Huang, Q. Zhang, J. Liu, and Y. Zhang, “Influence of electromechanical coupling and electron irradiation on the conductivity of individual ZnO nanowire,” Solid State Sci. 13(3), 658–661 (2011).
[Crossref]

Li, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

Li, J. L.

S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
[Crossref]

Li, K.

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

Li, L. H.

S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
[Crossref]

Li, X.

Li, X. D.

Li, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

Lin, H. Y.

Lin, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

Liu, B.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Liu, C.

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Liu, J.

H. Li, Y. Huang, Q. Zhang, J. Liu, and Y. Zhang, “Influence of electromechanical coupling and electron irradiation on the conductivity of individual ZnO nanowire,” Solid State Sci. 13(3), 658–661 (2011).
[Crossref]

Liu, M.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

Liu, W.

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

Liu, W. Z.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Liu, W.-W.

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

Liu, Y.

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124 (2014).
[Crossref]

Liu, Y. C.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Lo, Y. H.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Lu, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

Lu, M.-Y.

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,” Adv. Mater. 22(36), 4059–4063 (2010).
[Crossref]

Luo, J.

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Lv, J.

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

Lyutakov, O.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[Crossref]

Ma, J. G.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

MacDonald, K. F.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

Mahanti, M.

M. Mahanti and D. Basak, “Enhanced ultraviolet photoresponse in Au/ZnO nanorods,” Chem. Phys. Lett. 612, 101–105 (2014).
[Crossref]

Manekkathodi, A.

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,” Adv. Mater. 22(36), 4059–4063 (2010).
[Crossref]

Manna, S.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref]

Mao, S.

L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
[Crossref]

Martín, A.

A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Marvinney, C. E.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Mayya, K.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

McCluskey, M. D.

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

Merad, A. E.

H. Berrezoug, A. E. Merad, M. Aillerie, and A. Zerga, “First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations,” Mater. Res. Express 4, 035901 (2017).
[Crossref]

Meyer, B. K.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Miller, P.

P. Miller, “Zinc Oxide: A spectroscopic investigation of bulk crystals and thin films,” (2008).

Moon, A. R.

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, “Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing,” J. Phys. Chem. C 118(46), 27150–27156 (2014).
[Crossref]

Morante, J. R.

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl Phys Lett 96, 053105 (2010).
[Crossref]

Morkoç, H.

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Muecklich, F.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Murakami, R.

D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
[Crossref]

Naciri, A. E.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Narayanan, R.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref]

Nenstiel, C.

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Norton, M. G.

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

Nur, O.

N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
[Crossref]

Oh, J. H.

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-Plasmon-Enhanced Band Emission of ZnO Nanoflowers Decorated with Au Nanoparticles,” Chem. - Eur. J. 18(24), 7467–7472 (2012).
[Crossref]

Osotchan, T.

S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, “Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing,” J. Phys. Chem. C 118(46), 27150–27156 (2014).
[Crossref]

Ostapenko, I. A.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Özgür, Ü

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Pandya, D. K.

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

Park, C.

D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
[Crossref]

Park, J.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Pelucchi, E.

A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Perumal, V.

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

Pescaglini, A.

A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Peterson, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

Phillips, D. L.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Phillips, M. R.

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

S. Choi, M. R. Phillips, I. Aharonovich, S. Pornsuwan, B. C. C. Cowie, and C. Ton-That, “Photophysics of Point Defects in ZnO Nanoparticles,” Adv. Opt. Mater. 3(6), 821–827 (2015).
[Crossref]

S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, “Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing,” J. Phys. Chem. C 118(46), 27150–27156 (2014).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Poopalan, P.

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

Pornsuwan, S.

S. Choi, M. R. Phillips, I. Aharonovich, S. Pornsuwan, B. C. C. Cowie, and C. Ton-That, “Photophysics of Point Defects in ZnO Nanoparticles,” Adv. Opt. Mater. 3(6), 821–827 (2015).
[Crossref]

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

Qin, N.

L. Su and N. Qin, “A facile method for fabricating Au-nanoparticles-decorated ZnO nanorods with greatly enhanced near-band-edge emission,” Ceram. Int. 41(2), 2673–2679 (2015).
[Crossref]

Rahim, R. A.

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

Rajintra Prasad, H.

