Abstract

Simple and effective methods are needed to incorporate two-dimensional functional materials with distinctive nonlinear optical (NLO) response into appropriate solid-state matrices while maintaining inherent functionalities for practical applications in optoelectronic fields. Here, ultrathin molybdenum disulfide (MoS2) nanosheets and lead silicate (PbO-SiO2) gel glasses were chosen as a representative guest dopant and mother matrix, respectively. The MoS2 was introduced into the PbO-SiO2 binary gel glasses by a simple sol-gel wet chemical technique to obtain transparent and s three-dimensional monolithic bulk materials. The presence of MoS2 in the gel glasses and the formation of binary gel glasses were confirmed by various techniques. The NLO and optical limiting (OL) performances were investigated by both open-aperture (OA) and closed-aperture (CA) Z-scan techniques on nano- and picosecond timescales with the use of a laser operating at 532 nm. Our results demonstrate that the NLO effect of MoS2/PbO-SiO2 binary gel glasses was greater than that observed for MoS2/SiO2 unary gel glasses because of enhanced third order nonlinear susceptibility effects induced by the heavy metal. The OA and CA Z-scan patterns suggested that the NLO response of the MoS2/PbO-SiO2 gel glasses is mainly attributed to their nonlinear absorption and nonlinear refraction. Remarkably, the extracted OL thresholds of the MoS2/PbO-SiO2 gel glasses were 12.4 and 7.8 times as great as those recently reported in a MoS2 suspension at nanosecond timescale and MoS2/PMMA organic glass at the picosecond timescale, respectively. The present results demonstrate the feasibility and versatility of MoS2/PbO-SiO2 silica gel glasses, as a new class of highly efficient NLO and OL materials that can be applied in the field of nonlinear optics.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
    [Crossref]
  2. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, and H. R. Gutieérrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
    [Crossref]
  3. H. Zhang, “Ultrathin Two-Dimensional Nanomaterials,” ACS Nano 9(10), 9451–9469 (2015).
    [Crossref]
  4. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, and A. Seabaugh, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
    [Crossref]
  5. Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
    [Crossref]
  6. J. Zhang, O. Hao, X. Zhang, J. You, R. Chen, T. Zhou, Y. Sui, Y. Liu, X. Cheng, and T. Jiang, “Ultrafast saturable absorption of MoS2 nanosheets under different pulse-width excitation conditions,” Opt. Lett. 43(2), 243–247 (2018).
    [Crossref]
  7. A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear Optics with 2D Layered Materials,” Adv. Mater. 30(24), 1705963 (2018).
    [Crossref]
  8. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
    [Crossref]
  9. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref]
  10. K.-G. Zhou, M. Zhao, M.-J. Chang, Q. Wang, X.-Z. Wu, and Y. Song, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11(6), 694–701 (2015).
    [Crossref]
  11. R. Wei, H. Zhang, Z. Hu, T. Qiao, X. He, and Q. Go, “Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets,” Nanotechnology 27(30), 305203 (2016).
    [Crossref]
  12. H. Zhang, S. B. Lu, J. Zheng, J. Du, C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref]
  13. D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, and W. Zhang, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
    [Crossref]
  14. S. Bikorimana, P. Lama, A. Wailser, R. Dorsinville, S. Anghel, A. Micu, and L. Kulyuk, “Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2,” Opt. Express 24(18), 20685–20695 (2016).
    [Crossref]
  15. R. Miao, Z. Shu, Y. Hu, Y. Tang, H. Hao, J. You, X. Zheng, X. Cheng, H. Duan, and T. Jiang, “Ultrafast nonlinear absorption enhancement of monolayer MoS2 with plasmonic Au nanoantennas,” Opt. Lett. 44(13), 3198 (2019).
    [Crossref]
  16. Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, and K. Wang, “Giant Two-Photon Absorption in Monolayer MoS2,” Laser Photonics Rev. 9(4), 427–434 (2015).
    [Crossref]
  17. C. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, and D. Fox, “Two Dimensional Transition Metal Dichalcogenides,” Photonics Res. 3(2), A51–A55 (2015).
    [Crossref]
  18. S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, and N. C. Berner, “Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films,” ACS Nano 9(7), 7142–7150 (2015).
    [Crossref]
  19. N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, and C. Chang, “Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets,” Sci. Rep. 5(1), 14646 (2015).
    [Crossref]
  20. G. Liang, L. Tao, Y. H. Tsang, L. Zeng, X. Liu, and J. Li, “Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses,” J. Mater. Chem. C 7(3), 495–502 (2019).
    [Crossref]
  21. Z. Xie, F. Wang, and C. Y. Liu, “Organic–Inorganic Hybrid Functional Carbon Dot Gel Glasses,” Adv. Mater. 24(13), 1716–1721 (2012).
    [Crossref]
  22. C. Zheng, M. Feng, Y. Du, and H. Zhan, “Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass,” Carbon 47(12), 2889–2897 (2009).
    [Crossref]
  23. L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, and S. P. Lau, “Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response,” J. Phys. Chem. C 117(44), 23108–23116 (2013).
    [Crossref]
  24. Z. Xie, Y. Wu, X. Sun, S. Liu, F. Ma, and G. Zhao, “Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses,” Nanoscale 10(9), 4276–4283 (2018).
    [Crossref]
  25. V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides,” J. Appl. Phys. 79(3), 1741–1745 (1996).
    [Crossref]
  26. S. Smolorz, I. Kang, F. Wise, B. G. Aitken, and N. F. Borrelli, “Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses,” J. Non-Cryst. Solids 256-257, 310–317 (1999).
    [Crossref]
  27. F. El-Diasty, M. Abdel-Baki, and F. Abdel-Wahab, “Tuned intensity-dependent refractive index n2 and two-photon absorption in oxide glasses: role of non-bridging oxygen bonds in optical nonlinearity,” Opt. Mater. 31(2), 161–166 (2008).
    [Crossref]
  28. Z. Pan, S. H. Morgan, and B. H. Long, “Raman scattering cross-section and non-linear optical response of lead borate glasses,” J. Non-Cryst. Solids 185(1-2), 127–134 (1995).
    [Crossref]
  29. M. Yamane and Y. Asahara, Glasses for Photonics, Cambridge University Press, Cambridge, 2000.
  30. J. M. P. Almeida, L. De Boni, A. C. Hernandes, and C. R. Mendonca, “Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses,” Opt. Express 19(18), 17220–17225 (2011).
    [Crossref]
  31. J. M. P. Almeida, D. S. da Silva, L. R. P. Kassab, S. C. Zilio, C. R. Mendonça, and L. De Boni, “Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles,” Opt. Mater. 36(4), 829–832 (2014).
    [Crossref]
  32. L. De Boni, E. C. Barbano, T. A. de Assumpção, L. Misoguti, L. R. P. Kassab, and S. C. Zilio, “Femtosecond third-order nonlinear spectra of lead-germanium oxide glasses containing silver nanoparticles,” Opt. Express 20(6), 6844–6850 (2012).
    [Crossref]
  33. L. C. Hwang, S. C. Lee, and T. C. We, “Nonlinear absorption and refraction in lead glasses: enhanced by the small metal particle dispersions,” Opt. Commun. 228(4-6), 373–380 (2003).
    [Crossref]
  34. D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
    [Crossref]
  35. S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
    [Crossref]
  36. P. Joensen, R. F. Frindt, and S. R. Morrison, “Inclusion compounds of MoS2,” Mater. Res. Bull. 21(4), 457–461 (1986).
    [Crossref]
  37. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  38. C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3(7), 1164–1169 (2016).
    [Crossref]
  39. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
    [Crossref]
  40. B. Chakraborty, H. S. S. Ramakrishna Matte, A. K. Sood, and C. N. R. Rao, “Layer-dependent resonant Raman scattering of a few layer MoS2,” J. Raman Spectrosc. 44(1), 92–96 (2013).
    [Crossref]
  41. L. Liu, “Infrared spectroscopy on lead silicate glass,” Z. Phys. B: Condens. Matter 90(4), 393–399 (1993).
    [Crossref]
  42. S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, and K. Suzuya, “Fundamental condition of glass formation,” Phys. Rev. B 82(13), 134209 (2010).
    [Crossref]
  43. B. Zhan, M. A. White, and M. Lumsden, “Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano- and Microparticles,” Langmuir 19(10), 4205–4210 (2003).
    [Crossref]
  44. J. P. Wilcoxon, P. P. Newcomer, and G. A. Samara, “Optical and photocatalytic properties of two-dimensional MoS2,” J. Appl. Phys. 81(12), 7934–7944 (1997).
    [Crossref]
  45. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11(12), 5111–5116 (2011).
    [Crossref]
  46. B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
    [Crossref]
  47. P. Jiang, B. Zhang, Z. Liu, and Y. Chen, “MoS2 quantum dots chemically modified with porphyrin for solid-state broadband optical limiters,” Nanoscale 11(43), 20449–20455 (2019).
    [Crossref]
  48. K. Terashima, T. H. Shimoto, and T. Yoko, “Structure and nonlin ear optical properties of PbO-Bi2O3-B2O3 glasses,” Phys. Chem. Glasses 38(4), 211–217 (1997).
  49. L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR Spectroscopic Studies of Manganese Doped GeO2-Bi2O3 Glasses,” J. Mol. Struct. 599(1-3), 9–13 (2001).
    [Crossref]
  50. S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159(3), 213–221 (1993).
    [Crossref]
  51. Y. Miao, W. Jin, F. Yang, Y. Lin, Y. Tan, and L. Hoi, “Advances in optical fiber photothermal interferometry for gas detection,” Acta Phy. Sin. 66(7), 074212 (2017).
    [Crossref]
  52. Q. Liao, Q. Zhang, X. Wang, X. Li, G. Deng, and Z. Meng, “Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties,” Compos. Sci. Technol. 165(8), 388–396 (2018).
    [Crossref]

