Abstract

Amorphous Al2O3 is an attractive material for integrated photonics. Its low losses from the UV till the mid-IR together with the possibility of doping with different rare-earth ions permits the realization of active and passive functionalities in the same chip at the wafer level. In this work, the influence of reactive gas flow during deposition on the optical (i.e., refractive index and propagation losses) and material (i.e., structure of the layer) characteristics of the RF reactive sputtered Al2O3 layers is investigated and a method based on the oxidation state of the sputtering target is proposed to reproducibly achieve low loss optical guiding layers despite the continuous variation of the condition of the target along its lifetime.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Tang, F. Luo, F. Ou, W. Zhou, D. Zhu, and Z. Huang, “Effects of negative substrate bias voltage on the structure and properties of aluminum oxide films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci. 259, 448–453 (2012).
    [Crossref]
  2. R. Cremer, K. Reichert, D. Neuschütz, G. Erkens, and T. Leyendecker, “Sputter deposition of crystalline alumina coatings,” Surf. Coat. Technol. 163-164, 157–163 (2003).
    [Crossref]
  3. M. Sridharan, M. Sillassen, J. Bøttiger, J. Chevallier, and H. Birkedal, “Pulsed DC magnetron sputtered Al2O3 films and their hardness,” Surf. Coat. Technol. 202(4-7), 920–924 (2007).
    [Crossref]
  4. J. Wang, Y.-H. Yu, S. Lee, and Y.-W. Chung, “Tribological and optical properties of crystalline and amorphous alumina thin films grown by low-temperature reactive magnetron sputter-deposition,” Surf. Coat. Technol. 146-147, 189–194 (2001).
    [Crossref]
  5. C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37(22), 4630 (2012).
    [Crossref]
  6. I. H. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. 52(12), 1377–1379 (1962).
    [Crossref]
  7. S. H. Waeselmann, C. E. Rüter, D. Kip, C. Kränkel, and G. Huber, “Nd:sapphire channel waveguide laser,” Opt. Mater. Express 7(7), 2361 (2017).
    [Crossref]
  8. J. D. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73 (2010).
    [Crossref]
  9. M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22(9), 10655 (2014).
    [Crossref]
  10. E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106 (2014).
    [Crossref]
  11. S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993 (2014).
    [Crossref]
  12. N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26(3), 2220 (2018).
    [Crossref]
  13. J. Mu, M. Dijkstra, and S. M. Garcia-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photonics Technol. Lett. 31(10), 771–774 (2019).
    [Crossref]
  14. M. de Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Opt. Express 27(13), 18508 (2019).
    [Crossref]
  15. K. Worhoff, F. Ay, and M. Pollnau, “Optimization of low-loss Al2O3 waveguide fabrication for application in active integrated optical devices,” ECS Trans. 3, 17–26 (2006).
    [Crossref]
  16. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire Material, Manufacturing, Applications (Springer, 2009).
  17. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
    [Crossref]
  18. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2-3), 311–318 (2007).
    [Crossref]
  19. P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(4), 48–54 (1998).
    [Crossref]
  20. P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare – earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
    [Crossref]
  21. L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3: Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
    [Crossref]
  22. J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1-2), 119–127 (2010).
    [Crossref]
  23. J. D. B. Bradley, E. S. Hosseini, P. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226 (2014).
    [Crossref]
  24. M. de Goede, L. Chang, J. Mu, M. Dijkstra, R. Obregón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3:Yb3+ integrated microdisk laser label-free biosensor,” Opt. Lett. 44(24), 5937 (2019).
    [Crossref]
  25. E. S. Magden, N. Li, P. Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
    [Crossref]
  26. N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
    [Crossref]
  27. J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 9744U (2016).
  28. Z. Su, N. Li, E. S. Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708 (2016).
    [Crossref]
  29. N. Li, P. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181 (2017).
    [Crossref]
  30. J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
    [Crossref]
  31. J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
    [Crossref]
  32. J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
    [Crossref]
  33. J. Mu, M. de Goede, M. Dijkstra, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 for double-layer integrated photonic chips,” inAdvanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. ITh1I.1.
  34. J. Mu, M. Dijkstra, Y. S. Yong, M. de Goede, L. Chang, and S. M. Garcia Blanco, “Monolithic integration towards double-layer active passive platform,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
    [Crossref]
  35. L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703 (2010).
    [Crossref]
  36. P. F. Jarschel, M. C. M. M. Souza, R. B. Merlo, and N. C. Frateschi, “Loss compensation in microring-based Si photonics devices via Er3+ doped claddings,” IEEE Photonics J. 10(4), 1–12 (2018).
    [Crossref]
  37. P. F. Jarschel and N. C. Frateschi, “Resonant amplification via Er-doped clad Si photonic molecules: Towards compact low-loss/high-Q Si photonic devices,” Solid-State Electron. 155, 144–149 (2019).
    [Crossref]