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

Ray, S. K.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref]

Reich, N. O.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

Ren, Q. J.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

Ren, X.

Reparaz, J. S.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl Phys Lett 96, 053105 (2010).
[Crossref]

Reshchikov, M. A.

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Rodina, A. V.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Rodt, S.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Ronning, C.

A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Rubinstein, I.

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission Surface-Plasmon Resonance (T-SPR) Measurements for Monitoring Adsorption on Ultrathin Gold Island Films,” Chem. - Eur. J. 8(17), 3849–3857 (2002).
[Crossref]

Ruslinda, A. R.

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

Rybka, V.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[Crossref]

Salviati, G.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

Santra, S.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref]

Schneeweiss, M. A.

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission Surface-Plasmon Resonance (T-SPR) Measurements for Monitoring Adsorption on Ultrathin Gold Island Films,” Chem. - Eur. J. 8(17), 3849–3857 (2002).
[Crossref]

Schulze, J.-H.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Sharma, K. H.

D.-R. Hang, S. E. Islam, C.-H. Chen, and K. H. Sharma, “Full Solution-Processed Synthesis and Mechanisms of a Recyclable and Bifunctional Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties,” Chem. - Eur. J. 22(42), 14950–14961 (2016).
[Crossref]

Sie, E. J.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Siegel, J.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[Crossref]

Singh, R.

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

Singh, T.

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

Sinha, A. K.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref]

Smith, S. M.

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, “Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing,” J. Phys. Chem. C 118(46), 27150–27156 (2014).
[Crossref]

Soci, C.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Soldera, F.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Song, X.

D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
[Crossref]

Strouse, G. F.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

Su, L.

L. Su and N. Qin, “A facile method for fabricating Au-nanoparticles-decorated ZnO nanorods with greatly enhanced near-band-edge emission,” Ceram. Int. 41(2), 2673–2679 (2015).
[Crossref]

Sum, T. C.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Sun, H.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

Sun, H. D.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Švorcík, V.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[Crossref]

Tam, H. L.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Tam, K. H.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Tang, Y.

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Tarun, M. C.

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

Teke, A.

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Teklemichael, S. T.

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

Thivina, V.

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

Thomas, D. G.

D. G. Thomas, “The exciton spectrum of zinc oxide,” J. Phys. Chem. Solids 15(1-2), 86–96 (1960).
[Crossref]

Ton-That, C.

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

S. Choi, M. R. Phillips, I. Aharonovich, S. Pornsuwan, B. C. C. Cowie, and C. Ton-That, “Photophysics of Point Defects in ZnO Nanoparticles,” Adv. Opt. Mater. 3(6), 821–827 (2015).
[Crossref]

S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, “Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing,” J. Phys. Chem. C 118(46), 27150–27156 (2014).
[Crossref]

Tsen, K. T.

Tu, C. W.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

Turner, S.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

Ushita, H.

D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
[Crossref]

Van de Walle, C. G.

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

van den Berg, A.

Van Tendeloo, G.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

Vaskevich, A.

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission Surface-Plasmon Resonance (T-SPR) Measurements for Monitoring Adsorption on Ultrathin Gold Island Films,” Chem. - Eur. J. 8(17), 3849–3857 (2002).
[Crossref]

Vijayakumar, T.

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

Villani, M.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

von Plessen, G.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Wagner, M. R.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl Phys Lett 96, 053105 (2010).
[Crossref]

Walter, E. D.

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

Wang, C.

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

Wang, C. L.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Wang, C. W.

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,” Adv. Mater. 22(36), 4059–4063 (2010).
[Crossref]

Wang, D.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Wang, J.

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

Wang, J. N.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Wang, L.

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
[Crossref]

Wang, P.

D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
[Crossref]

Wang, S.

X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

Wang, X.

L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
[Crossref]

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

Wang, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

Wei-Wen, L.

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

Wen, L.

S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
[Crossref]

Wiedemair, J.

Willander, M.

N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
[Crossref]

Wong, K. S.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Wu, H.

L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
[Crossref]

Wu, S.

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

Wu, Z.

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

Xiang, B.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Xu, C.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

Xu, H.

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

Xu, H. Y.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Yacobi, B. G.

B. G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles (Springer Science & Business Media, 2003).

Yan, S.

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

Yang, L.

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

Yang, S.

D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
[Crossref]

Ye, X.