2019 (4)

R. Miao, Z. Shu, Y. Hu, Y. Tang, H. Hao, J. You, X. Zheng, X. Cheng, H. Duan, and T. Jiang, “Ultrafast nonlinear absorption enhancement of monolayer MoS2 with plasmonic Au nanoantennas,” Opt. Lett. 44(13), 3198 (2019).
[Crossref]

G. Liang, L. Tao, Y. H. Tsang, L. Zeng, X. Liu, and J. Li, “Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses,” J. Mater. Chem. C 7(3), 495–502 (2019).
[Crossref]

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

P. Jiang, B. Zhang, Z. Liu, and Y. Chen, “MoS2 quantum dots chemically modified with porphyrin for solid-state broadband optical limiters,” Nanoscale 11(43), 20449–20455 (2019).
[Crossref]

2018 (4)

Q. Liao, Q. Zhang, X. Wang, X. Li, G. Deng, and Z. Meng, “Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties,” Compos. Sci. Technol. 165(8), 388–396 (2018).
[Crossref]

Z. Xie, Y. Wu, X. Sun, S. Liu, F. Ma, and G. Zhao, “Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses,” Nanoscale 10(9), 4276–4283 (2018).
[Crossref]

J. Zhang, O. Hao, X. Zhang, J. You, R. Chen, T. Zhou, Y. Sui, Y. Liu, X. Cheng, and T. Jiang, “Ultrafast saturable absorption of MoS2 nanosheets under different pulse-width excitation conditions,” Opt. Lett. 43(2), 243–247 (2018).
[Crossref]

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear Optics with 2D Layered Materials,” Adv. Mater. 30(24), 1705963 (2018).
[Crossref]

2017 (2)

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Y. Miao, W. Jin, F. Yang, Y. Lin, Y. Tan, and L. Hoi, “Advances in optical fiber photothermal interferometry for gas detection,” Acta Phy. Sin. 66(7), 074212 (2017).
[Crossref]

2016 (5)

C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3(7), 1164–1169 (2016).
[Crossref]

Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
[Crossref]

R. Wei, H. Zhang, Z. Hu, T. Qiao, X. He, and Q. Go, “Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets,” Nanotechnology 27(30), 305203 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, and W. Zhang, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

S. Bikorimana, P. Lama, A. Wailser, R. Dorsinville, S. Anghel, A. Micu, and L. Kulyuk, “Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2,” Opt. Express 24(18), 20685–20695 (2016).
[Crossref]

2015 (7)

K.-G. Zhou, M. Zhao, M.-J. Chang, Q. Wang, X.-Z. Wu, and Y. Song, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11(6), 694–701 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, and K. Wang, “Giant Two-Photon Absorption in Monolayer MoS2,” Laser Photonics Rev. 9(4), 427–434 (2015).
[Crossref]

C. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, and D. Fox, “Two Dimensional Transition Metal Dichalcogenides,” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, and N. C. Berner, “Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref]

N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, and C. Chang, “Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets,” Sci. Rep. 5(1), 14646 (2015).
[Crossref]

H. Zhang, “Ultrathin Two-Dimensional Nanomaterials,” ACS Nano 9(10), 9451–9469 (2015).
[Crossref]

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref]

2014 (4)

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, and A. Seabaugh, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
[Crossref]

J. M. P. Almeida, D. S. da Silva, L. R. P. Kassab, S. C. Zilio, C. R. Mendonça, and L. De Boni, “Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles,” Opt. Mater. 36(4), 829–832 (2014).
[Crossref]

2013 (4)

L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, and S. P. Lau, “Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response,” J. Phys. Chem. C 117(44), 23108–23116 (2013).
[Crossref]

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, and H. R. Gutieérrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

B. Chakraborty, H. S. S. Ramakrishna Matte, A. K. Sood, and C. N. R. Rao, “Layer-dependent resonant Raman scattering of a few layer MoS2,” J. Raman Spectrosc. 44(1), 92–96 (2013).
[Crossref]

2012 (4)

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Z. Xie, F. Wang, and C. Y. Liu, “Organic–Inorganic Hybrid Functional Carbon Dot Gel Glasses,” Adv. Mater. 24(13), 1716–1721 (2012).
[Crossref]

L. De Boni, E. C. Barbano, T. A. de Assumpção, L. Misoguti, L. R. P. Kassab, and S. C. Zilio, “Femtosecond third-order nonlinear spectra of lead-germanium oxide glasses containing silver nanoparticles,” Opt. Express 20(6), 6844–6850 (2012).
[Crossref]

2011 (2)

J. M. P. Almeida, L. De Boni, A. C. Hernandes, and C. R. Mendonca, “Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses,” Opt. Express 19(18), 17220–17225 (2011).
[Crossref]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref]

2010 (1)

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, and K. Suzuya, “Fundamental condition of glass formation,” Phys. Rev. B 82(13), 134209 (2010).
[Crossref]