  38. T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1-2), 57–63 (2000).
    [Crossref]
  39. T. Ishizaka, R. Nozaki, and Y. Kurokawa, “Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence,” J. Phys. Chem. Solids 63(4), 613–617 (2002).
    [Crossref]
  40. W. Koh, S.-J. Ku, and Y. Kim, “Chemical vapor deposition of Al2O3 films using highly volatile single sources,” Thin Solid Films 304(1-2), 222–224 (1997).
    [Crossref]
  41. R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
    [Crossref]
  42. A. Suárez-García, J. Gonzalo, and C. N. Afonso, “Low-loss Al2O3 waveguides produced by pulsed laser deposition at room temperature,” Appl. Phys. A: Mater. Sci. Process. 77(6), 779–783 (2003).
    [Crossref]
  43. M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
    [Crossref]
  44. J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
    [Crossref]
  45. M. Demirtaş, A. Özden, E. Açikbaş, and F. Ay, “Extensive mode mapping and novel polarization filter design for ALD grown Al2O3 ridge waveguides,” Opt. Quantum Electron. 48(7), 357 (2016).
    [Crossref]
  46. M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
    [Crossref]
  47. J. J. Diaz Leon, D. M. Fryauf, J. E. Volk, and N. P. Kobayashi, “Aluminum oxide waveguides for improved transmission in the visible and near-infrared spectrum,” IEEE Photonics Technol. Lett. 31(1), 43–45 (2019).
    [Crossref]
  48. C. J. Kang, J. S. Chun, and W. J. Lee, “Properties of aluminium oxide films prepared by plasma-enhanced metal-organic chemical vapour deposition,” Thin Solid Films 189(1), 161–173 (1990).
    [Crossref]
  49. K. Bobzin, E. Lugscheider, M. Maes, and C. Piñero, “Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering,” Thin Solid Films 494(1-2), 255–262 (2006).
    [Crossref]
  50. A. Khanna and D. G. Bhat, “Nanocrystalline gamma alumina coatings by inverted cylindrical magnetron sputtering,” Surf. Coat. Technol. 201(1-2), 168–173 (2006).
    [Crossref]
  51. N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
    [Crossref]
  52. P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
    [Crossref]
  53. I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surf. Coat. Technol. 127(2-3), 203–218 (2000).
    [Crossref]
  54. V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, “Thermal stability of sputtered Al2O3 coatings,” Surf. Coat. Technol. 204(9-10), 1576–1581 (2010).
    [Crossref]
  55. X. Zhang, J. Zhu, L. Zhang, K. Kishimoto, S. Du, and X. Yin, “Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature,” Surf. Coat. Technol. 228, S393–S396 (2013).
    [Crossref]
  56. S. Berg, H. Blom, T. Larsson, and C. Nender, “Modeling of reactive sputtering of compound materials,” J. Vac. Sci. Technol., A 5, 202–207 (1987).
    [Crossref]
  57. K. Strijckmans, R. Schelfhout, and D. Depla, “Tutorial: Hysteresis during the reactive magnetron sputtering process,” J. Appl. Phys. 124(24), 241101 (2018).
    [Crossref]
  58. M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
    [Crossref]
  59. M. Serényi, T. Lohner, G. Sáfrán, and J. Szívós, “Comparison in formation, optical properties and applicability of DC magnetron and RF sputtered aluminum oxide films,” Vacuum 128, 213–218 (2016).
    [Crossref]
  60. D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22(7), 307–309 (1973).
    [Crossref]
  61. S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
    [Crossref]
  62. C. I. van Emmerik, L. Chang, M. Goede, J. Mu, and S. M. Garcia-Blanco, “Single-layer active-passive Al2O3 photonic integration platform,” Opt. Mater. Express 8(10), 3049–3054 (2018).
    [Crossref]
  63. G. Bräuer, “Magnetron Sputtering,” Comprehensive Materials Processing 4, 57–73 (2014).
    [Crossref]
  64. P. J. Goodhew and J. Humphreys, Electron Microscopy and Analysis, 3 edit. Taylor & Francis (2001).
  65. R. F. Egerton, Physical Principles of Electron Microscopy (Springer US, 2006).
  66. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
    [Crossref]
  67. C. Kittel, Introduction to Solid State Physics, 8th ed., vol. 37, no. 11 (John Wiley & Sons, Ltd, 2005).
  68. A. G. Spencer, R. P. Howson, and R. W. Lewin, “Pressure stability in reactive magnetron sputtering,” Thin Solid Films 158(1), 141–149 (1988).
    [Crossref]
  69. S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476(2), 215–230 (2005).
    [Crossref]
  70. E. Särhammar, T. Nyberg, and S. Berg, “Applying ‘the upgraded Berg model’ to predict hysteresis free reactive sputtering,” Surf. Coat. Technol. 290, 34–38 (2016).
    [Crossref]
  71. D. Depla, K. Strijckmans, and R. De Gryse, “The role of the erosion groove during reactive sputter deposition,” Surf. Coat. Technol. 258, 1011–1015 (2014).
    [Crossref]
  72. D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101(1), 013301 (2007).
    [Crossref]
  73. S. Kadlec, J. Musil, and J. Vyskočil, “Modeling of inhomogeneous film deposition and target erosion in reactive sputtering,” J. Vac. Sci. Technol., A 8(3), 1560–1565 (1990).
    [Crossref]
  74. D. Depla, S. Mahieu, and R. De Gryse, “Magnetron sputter deposition: Linking discharge voltage with target properties,” Thin Solid Films 517(9), 2825–2839 (2009).
    [Crossref]
  75. W. D. Sproul, D. J. Christie, and D. C. Carter, “Control of reactive sputtering processes,” Thin Solid Films 491(1-2), 1–17 (2005).
    [Crossref]
  76. R. S. Zhou and R. L. Snyder, “Structures and transformation mechanisms of the η, γ and θ transition aluminas,” Acta Crystallogr., Sect. B: Struct. Sci. 47(5), 617–630 (1991).
    [Crossref]
  77. W. Engelhart, W. Dreher, O. Eibl, and V. Schier, “Deposition of alumina thin film by dual magnetron sputtering: Is it γ-Al2O3?” Acta Mater. 59(20), 7757–7767 (2011).
    [Crossref]