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Yi, Y.

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Yi, Z.

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

Yin, J.

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

Yue, C.

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

Yun, C. S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

Zainelabdin, A.

N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
[Crossref]

Zaman, S.

N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
[Crossref]

Zang, Y.

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

Zappettini, A.

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

Zerga, A.

H. Berrezoug, A. E. Merad, M. Aillerie, and A. Zerga, “First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations,” Mater. Res. Express 4, 035901 (2017).
[Crossref]

Zhang, A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Zhang, C.

X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
[Crossref]

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Zhang, D.

D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
[Crossref]

Zhang, L.

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

Zhang, L. X.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Zhang, Q.

H. Li, Y. Huang, Q. Zhang, J. Liu, and Y. Zhang, “Influence of electromechanical coupling and electron irradiation on the conductivity of individual ZnO nanowire,” Solid State Sci. 13(3), 658–661 (2011).
[Crossref]

Zhang, S. G.

S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
[Crossref]

Zhang, X. W.

S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
[Crossref]

Zhang, Y.

H. Li, Y. Huang, Q. Zhang, J. Liu, and Y. Zhang, “Influence of electromechanical coupling and electron irradiation on the conductivity of individual ZnO nanowire,” Solid State Sci. 13(3), 658–661 (2011).
[Crossref]

Y. Zhang, X. Li, and X. Ren, “Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films,” Opt. Express 17(11), 8735–8740 (2009).
[Crossref]

Zheludev, N. I.

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

Zhong, Y. C.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

ACS Appl. Mater. Interfaces (3)

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

W. Liu, H. Xu, S. Yan, C. Zhang, L. Wang, C. Wang, L. Yang, X. Wang, L. Zhang, J. Wang, and Y. Liu, “Effect of SiO 2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs,” ACS Appl. Mater. Interfaces 8(3), 1653–1660 (2016).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref]

Adv. Mater. (1)

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,” Adv. Mater. 22(36), 4059–4063 (2010).
[Crossref]

Adv. Opt. Mater. (2)

S. Choi, M. R. Phillips, I. Aharonovich, S. Pornsuwan, B. C. C. Cowie, and C. Ton-That, “Photophysics of Point Defects in ZnO Nanoparticles,” Adv. Opt. Mater. 3(6), 821–827 (2015).
[Crossref]

X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua, “Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons,” Adv. Opt. Mater. 4(6), 960–966 (2016).
[Crossref]

Appl Phys Lett (1)

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl Phys Lett 96, 053105 (2010).
[Crossref]

Appl. Phys. Lett. (2)

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

D. Zhang, H. Ushita, P. Wang, C. Park, R. Murakami, S. Yang, and X. Song, “Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles,” Appl. Phys. Lett. 103(9), 093114 (2013).
[Crossref]

Ceram. Int. (1)

L. Su and N. Qin, “A facile method for fabricating Au-nanoparticles-decorated ZnO nanorods with greatly enhanced near-band-edge emission,” Ceram. Int. 41(2), 2673–2679 (2015).
[Crossref]

Chem. - Eur. J. (3)

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-Plasmon-Enhanced Band Emission of ZnO Nanoflowers Decorated with Au Nanoparticles,” Chem. - Eur. J. 18(24), 7467–7472 (2012).
[Crossref]

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission Surface-Plasmon Resonance (T-SPR) Measurements for Monitoring Adsorption on Ultrathin Gold Island Films,” Chem. - Eur. J. 8(17), 3849–3857 (2002).
[Crossref]

D.-R. Hang, S. E. Islam, C.-H. Chen, and K. H. Sharma, “Full Solution-Processed Synthesis and Mechanisms of a Recyclable and Bifunctional Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties,” Chem. - Eur. J. 22(42), 14950–14961 (2016).
[Crossref]

Chem. Phys. Lett. (1)

M. Mahanti and D. Basak, “Enhanced ultraviolet photoresponse in Au/ZnO nanorods,” Chem. Phys. Lett. 612, 101–105 (2014).
[Crossref]

Chem. Rev. (2)

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref]

G. V. Hartland, “Optical Studies of Dynamics in Noble Metal Nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J.-D. Hwang, M. J. Lai, H. Z. Chen, and M. C. Kao, “Au-Mediated Surface Plasmon Enhanced Ultraviolet Response of p-Si/n-ZnO Nanorods Photodetectors,” IEEE Photonics Technol. Lett. 26(10), 1023–1026 (2014).
[Crossref]