2009 (1)

C. Zheng, M. Feng, Y. Du, and H. Zhan, “Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass,” Carbon 47(12), 2889–2897 (2009).
[Crossref]

2008 (1)

F. El-Diasty, M. Abdel-Baki, and F. Abdel-Wahab, “Tuned intensity-dependent refractive index n2 and two-photon absorption in oxide glasses: role of non-bridging oxygen bonds in optical nonlinearity,” Opt. Mater. 31(2), 161–166 (2008).
[Crossref]

2003 (2)

L. C. Hwang, S. C. Lee, and T. C. We, “Nonlinear absorption and refraction in lead glasses: enhanced by the small metal particle dispersions,” Opt. Commun. 228(4-6), 373–380 (2003).
[Crossref]

B. Zhan, M. A. White, and M. Lumsden, “Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano- and Microparticles,” Langmuir 19(10), 4205–4210 (2003).
[Crossref]

2001 (1)

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR Spectroscopic Studies of Manganese Doped GeO2-Bi2O3 Glasses,” J. Mol. Struct. 599(1-3), 9–13 (2001).
[Crossref]

1999 (1)

S. Smolorz, I. Kang, F. Wise, B. G. Aitken, and N. F. Borrelli, “Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses,” J. Non-Cryst. Solids 256-257, 310–317 (1999).
[Crossref]

1997 (2)

K. Terashima, T. H. Shimoto, and T. Yoko, “Structure and nonlin ear optical properties of PbO-Bi2O3-B2O3 glasses,” Phys. Chem. Glasses 38(4), 211–217 (1997).

J. P. Wilcoxon, P. P. Newcomer, and G. A. Samara, “Optical and photocatalytic properties of two-dimensional MoS2,” J. Appl. Phys. 81(12), 7934–7944 (1997).
[Crossref]

1996 (1)

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides,” J. Appl. Phys. 79(3), 1741–1745 (1996).
[Crossref]

1995 (1)

Z. Pan, S. H. Morgan, and B. H. Long, “Raman scattering cross-section and non-linear optical response of lead borate glasses,” J. Non-Cryst. Solids 185(1-2), 127–134 (1995).
[Crossref]

1993 (2)

L. Liu, “Infrared spectroscopy on lead silicate glass,” Z. Phys. B: Condens. Matter 90(4), 393–399 (1993).
[Crossref]

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159(3), 213–221 (1993).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1986 (1)

P. Joensen, R. F. Frindt, and S. R. Morrison, “Inclusion compounds of MoS2,” Mater. Res. Bull. 21(4), 457–461 (1986).
[Crossref]

Abdel-Baki, M.

F. El-Diasty, M. Abdel-Baki, and F. Abdel-Wahab, “Tuned intensity-dependent refractive index n2 and two-photon absorption in oxide glasses: role of non-bridging oxygen bonds in optical nonlinearity,” Opt. Mater. 31(2), 161–166 (2008).
[Crossref]

Abdel-Wahab, F.

F. El-Diasty, M. Abdel-Baki, and F. Abdel-Wahab, “Tuned intensity-dependent refractive index n2 and two-photon absorption in oxide glasses: role of non-bridging oxygen bonds in optical nonlinearity,” Opt. Mater. 31(2), 161–166 (2008).
[Crossref]

Aitken, B. G.

S. Smolorz, I. Kang, F. Wise, B. G. Aitken, and N. F. Borrelli, “Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses,” J. Non-Cryst. Solids 256-257, 310–317 (1999).
[Crossref]

Almeida, J. M. P.

J. M. P. Almeida, D. S. da Silva, L. R. P. Kassab, S. C. Zilio, C. R. Mendonça, and L. De Boni, “Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles,” Opt. Mater. 36(4), 829–832 (2014).
[Crossref]

J. M. P. Almeida, L. De Boni, A. C. Hernandes, and C. R. Mendonca, “Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses,” Opt. Express 19(18), 17220–17225 (2011).
[Crossref]

Anghel, S.

Asahara, Y.

M. Yamane and Y. Asahara, Glasses for Photonics, Cambridge University Press, Cambridge, 2000.

Autere, A.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear Optics with 2D Layered Materials,” Adv. Mater. 30(24), 1705963 (2018).
[Crossref]

Bai, G.

L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, and S. P. Lau, “Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response,” J. Phys. Chem. C 117(44), 23108–23116 (2013).
[Crossref]

Baia, L.

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR Spectroscopic Studies of Manganese Doped GeO2-Bi2O3 Glasses,” J. Mol. Struct. 599(1-3), 9–13 (2001).
[Crossref]

Baillargeat, D.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Banerjee, R.

S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
[Crossref]

Barbano, E. C.

Berner, N. C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, and N. C. Berner, “Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref]

Bikorimana, S.

Bonaccorso, F.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, and A. Seabaugh, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref]

Borrelli, N. F.

S. Smolorz, I. Kang, F. Wise, B. G. Aitken, and N. F. Borrelli, “Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses,” J. Non-Cryst. Solids 256-257, 310–317 (1999).
[Crossref]

Butler, S. Z.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, and H. R. Gutieérrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Cao, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, and H. R. Gutieérrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Chakraborty, B.

B. Chakraborty, H. S. S. Ramakrishna Matte, A. K. Sood, and C. N. R. Rao, “Layer-dependent resonant Raman scattering of a few layer MoS2,” J. Raman Spectrosc. 44(1), 92–96 (2013).
[Crossref]

Chang, C.

N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, and C. Chang, “Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets,” Sci. Rep. 5(1), 14646 (2015).
[Crossref]

Chang, M.-J.

K.-G. Zhou, M. Zhao, M.-J. Chang, Q. Wang, X.-Z. Wu, and Y. Song, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11(6), 694–701 (2015).
[Crossref]

Chen, H.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

Chen, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref]

Chen, R.

Chen, Y.

P. Jiang, B. Zhang, Z. Liu, and Y. Chen, “MoS2 quantum dots chemically modified with porphyrin for solid-state broadband optical limiters,” Nanoscale 11(43), 20449–20455 (2019).
[Crossref]

Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
[Crossref]

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref]

Cheng, X.

Cheng, Y.

C. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, and D. Fox, “Two Dimensional Transition Metal Dichalcogenides,” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Chhowalla, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Considine, C. R.

C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3(7), 1164–1169 (2016).
[Crossref]

Cui, Y.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, and H. R. Gutieérrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

da Silva, D. S.

J. M. P. Almeida, D. S. da Silva, L. R. P. Kassab, S. C. Zilio, C. R. Mendonça, and L. De Boni, “Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles,” Opt. Mater. 36(4), 829–832 (2014).
[Crossref]

Dai, Y.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear Optics with 2D Layered Materials,” Adv. Mater. 30(24), 1705963 (2018).
[Crossref]

Das, P. K.

S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
[Crossref]

Das, S.

S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
[Crossref]

de Assumpção, T. A.

De Boni, L.

Deng, G.

Q. Liao, Q. Zhang, X. Wang, X. Li, G. Deng, and Z. Meng, “Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties,” Compos. Sci. Technol. 165(8), 388–396 (2018).
[Crossref]

Dexpert-Ghys, J.

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159(3), 213–221 (1993).
[Crossref]

Dimitrov, V.