2019 (8)

J. Mu, M. Dijkstra, and S. M. Garcia-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photonics Technol. Lett. 31(10), 771–774 (2019).
[Crossref]

M. de Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Opt. Express 27(13), 18508 (2019).
[Crossref]

M. de Goede, L. Chang, J. Mu, M. Dijkstra, R. Obregón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3:Yb3+ integrated microdisk laser label-free biosensor,” Opt. Lett. 44(24), 5937 (2019).
[Crossref]

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

J. Mu, M. Dijkstra, Y. S. Yong, M. de Goede, L. Chang, and S. M. Garcia Blanco, “Monolithic integration towards double-layer active passive platform,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

P. F. Jarschel and N. C. Frateschi, “Resonant amplification via Er-doped clad Si photonic molecules: Towards compact low-loss/high-Q Si photonic devices,” Solid-State Electron. 155, 144–149 (2019).
[Crossref]

J. J. Diaz Leon, D. M. Fryauf, J. E. Volk, and N. P. Kobayashi, “Aluminum oxide waveguides for improved transmission in the visible and near-infrared spectrum,” IEEE Photonics Technol. Lett. 31(1), 43–45 (2019).
[Crossref]

2018 (6)

P. F. Jarschel, M. C. M. M. Souza, R. B. Merlo, and N. C. Frateschi, “Loss compensation in microring-based Si photonics devices via Er3+ doped claddings,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

K. Strijckmans, R. Schelfhout, and D. Depla, “Tutorial: Hysteresis during the reactive magnetron sputtering process,” J. Appl. Phys. 124(24), 241101 (2018).
[Crossref]

C. I. van Emmerik, L. Chang, M. Goede, J. Mu, and S. M. Garcia-Blanco, “Single-layer active-passive Al2O3 photonic integration platform,” Opt. Mater. Express 8(10), 3049–3054 (2018).
[Crossref]

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26(3), 2220 (2018).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
[Crossref]

2017 (4)

2016 (6)

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 9744U (2016).