Int. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

J. Am. Chem. Soc. (1)

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[Crossref]

J. Appl. Phys. (3)

M. D. McCluskey, C. D. Corolewski, J. Lv, M. C. Tarun, S. T. Teklemichael, E. D. Walter, M. G. Norton, K. W. Harrison, and S. Ha, “Acceptors in ZnO,” J. Appl. Phys. 117(11), 112802 (2015).
[Crossref]

N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys. 108(4), 043103 (2010).
[Crossref]

Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

J. Lumin. (1)

S. Anantachaisilp, S. M. Smith, C. Ton-That, S. Pornsuwan, A. R. Moon, C. Nenstiel, A. Hoffmann, and M. R. Phillips, “Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods,” J. Lumin. 168, 20–25 (2015).
[Crossref]

J. Phys. Chem. C (2)

S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, “Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing,” J. Phys. Chem. C 118(46), 27150–27156 (2014).
[Crossref]

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Muecklich, and D. Horwat, “Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

J. Phys. Chem. Solids (1)

D. G. Thomas, “The exciton spectrum of zinc oxide,” J. Phys. Chem. Solids 15(1-2), 86–96 (1960).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, and G. Q. Li, “Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres,” J. Phys. D: Appl. Phys. 47(49), 495103 (2014).
[Crossref]

Mater. Res. Express (1)

H. Berrezoug, A. E. Merad, M. Aillerie, and A. Zerga, “First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations,” Mater. Res. Express 4, 035901 (2017).
[Crossref]

Nano Lett. (2)

A. Pescaglini, A. Martín, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref]

Nanophotonics (1)

M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, “Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer,” Nanophotonics 2(2), 153–160 (2013). .
[Crossref]

Nanoscale (3)

L. Wang, X. Wang, S. Mao, H. Wu, X. Guo, Y. Ji, and X. Han, “Strongly Enhanced Ultraviolet Emissions of an Au@SiO2/ZnO Plasmonic Hybrid Nanostructure,” Nanoscale 8, 4030–4036 (2016).
[Crossref]

Y. Zang, X. He, J. Li, J. Yin, K. Li, C. Yue, Z. Wu, S. Wu, and J. Kang, “Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres,” Nanoscale 5(2), 574–580 (2013).
[Crossref]

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Nanoscale Res. Lett. (2)

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[Crossref]

V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, “Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material,” Nanoscale Res. Lett. 11(1), 31 (2016).
[Crossref]

Nanotechnology (2)

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology 23(42), 425201 (2012).
[Crossref]

Opt. Express (4)

Phys. Rev. B (3)

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

Plasmonics (1)

Z. Yi, J. Chen, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, X. Gao, Y. Yi, and Y. Tang, “Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods,” Plasmonics 10, 1373–1380 (2015).
[Crossref]

PloS One (1)

V. Perumal, U. Hashim, S. C. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S. R. Balakrishnan, V. Thivina, and A. R. Ruslinda, “Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film,” PloS One 10(12), e0144964 (2015).
[Crossref]

Sci. Rep. (4)

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref]

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

G. Bertoni, F. Fabbri, M. Villani, L. Lazzarini, S. Turner, G. Van Tendeloo, D. Calestani, S. Gradečak, A. Zappettini, and G. Salviati, “Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles,” Sci. Rep. 6(1), 19168 (2016).
[Crossref]

E. J. Guidelli, O. Baffa, and D. R. Clarke, “Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence,” Sci. Rep. 5(1), 14004 (2015).
[Crossref]

Solid State Sci. (1)

H. Li, Y. Huang, Q. Zhang, J. Liu, and Y. Zhang, “Influence of electromechanical coupling and electron irradiation on the conductivity of individual ZnO nanowire,” Solid State Sci. 13(3), 658–661 (2011).
[Crossref]

Thin Solid Films (1)

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

Other (3)