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides,” J. Appl. Phys. 79(3), 1741–1745 (1996).
[Crossref]

Dong, N.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, and N. C. Berner, “Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref]

N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, and C. Chang, “Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets,” Sci. Rep. 5(1), 14646 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, and K. Wang, “Giant Two-Photon Absorption in Monolayer MoS2,” Laser Photonics Rev. 9(4), 427–434 (2015).
[Crossref]

Dorsinville, R.

Du, B.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, and W. Zhang, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Du, J.

Du, Y.

C. Zheng, M. Feng, Y. Du, and H. Zhan, “Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass,” Carbon 47(12), 2889–2897 (2009).
[Crossref]

Duan, H.

Eda, G.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref]

Edwin, T. H. T.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

El-Diasty, F.

F. El-Diasty, M. Abdel-Baki, and F. Abdel-Wahab, “Tuned intensity-dependent refractive index n2 and two-photon absorption in oxide glasses: role of non-bridging oxygen bonds in optical nonlinearity,” Opt. Mater. 31(2), 161–166 (2008).
[Crossref]

Feng, M.

C. Zheng, M. Feng, Y. Du, and H. Zhan, “Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass,” Carbon 47(12), 2889–2897 (2009).
[Crossref]

Feng, Y.

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, and K. Wang, “Giant Two-Photon Absorption in Monolayer MoS2,” Laser Photonics Rev. 9(4), 427–434 (2015).
[Crossref]

N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, and C. Chang, “Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets,” Sci. Rep. 5(1), 14646 (2015).
[Crossref]

Fiori, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, and A. Seabaugh, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref]

Fox, D.

C. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, and D. Fox, “Two Dimensional Transition Metal Dichalcogenides,” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Frindt, R. F.

P. Joensen, R. F. Frindt, and S. R. Morrison, “Inclusion compounds of MoS2,” Mater. Res. Bull. 21(4), 457–461 (1986).
[Crossref]

Fujita, T.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref]

Ghosh, A.

S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
[Crossref]

Ghosh, S.

S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
[Crossref]

Go, Q.

R. Wei, H. Zhang, Z. Hu, T. Qiao, X. He, and Q. Go, “Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets,” Nanotechnology 27(30), 305203 (2016).
[Crossref]

Gupta, J. A.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, and H. R. Gutieérrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Gutieérrez, H. R.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, and H. R. Gutieérrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hao, H.

Hao, O.

He, X.

R. Wei, H. Zhang, Z. Hu, T. Qiao, X. He, and Q. Go, “Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets,” Nanotechnology 27(30), 305203 (2016).
[Crossref]

Hernandes, A. C.

Hoi, L.

Y. Miao, W. Jin, F. Yang, Y. Lin, Y. Tan, and L. Hoi, “Advances in optical fiber photothermal interferometry for gas detection,” Acta Phy. Sin. 66(7), 074212 (2017).
[Crossref]

Hollen, S. M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, and H. R. Gutieérrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Hu, Y.

Hu, Z.

R. Wei, H. Zhang, Z. Hu, T. Qiao, X. He, and Q. Go, “Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets,” Nanotechnology 27(30), 305203 (2016).
[Crossref]

Huang, W.

Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
[Crossref]

Huang, X.

Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
[Crossref]

Hwang, L. C.

L. C. Hwang, S. C. Lee, and T. C. We, “Nonlinear absorption and refraction in lead glasses: enhanced by the small metal particle dispersions,” Opt. Commun. 228(4-6), 373–380 (2003).
[Crossref]

Iannaccone, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, and A. Seabaugh, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref]

Iliescu, T.

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR Spectroscopic Studies of Manganese Doped GeO2-Bi2O3 Glasses,” J. Mol. Struct. 599(1-3), 9–13 (2001).
[Crossref]

Jiang, P.

P. Jiang, B. Zhang, Z. Liu, and Y. Chen, “MoS2 quantum dots chemically modified with porphyrin for solid-state broadband optical limiters,” Nanoscale 11(43), 20449–20455 (2019).
[Crossref]

Jiang, T.

Jin, W.

Y. Miao, W. Jin, F. Yang, Y. Lin, Y. Tan, and L. Hoi, “Advances in optical fiber photothermal interferometry for gas detection,” Acta Phy. Sin. 66(7), 074212 (2017).
[Crossref]

Jingjing, Q.

Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
[Crossref]

Joensen, P.

P. Joensen, R. F. Frindt, and S. R. Morrison, “Inclusion compounds of MoS2,” Mater. Res. Bull. 21(4), 457–461 (1986).
[Crossref]

Jussila, H.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear Optics with 2D Layered Materials,” Adv. Mater. 30(24), 1705963 (2018).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Kang, I.

S. Smolorz, I. Kang, F. Wise, B. G. Aitken, and N. F. Borrelli, “Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses,” J. Non-Cryst. Solids 256-257, 310–317 (1999).
[Crossref]

Kar, T.

S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
[Crossref]

Kassab, L. R. P.

J. M. P. Almeida, D. S. da Silva, L. R. P. Kassab, S. C. Zilio, C. R. Mendonça, and L. De Boni, “Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles,” Opt. Mater. 36(4), 829–832 (2014).
[Crossref]

L. De Boni, E. C. Barbano, T. A. de Assumpção, L. Misoguti, L. R. P. Kassab, and S. C. Zilio, “Femtosecond third-order nonlinear spectra of lead-germanium oxide glasses containing silver nanoparticles,” Opt. Express 20(6), 6844–6850 (2012).
[Crossref]

Kiefer, W.

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR Spectroscopic Studies of Manganese Doped GeO2-Bi2O3 Glasses,” J. Mol. Struct. 599(1-3), 9–13 (2001).
[Crossref]

Kis, A.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Kohara, S.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, and K. Suzuya, “Fundamental condition of glass formation,” Phys. Rev. B 82(13), 134209 (2010).
[Crossref]

Kulyuk, L.

Lama, P.

Lau, S. P.

L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, and S. P. Lau, “Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response,” J. Phys. Chem. C 117(44), 23108–23116 (2013).
[Crossref]

Lee, S. C.

L. C. Hwang, S. C. Lee, and T. C. We, “Nonlinear absorption and refraction in lead glasses: enhanced by the small metal particle dispersions,” Opt. Commun. 228(4-6), 373–380 (2003).
[Crossref]

Lee, Y. H.

C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3(7), 1164–1169 (2016).
[Crossref]

Li, H.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Li, J.

G. Liang, L. Tao, Y. H. Tsang, L. Zeng, X. Liu, and J. Li, “Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses,” J. Mater. Chem. C 7(3), 495–502 (2019).
[Crossref]

Li, X.

Q. Liao, Q. Zhang, X. Wang, X. Li, G. Deng, and Z. Meng, “Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties,” Compos. Sci. Technol. 165(8), 388–396 (2018).
[Crossref]

Li, Y.

N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, and C. Chang, “Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets,” Sci. Rep. 5(1), 14646 (2015).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, and K. Wang, “Giant Two-Photon Absorption in Monolayer MoS2,” Laser Photonics Rev. 9(4), 427–434 (2015).
[Crossref]

Liang, G.

G. Liang, L. Tao, Y. H. Tsang, L. Zeng, X. Liu, and J. Li, “Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses,” J. Mater. Chem. C 7(3), 495–502 (2019).
[Crossref]

Liang, T.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

Liao, Q.

Q. Liao, Q. Zhang, X. Wang, X. Li, G. Deng, and Z. Meng, “Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties,” Compos. Sci. Technol. 165(8), 388–396 (2018).
[Crossref]

Lin, W. C.

C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3(7), 1164–1169 (2016).
[Crossref]

Lin, Y.

Y. Miao, W. Jin, F. Yang, Y. Lin, Y. Tan, and L. Hoi, “Advances in optical fiber photothermal interferometry for gas detection,” Acta Phy. Sin. 66(7), 074212 (2017).
[Crossref]

Lipsanen, H.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear Optics with 2D Layered Materials,” Adv. Mater. 30(24), 1705963 (2018).
[Crossref]

Liu, C. Y.

Z. Xie, F. Wang, and C. Y. Liu, “Organic–Inorganic Hybrid Functional Carbon Dot Gel Glasses,” Adv. Mater. 24(13), 1716–1721 (2012).
[Crossref]

Liu, L.

L. Liu, “Infrared spectroscopy on lead silicate glass,” Z. Phys. B: Condens. Matter 90(4), 393–399 (1993).
[Crossref]

Liu, S.

Z. Xie, Y. Wu, X. Sun, S. Liu, F. Ma, and G. Zhao, “Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses,” Nanoscale 10(9), 4276–4283 (2018).
[Crossref]

Liu, X.

G. Liang, L. Tao, Y. H. Tsang, L. Zeng, X. Liu, and J. Li, “Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses,” J. Mater. Chem. C 7(3), 495–502 (2019).
[Crossref]

Liu, Y.

Liu, Z.

P. Jiang, B. Zhang, Z. Liu, and Y. Chen, “MoS2 quantum dots chemically modified with porphyrin for solid-state broadband optical limiters,” Nanoscale 11(43), 20449–20455 (2019).
[Crossref]

Loh, K. P.

Lombardi, J. R.

C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3(7), 1164–1169 (2016).
[Crossref]

Long, B. H.

Z. Pan, S. H. Morgan, and B. H. Long, “Raman scattering cross-section and non-linear optical response of lead borate glasses,” J. Non-Cryst. Solids 185(1-2), 127–134 (1995).
[Crossref]

Lu, S. B.

Lumsden, M.

B. Zhan, M. A. White, and M. Lumsden, “Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano- and Microparticles,” Langmuir 19(10), 4205–4210 (2003).
[Crossref]

Luo, W.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref]

Ma, F.

Z. Xie, Y. Wu, X. Sun, S. Liu, F. Ma, and G. Zhao, “Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses,” Nanoscale 10(9), 4276–4283 (2018).
[Crossref]

Manzeli, S.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Mao, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, and W. Zhang, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Mastelaro, V. R.

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159(3), 213–221 (1993).
[Crossref]

McEvoy, N.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, and N. C. Berner, “Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref]

Mendonca, C. R.

Mendonça, C. R.

J. M. P. Almeida, D. S. da Silva, L. R. P. Kassab, S. C. Zilio, C. R. Mendonça, and L. De Boni, “Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles,” Opt. Mater. 36(4), 829–832 (2014).
[Crossref]

Meng, Z.

Q. Liao, Q. Zhang, X. Wang, X. Li, G. Deng, and Z. Meng, “Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties,” Compos. Sci. Technol. 165(8), 388–396 (2018).
[Crossref]

Menon, V.

C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3(7), 1164–1169 (2016).
[Crossref]

Miao, R.

Miao, Y.

Y. Miao, W. Jin, F. Yang, Y. Lin, Y. Tan, and L. Hoi, “Advances in optical fiber photothermal interferometry for gas detection,” Acta Phy. Sin. 66(7), 074212 (2017).
[Crossref]

Micu, A.

Misoguti, L.

Morgan, S. H.

Z. Pan, S. H. Morgan, and B. H. Long, “Raman scattering cross-section and non-linear optical response of lead borate glasses,” J. Non-Cryst. Solids 185(1-2), 127–134 (1995).
[Crossref]

Morita, H.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, and K. Suzuya, “Fundamental condition of glass formation,” Phys. Rev. B 82(13), 134209 (2010).
[Crossref]

Morrison, S. R.

P. Joensen, R. F. Frindt, and S. R. Morrison, “Inclusion compounds of MoS2,” Mater. Res. Bull. 21(4), 457–461 (1986).
[Crossref]

Moulton, B. J. A.

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

Muehlethaler, C.

C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3(7), 1164–1169 (2016).
[Crossref]

Mukherjee, J.

S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
[Crossref]

Neumaier, D.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, and A. Seabaugh, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref]

Newcomer, P. P.

J. P. Wilcoxon, P. P. Newcomer, and G. A. Samara, “Optical and photocatalytic properties of two-dimensional MoS2,” J. Appl. Phys. 81(12), 7934–7944 (1997).
[Crossref]

O’Brien, M.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, and N. C. Berner, “Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref]

Ohno, H.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, and K. Suzuya, “Fundamental condition of glass formation,” Phys. Rev. B 82(13), 134209 (2010).
[Crossref]

Olivier, A.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Ouyang, Q.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref]

Ovchinnikov, D.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Palacios, T.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, and A. Seabaugh, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref]

Pan, Z.

Z. Pan, S. H. Morgan, and B. H. Long, “Raman scattering cross-section and non-linear optical response of lead borate glasses,” J. Non-Cryst. Solids 185(1-2), 127–134 (1995).
[Crossref]

Pasquier, D.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Penab, R. B.

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

Piriou, B.

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159(3), 213–221 (1993).
[Crossref]

Pizani, P. S.

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

Qi, L.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref]

Qiao, T.

R. Wei, H. Zhang, Z. Hu, T. Qiao, X. He, and Q. Go, “Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets,” Nanotechnology 27(30), 305203 (2016).
[Crossref]

Qu, B.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref]

Ramakrishna Matte, H. S. S.

B. Chakraborty, H. S. S. Ramakrishna Matte, A. K. Sood, and C. N. R. Rao, “Layer-dependent resonant Raman scattering of a few layer MoS2,” J. Raman Spectrosc. 44(1), 92–96 (2013).
[Crossref]

Rao, C. N. R.

B. Chakraborty, H. S. S. Ramakrishna Matte, A. K. Sood, and C. N. R. Rao, “Layer-dependent resonant Raman scattering of a few layer MoS2,” J. Raman Spectrosc. 44(1), 92–96 (2013).
[Crossref]

Ribeiro, S. J. L.

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159(3), 213–221 (1993).
[Crossref]

Rinob, J. P.

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

Rodrigues, A. M.

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sakka, S.

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides,” J. Appl. Phys. 79(3), 1741–1745 (1996).
[Crossref]

Samara, G. A.

J. P. Wilcoxon, P. P. Newcomer, and G. A. Samara, “Optical and photocatalytic properties of two-dimensional MoS2,” J. Appl. Phys. 81(12), 7934–7944 (1997).
[Crossref]

Sampaio, D. V.

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

Seabaugh, A.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, and A. Seabaugh, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shi, M.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

Shimoto, T. H.

K. Terashima, T. H. Shimoto, and T. Yoko, “Structure and nonlin ear optical properties of PbO-Bi2O3-B2O3 glasses,” Phys. Chem. Glasses 38(4), 211–217 (1997).

Shu, Z.

Silva, D. C.

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

Silva, J. H. L.

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

Silva, R. S.

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

Simon, S.