B. G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles (Springer Science & Business Media, 2003).

P. Miller, “Zinc Oxide: A spectroscopic investigation of bulk crystals and thin films,” (2008).

G. Amin, “ZnO and CuO nanostructures: low temperature growth, characterization, their optoelectronic and sensing applications,” (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Exciton-LSP coupling: direct dipole-dipole coupling between ZnO-exciton and LSPs in Au NPs which increases the SER enhancing the excitonic UV emission intensity in ZnO NRs. This mechanism is due to the large difference between the exciton and LSP resonance energies. (b) Two previously proposed CT mechanisms: (i) green luminescence from ZnO defect levels is absorbed by Au NPs or (ii) electrons in defect level can transfer to Au. The LSPs produced in either process decay into hot carriers where hot Au electrons can flow into conduction band of ZnO and recombine with holes in ZnO valence band enhancing the UV emission intensity.
Fig. 2.
Fig. 2. SEM images of (a) as -grown hexagonal ZnO NRs grown on a Si substrate with an approximate diameter of 40±10 nm, (b) ZnO NR decorated with uniform Au NP film with a relatively uniform diameter of 5 nm.
Fig. 3.
Fig. 3. Transmission optical spectra of an annealed uncoated a-plane annealed ZnO single crystal plate (blue) and a-plane ZnO crystal decorated with 5 nm Au NPs (red), showing the typical plasmon resonance absorption around 2.25 eV characteristic of the LSP resonance of 5 nm spherical Au NPs.
Fig. 4.
Fig. 4. Normalized CL and PL spectra of the uncoated ZnO NRs at 80 K, confirming that the RL is most intense at the ZnO surface. CL: HV= 5 kV, P= 45 µW, scan area 15 µm × 15 µm. PL: λexc = 325 nm, P= 35 µW, spot size ∼ 30 µm.
Fig. 5.
Fig. 5. CL (HV = 5 kV, Ib=3.5 nA, scan 10 µm x10 µm) spectra of annealed uncoated ZnO NRs (blue) and ZnO NRs coated with 5 nm Au NPs (red) showing (a) an enhanced UV emission at T=10 K and (b) a 6-fold enhancement at T=80 K due to Au NP coating. The intensity and shape of the RL are the same with and without the Au NP coating.
Fig. 6.
Fig. 6. Luminescence spectra of ZnO NRs decorated with 5 nm Au NPs at T = 10 K. (a) A typical PL spectrum using green laser (λexc = 532 nm) sub-band gap illumination (green full line) showing a broad OL peak centered at 2.0 eV emissions attributed to excitation and relaxation of ionized acceptors in ZnO. The intense PL emission at 2.3 eV is due to the green laser illumination. A CL spectrum at HV = 5 kV and Ib = 3.5 nA (red full line) reveals a weak DL emission at 1.75 eV in the visible and a strong NBE emission at 3.34 eV attributed to BX. A luminescence spectrum (blue dashed line) using concurrent PL and CL excitation exhibiting a spectrum identical to the sum of the PL only illumination and CL excitation only spectra. (b) UV NBE emission spectrum using electron beam excitation only (red full line) and concurrent electron beam and green laser excitation (blue dashed line) showing identical emission spectra, indicating that a CT mechanism is not responsible for the enhanced UV NBE in ZnO coated with Au NPs.
Fig. 7.
Fig. 7. (a): High-resolution PL spectrum of NBE of the ZnO NRs at T= 10 K dominated by DBX peak and its phonon replicas and TES transition. (b) Top: 10 K-PL enhancement factor of Au NP coated ZnO nanorods as a function of energy. Bottom: high-resolution PL spectra of uncoated (black) and Au nanoparticle coated ZnO nanorods (red), graphed on a semi-logarithmic scale. The ratio of PL spectra with and without the Au NP surface coating provide the enhancement factor data. Excitation: λexc = 325 nm and P= 22.4 mW, spot size ∼ 30 µm.
Fig. 8.
Fig. 8. Typical time-resolved UV NBE PL (T = 8 K) of (a) annealed uncoated ZnO NRs and (b) ZnO NRs decorated with a surface coating of 5 nm Au NPs, showing a shorter UV NBE radiative recombination life time for the Au NP coated ZnO NR sample. This result provides evidence for the creation of an additional, fast ZnO exciton decay channel due to the Au NPs coating.
Fig. 9.
Fig. 9. Proposed mechanism for the additional fast exciton decay pathway that increases the SER enhancing the ZnO UV emission. The new ZnO exciton relaxation channel is attributed to a surface energy transfer process between the ZnO exciton dipole and (i) metal surface Au interband transitions and (ii) Au surface conduction band electrons.

Metrics