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR Spectroscopic Studies of Manganese Doped GeO2-Bi2O3 Glasses,” J. Mol. Struct. 599(1-3), 9–13 (2001).
[Crossref]

Smolorz, S.

S. Smolorz, I. Kang, F. Wise, B. G. Aitken, and N. F. Borrelli, “Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses,” J. Non-Cryst. Solids 256-257, 310–317 (1999).
[Crossref]

Song, Y.

K.-G. Zhou, M. Zhao, M.-J. Chang, Q. Wang, X.-Z. Wu, and Y. Song, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11(6), 694–701 (2015).
[Crossref]

Sood, A. K.

B. Chakraborty, H. S. S. Ramakrishna Matte, A. K. Sood, and C. N. R. Rao, “Layer-dependent resonant Raman scattering of a few layer MoS2,” J. Raman Spectrosc. 44(1), 92–96 (2013).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sui, Y.

Sun, X.

Z. Xie, Y. Wu, X. Sun, S. Liu, F. Ma, and G. Zhao, “Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses,” Nanoscale 10(9), 4276–4283 (2018).
[Crossref]

Sun, Z.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear Optics with 2D Layered Materials,” Adv. Mater. 30(24), 1705963 (2018).
[Crossref]

Suzuya, K.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, and K. Suzuya, “Fundamental condition of glass formation,” Phys. Rev. B 82(13), 134209 (2010).
[Crossref]

Takata, M.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, and K. Suzuya, “Fundamental condition of glass formation,” Phys. Rev. B 82(13), 134209 (2010).
[Crossref]

Tan, Y.

Y. Miao, W. Jin, F. Yang, Y. Lin, Y. Tan, and L. Hoi, “Advances in optical fiber photothermal interferometry for gas detection,” Acta Phy. Sin. 66(7), 074212 (2017).
[Crossref]

Tang, D. Y.

Tang, Y.

Tao, L.

G. Liang, L. Tao, Y. H. Tsang, L. Zeng, X. Liu, and J. Li, “Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses,” J. Mater. Chem. C 7(3), 495–502 (2019).
[Crossref]

L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, and S. P. Lau, “Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response,” J. Phys. Chem. C 117(44), 23108–23116 (2013).
[Crossref]

Tay, B. K.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Terashima, K.

K. Terashima, T. H. Shimoto, and T. Yoko, “Structure and nonlin ear optical properties of PbO-Bi2O3-B2O3 glasses,” Phys. Chem. Glasses 38(4), 211–217 (1997).

Tsang, Y. H.

G. Liang, L. Tao, Y. H. Tsang, L. Zeng, X. Liu, and J. Li, “Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses,” J. Mater. Chem. C 7(3), 495–502 (2019).
[Crossref]

Usuki, T.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, and K. Suzuya, “Fundamental condition of glass formation,” Phys. Rev. B 82(13), 134209 (2010).
[Crossref]

Voiry, D.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref]

Wailser, A.

Wang, C.

C. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, and D. Fox, “Two Dimensional Transition Metal Dichalcogenides,” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Wang, F.

Z. Xie, F. Wang, and C. Y. Liu, “Organic–Inorganic Hybrid Functional Carbon Dot Gel Glasses,” Adv. Mater. 24(13), 1716–1721 (2012).
[Crossref]

Wang, K.

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, and K. Wang, “Giant Two-Photon Absorption in Monolayer MoS2,” Laser Photonics Rev. 9(4), 427–434 (2015).
[Crossref]

Wang, Q.

K.-G. Zhou, M. Zhao, M.-J. Chang, Q. Wang, X.-Z. Wu, and Y. Song, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11(6), 694–701 (2015).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Wang, X.

Q. Liao, Q. Zhang, X. Wang, X. Li, G. Deng, and Z. Meng, “Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties,” Compos. Sci. Technol. 165(8), 388–396 (2018).
[Crossref]

Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
[Crossref]

Wang, Y.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear Optics with 2D Layered Materials,” Adv. Mater. 30(24), 1705963 (2018).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, and W. Zhang, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, and S. P. Lau, “Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response,” J. Phys. Chem. C 117(44), 23108–23116 (2013).
[Crossref]

Wang, Z.

Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
[Crossref]

We, T. C.

L. C. Hwang, S. C. Lee, and T. C. We, “Nonlinear absorption and refraction in lead glasses: enhanced by the small metal particle dispersions,” Opt. Commun. 228(4-6), 373–380 (2003).
[Crossref]

Wei, R.

R. Wei, H. Zhang, Z. Hu, T. Qiao, X. He, and Q. Go, “Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets,” Nanotechnology 27(30), 305203 (2016).
[Crossref]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wen, C.

White, M. A.

B. Zhan, M. A. White, and M. Lumsden, “Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano- and Microparticles,” Langmuir 19(10), 4205–4210 (2003).
[Crossref]

Wilcoxon, J. P.

J. P. Wilcoxon, P. P. Newcomer, and G. A. Samara, “Optical and photocatalytic properties of two-dimensional MoS2,” J. Appl. Phys. 81(12), 7934–7944 (1997).
[Crossref]

Winters, S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, and N. C. Berner, “Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref]

Wise, F.

S. Smolorz, I. Kang, F. Wise, B. G. Aitken, and N. F. Borrelli, “Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses,” J. Non-Cryst. Solids 256-257, 310–317 (1999).
[Crossref]

Wu, X.-Z.

K.-G. Zhou, M. Zhao, M.-J. Chang, Q. Wang, X.-Z. Wu, and Y. Song, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11(6), 694–701 (2015).
[Crossref]

Wu, Y.

Z. Xie, Y. Wu, X. Sun, S. Liu, F. Ma, and G. Zhao, “Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses,” Nanoscale 10(9), 4276–4283 (2018).
[Crossref]

Xie, Z.

Z. Xie, Y. Wu, X. Sun, S. Liu, F. Ma, and G. Zhao, “Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses,” Nanoscale 10(9), 4276–4283 (2018).
[Crossref]

Z. Xie, F. Wang, and C. Y. Liu, “Organic–Inorganic Hybrid Functional Carbon Dot Gel Glasses,” Adv. Mater. 24(13), 1716–1721 (2012).
[Crossref]

Xu, M.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

Yamaguchi, H.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref]

Yamane, M.

M. Yamane and Y. Asahara, Glasses for Photonics, Cambridge University Press, Cambridge, 2000.

Yang, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, and W. Zhang, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Yang, F.

Y. Miao, W. Jin, F. Yang, Y. Lin, Y. Tan, and L. Hoi, “Advances in optical fiber photothermal interferometry for gas detection,” Acta Phy. Sin. 66(7), 074212 (2017).
[Crossref]

Yap, C. C. R.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Yazyev, O. V.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Yoko, T.

K. Terashima, T. H. Shimoto, and T. Yoko, “Structure and nonlin ear optical properties of PbO-Bi2O3-B2O3 glasses,” Phys. Chem. Glasses 38(4), 211–217 (1997).

You, J.

Yu, S. F.

L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, and S. P. Lau, “Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response,” J. Phys. Chem. C 117(44), 23108–23116 (2013).
[Crossref]

Yu, X.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref]

Zeng, L.

G. Liang, L. Tao, Y. H. Tsang, L. Zeng, X. Liu, and J. Li, “Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses,” J. Mater. Chem. C 7(3), 495–502 (2019).
[Crossref]

Zhan, B.

B. Zhan, M. A. White, and M. Lumsden, “Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano- and Microparticles,” Langmuir 19(10), 4205–4210 (2003).
[Crossref]

Zhan, H.

C. Zheng, M. Feng, Y. Du, and H. Zhan, “Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass,” Carbon 47(12), 2889–2897 (2009).
[Crossref]

Zhang, B.

P. Jiang, B. Zhang, Z. Liu, and Y. Chen, “MoS2 quantum dots chemically modified with porphyrin for solid-state broadband optical limiters,” Nanoscale 11(43), 20449–20455 (2019).
[Crossref]

Zhang, H.

R. Wei, H. Zhang, Z. Hu, T. Qiao, X. He, and Q. Go, “Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets,” Nanotechnology 27(30), 305203 (2016).
[Crossref]

H. Zhang, “Ultrathin Two-Dimensional Nanomaterials,” ACS Nano 9(10), 9451–9469 (2015).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

Zhang, J.

Zhang, L.

C. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, and D. Fox, “Two Dimensional Transition Metal Dichalcogenides,” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Zhang, Q.

Q. Liao, Q. Zhang, X. Wang, X. Li, G. Deng, and Z. Meng, “Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties,” Compos. Sci. Technol. 165(8), 388–396 (2018).
[Crossref]

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Zhang, S.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, and W. Zhang, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, and K. Wang, “Giant Two-Photon Absorption in Monolayer MoS2,” Laser Photonics Rev. 9(4), 427–434 (2015).
[Crossref]

N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, and C. Chang, “Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets,” Sci. Rep. 5(1), 14646 (2015).
[Crossref]

C. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, and D. Fox, “Two Dimensional Transition Metal Dichalcogenides,” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, and N. C. Berner, “Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref]

Zhang, W.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, and W. Zhang, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Zhang, X.

J. Zhang, O. Hao, X. Zhang, J. You, R. Chen, T. Zhou, Y. Sui, Y. Liu, X. Cheng, and T. Jiang, “Ultrafast saturable absorption of MoS2 nanosheets under different pulse-width excitation conditions,” Opt. Lett. 43(2), 243–247 (2018).
[Crossref]

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, and K. Wang, “Giant Two-Photon Absorption in Monolayer MoS2,” Laser Photonics Rev. 9(4), 427–434 (2015).
[Crossref]

C. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, and D. Fox, “Two Dimensional Transition Metal Dichalcogenides,” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, and C. Chang, “Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets,” Sci. Rep. 5(1), 14646 (2015).
[Crossref]

Zhang, Z.

Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
[Crossref]

Zhao, G.

Z. Xie, Y. Wu, X. Sun, S. Liu, F. Ma, and G. Zhao, “Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses,” Nanoscale 10(9), 4276–4283 (2018).
[Crossref]

Zhao, M.

K.-G. Zhou, M. Zhao, M.-J. Chang, Q. Wang, X.-Z. Wu, and Y. Song, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11(6), 694–701 (2015).
[Crossref]

Zheng, C.

C. Zheng, M. Feng, Y. Du, and H. Zhan, “Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass,” Carbon 47(12), 2889–2897 (2009).
[Crossref]

Zheng, J.

Zheng, X.

Zhou, B.

L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, and S. P. Lau, “Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response,” J. Phys. Chem. C 117(44), 23108–23116 (2013).
[Crossref]

Zhou, K.-G.

K.-G. Zhou, M. Zhao, M.-J. Chang, Q. Wang, X.-Z. Wu, and Y. Song, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11(6), 694–701 (2015).
[Crossref]

Zhou, T.

Zilio, S. C.

J. M. P. Almeida, D. S. da Silva, L. R. P. Kassab, S. C. Zilio, C. R. Mendonça, and L. De Boni, “Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles,” Opt. Mater. 36(4), 829–832 (2014).
[Crossref]

L. De Boni, E. C. Barbano, T. A. de Assumpção, L. Misoguti, L. R. P. Kassab, and S. C. Zilio, “Femtosecond third-order nonlinear spectra of lead-germanium oxide glasses containing silver nanoparticles,” Opt. Express 20(6), 6844–6850 (2012).
[Crossref]

ACS Nano (3)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, and H. R. Gutieérrez, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

H. Zhang, “Ultrathin Two-Dimensional Nanomaterials,” ACS Nano 9(10), 9451–9469 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, and N. C. Berner, “Direct Observationof DegenerateTwo-Photon Absorption and Its Saturation in WS2 and MoS2 Monolayer and Few-Layer Films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref]

ACS Photonics (1)

C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3(7), 1164–1169 (2016).
[Crossref]

Acta Phy. Sin. (1)

Y. Miao, W. Jin, F. Yang, Y. Lin, Y. Tan, and L. Hoi, “Advances in optical fiber photothermal interferometry for gas detection,” Acta Phy. Sin. 66(7), 074212 (2017).
[Crossref]

Adv. Funct. Mater. (1)

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Adv. Mater. (2)

Z. Xie, F. Wang, and C. Y. Liu, “Organic–Inorganic Hybrid Functional Carbon Dot Gel Glasses,” Adv. Mater. 24(13), 1716–1721 (2012).
[Crossref]

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear Optics with 2D Layered Materials,” Adv. Mater. 30(24), 1705963 (2018).
[Crossref]

Carbon (1)

C. Zheng, M. Feng, Y. Du, and H. Zhan, “Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass,” Carbon 47(12), 2889–2897 (2009).
[Crossref]

Ceram. Int. (1)

S. Ghosh, A. Ghosh, T. Kar, S. Das, P. K. Das, J. Mukherjee, and R. Banerjee, “Role of carbon nanotubes on load dependent micro hardness of SWCNT-lead silicate glass composite,” Ceram. Int. 40(2), 2953–2958 (2014).
[Crossref]

Chem. Rev. (1)

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

Chem. Soc. Rev. (1)

Z. Wang, Q. Jingjing, X. Wang, Z. Zhang, Y. Chen, X. Huang, and W. Huang, “Two-dimensional light-emitting materials: preparation, properties and applications,” Chem. Soc. Rev. 45(9), 2656–2693 (2016).
[Crossref]

Compos. Sci. Technol. (1)

Q. Liao, Q. Zhang, X. Wang, X. Li, G. Deng, and Z. Meng, “Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties,” Compos. Sci. Technol. 165(8), 388–396 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Appl. Phys. (2)

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides,” J. Appl. Phys. 79(3), 1741–1745 (1996).
[Crossref]

J. P. Wilcoxon, P. P. Newcomer, and G. A. Samara, “Optical and photocatalytic properties of two-dimensional MoS2,” J. Appl. Phys. 81(12), 7934–7944 (1997).
[Crossref]

J. Mater. Chem. C (1)

G. Liang, L. Tao, Y. H. Tsang, L. Zeng, X. Liu, and J. Li, “Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses,” J. Mater. Chem. C 7(3), 495–502 (2019).
[Crossref]

J. Mol. Struct. (1)

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR Spectroscopic Studies of Manganese Doped GeO2-Bi2O3 Glasses,” J. Mol. Struct. 599(1-3), 9–13 (2001).
[Crossref]

J. Non-Cryst. Solids (4)

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159(3), 213–221 (1993).
[Crossref]

S. Smolorz, I. Kang, F. Wise, B. G. Aitken, and N. F. Borrelli, “Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses,” J. Non-Cryst. Solids 256-257, 310–317 (1999).
[Crossref]

Z. Pan, S. H. Morgan, and B. H. Long, “Raman scattering cross-section and non-linear optical response of lead borate glasses,” J. Non-Cryst. Solids 185(1-2), 127–134 (1995).
[Crossref]

D. C. Silva, D. V. Sampaio, J. H. L. Silva, A. M. Rodrigues, R. B. Penab, B. J. A. Moulton, P. S. Pizani, J. P. Rinob, and R. S. Silva, “Moulton, Synthesis of PbO·SiO2 glass by CO2 laser melting method,” J. Non-Cryst. Solids 522, 119572 (2019).
[Crossref]

J. Phys. Chem. C (1)

L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, and S. P. Lau, “Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response,” J. Phys. Chem. C 117(44), 23108–23116 (2013).
[Crossref]

J. Raman Spectrosc. (1)

B. Chakraborty, H. S. S. Ramakrishna Matte, A. K. Sood, and C. N. R. Rao, “Layer-dependent resonant Raman scattering of a few layer MoS2,” J. Raman Spectrosc. 44(1), 92–96 (2013).
[Crossref]

Langmuir (1)

B. Zhan, M. A. White, and M. Lumsden, “Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano- and Microparticles,” Langmuir 19(10), 4205–4210 (2003).
[Crossref]

Laser Photonics Rev. (1)

Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, and K. Wang, “Giant Two-Photon Absorption in Monolayer MoS2,” Laser Photonics Rev. 9(4), 427–434 (2015).
[Crossref]

Mater. Res. Bull. (1)

P. Joensen, R. F. Frindt, and S. R. Morrison, “Inclusion compounds of MoS2,” Mater. Res. Bull. 21(4), 457–461 (1986).
[Crossref]

Nano Lett. (1)

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref]

Nanoscale (2)

P. Jiang, B. Zhang, Z. Liu, and Y. Chen, “MoS2 quantum dots chemically modified with porphyrin for solid-state broadband optical limiters,” Nanoscale 11(43), 20449–20455 (2019).
[Crossref]

Z. Xie, Y. Wu, X. Sun, S. Liu, F. Ma, and G. Zhao, “Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses,” Nanoscale 10(9), 4276–4283 (2018).
[Crossref]

Nanotechnology (1)

R. Wei, H. Zhang, Z. Hu, T. Qiao, X. He, and Q. Go, “Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets,” Nanotechnology 27(30), 305203 (2016).
[Crossref]

Nat. Nanotechnol. (2)

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, and A. Seabaugh, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Nat. Rev. Mater. (1)

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Opt. Commun. (1)

L. C. Hwang, S. C. Lee, and T. C. We, “Nonlinear absorption and refraction in lead glasses: enhanced by the small metal particle dispersions,” Opt. Commun. 228(4-6), 373–380 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (2)

J. M. P. Almeida, D. S. da Silva, L. R. P. Kassab, S. C. Zilio, C. R. Mendonça, and L. De Boni, “Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles,” Opt. Mater. 36(4), 829–832 (2014).
[Crossref]

F. El-Diasty, M. Abdel-Baki, and F. Abdel-Wahab, “Tuned intensity-dependent refractive index n2 and two-photon absorption in oxide glasses: role of non-bridging oxygen bonds in optical nonlinearity,” Opt. Mater. 31(2), 161–166 (2008).
[Crossref]

Photonics Res. (1)

C. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, and D. Fox, “Two Dimensional Transition Metal Dichalcogenides,” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Phys. Chem. Chem. Phys. (1)

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref]

Phys. Chem. Glasses (1)

K. Terashima, T. H. Shimoto, and T. Yoko, “Structure and nonlin ear optical properties of PbO-Bi2O3-B2O3 glasses,” Phys. Chem. Glasses 38(4), 211–217 (1997).

Phys. Rev. B (1)

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, and K. Suzuya, “Fundamental condition of glass formation,” Phys. Rev. B 82(13), 134209 (2010).
[Crossref]

Sci. Rep. (1)

N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, and C. Chang, “Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets,” Sci. Rep. 5(1), 14646 (2015).
[Crossref]

Small (2)

K.-G. Zhou, M. Zhao, M.-J. Chang, Q. Wang, X.-Z. Wu, and Y. Song, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11(6), 694–701 (2015).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, and W. Zhang, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Z. Phys. B: Condens. Matter (1)

L. Liu, “Infrared spectroscopy on lead silicate glass,” Z. Phys. B: Condens. Matter 90(4), 393–399 (1993).
[Crossref]

Other (1)

M. Yamane and Y. Asahara, Glasses for Photonics, Cambridge University Press, Cambridge, 2000.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of synthesis of the MoS2/PbO-SiO2 gel glasses by sol-gel wet chemical method.
Fig. 2.
Fig. 2. (a) TEM image of as-prepared ultrathin 2D MoS2 nanosheets and (b) SEM image of fractured surface of MoS2/PbO-SiO2 inorganic gel glasses with a doping level of 2.13×10−5.
Fig. 3.
Fig. 3. Raman spectrum of (a) as-prepared ultrathin MoS2 and (b) PbO-SiO2 and MoS2/PbO-SiO2 gel glasses.
Fig. 4.
Fig. 4. UV/Vis spectrum of (a) as-prepared ultrathin MoS2 and (b) MoS2/PbO-SiO2 gel glasses.
Fig. 5.
Fig. 5. OA Z-scan curves of MoS2/MoS2 (doping level is 11.10×10−5) and MoS2/PbO-SiO2 gel glasses (doping level is 10.67×10−5) at (a) nanosecond and (b) picosecond laser duration excitation. CA Z-scan of MoS2/MoS2 and MoS2/PbO-SiO2 gel glasses at (c) nanosecond and (d) picosecond laser duration excitation. Both the linear transmittance of the gel glasses is 63%. Black scattered squares indicate experimental data and the red solid line shows the curve of best-fit.
Fig. 6.
Fig. 6. OA Z-scan curves of MoS2/PbO-SiO2 gel glasses with different doping level at (a) nanosecond and (b) picosecond laser duration excitation. OL curves of MoS2/PbO-SiO2 gel glasses at (c) nanosecond and (d) picosecond laser duration excitation. Black squares indicate experimental data and red solid lines show the curves of best-fit.

Tables (2)

Tables Icon

Table 1. Third nonlinear parameters of linear transmittance (T%), nonlinear absorption coefficient (β), nonlinear refraction (n2), real part of third-order nonlinear susceptibility (χ(3)R), imaginary part of third-order nonlinear susceptibility (χ(3)I), and third-order nonlinear susceptibility (χ(3)) in MoS2/SiO2 (doping lever is 11.10×10−5) and MoS2/PbO-SiO2 gel glass (doping lever is 10.67×10−5) calculated with Z-scan theory.

Tables Icon

Table 2. Linear transmittance (T%), linear absorption coefficient (α0), nonlinear absorption coefficient (β), and OL threshold (FOL) in MoS2/PbO-SiO2 gel glass with different doping levels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( z , s = 1 ) = 1 π q 0 ( z , 0 ) ln [ 1 + q 0 ( z , 0 ) e r 2 ] d r .
F i n ( z ) = 4 ln 2 E i n π 3 / 2 ω ( z ) 2 ,
ω ( z ) = ω ( 0 ) 1 + ( z z 0 ) 2 .

Metrics