Z. Su, N. Li, E. S. Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708 (2016).
[Crossref]

M. Serényi, T. Lohner, G. Sáfrán, and J. Szívós, “Comparison in formation, optical properties and applicability of DC magnetron and RF sputtered aluminum oxide films,” Vacuum 128, 213–218 (2016).
[Crossref]

E. Särhammar, T. Nyberg, and S. Berg, “Applying ‘the upgraded Berg model’ to predict hysteresis free reactive sputtering,” Surf. Coat. Technol. 290, 34–38 (2016).
[Crossref]

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

M. Demirtaş, A. Özden, E. Açikbaş, and F. Ay, “Extensive mode mapping and novel polarization filter design for ALD grown Al2O3 ridge waveguides,” Opt. Quantum Electron. 48(7), 357 (2016).
[Crossref]

2015 (1)

P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
[Crossref]

2014 (6)

2013 (2)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3: Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

X. Zhang, J. Zhu, L. Zhang, K. Kishimoto, S. Du, and X. Yin, “Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature,” Surf. Coat. Technol. 228, S393–S396 (2013).
[Crossref]

2012 (3)

N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
[Crossref]

C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37(22), 4630 (2012).
[Crossref]

X. Tang, F. Luo, F. Ou, W. Zhou, D. Zhu, and Z. Huang, “Effects of negative substrate bias voltage on the structure and properties of aluminum oxide films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci. 259, 448–453 (2012).
[Crossref]

2011 (1)

W. Engelhart, W. Dreher, O. Eibl, and V. Schier, “Deposition of alumina thin film by dual magnetron sputtering: Is it γ-Al2O3?” Acta Mater. 59(20), 7757–7767 (2011).
[Crossref]

2010 (6)

J. D. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1-2), 119–127 (2010).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703 (2010).
[Crossref]

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
[Crossref]

V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, “Thermal stability of sputtered Al2O3 coatings,” Surf. Coat. Technol. 204(9-10), 1576–1581 (2010).
[Crossref]

2009 (2)

D. Depla, S. Mahieu, and R. De Gryse, “Magnetron sputter deposition: Linking discharge voltage with target properties,” Thin Solid Films 517(9), 2825–2839 (2009).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

2007 (4)

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2-3), 311–318 (2007).
[Crossref]

M. Sridharan, M. Sillassen, J. Bøttiger, J. Chevallier, and H. Birkedal, “Pulsed DC magnetron sputtered Al2O3 films and their hardness,” Surf. Coat. Technol. 202(4-7), 920–924 (2007).
[Crossref]

D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101(1), 013301 (2007).
[Crossref]

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

2006 (4)

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

K. Bobzin, E. Lugscheider, M. Maes, and C. Piñero, “Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering,” Thin Solid Films 494(1-2), 255–262 (2006).
[Crossref]

A. Khanna and D. G. Bhat, “Nanocrystalline gamma alumina coatings by inverted cylindrical magnetron sputtering,” Surf. Coat. Technol. 201(1-2), 168–173 (2006).
[Crossref]

K. Worhoff, F. Ay, and M. Pollnau, “Optimization of low-loss Al2O3 waveguide fabrication for application in active integrated optical devices,” ECS Trans. 3, 17–26 (2006).
[Crossref]

2005 (2)

W. D. Sproul, D. J. Christie, and D. C. Carter, “Control of reactive sputtering processes,” Thin Solid Films 491(1-2), 1–17 (2005).
[Crossref]

S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476(2), 215–230 (2005).
[Crossref]

2003 (2)

A. Suárez-García, J. Gonzalo, and C. N. Afonso, “Low-loss Al2O3 waveguides produced by pulsed laser deposition at room temperature,” Appl. Phys. A: Mater. Sci. Process. 77(6), 779–783 (2003).
[Crossref]

R. Cremer, K. Reichert, D. Neuschütz, G. Erkens, and T. Leyendecker, “Sputter deposition of crystalline alumina coatings,” Surf. Coat. Technol. 163-164, 157–163 (2003).
[Crossref]

2002 (1)

T. Ishizaka, R. Nozaki, and Y. Kurokawa, “Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence,” J. Phys. Chem. Solids 63(4), 613–617 (2002).
[Crossref]

2001 (2)

J. Wang, Y.-H. Yu, S. Lee, and Y.-W. Chung, “Tribological and optical properties of crystalline and amorphous alumina thin films grown by low-temperature reactive magnetron sputter-deposition,” Surf. Coat. Technol. 146-147, 189–194 (2001).
[Crossref]

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
[Crossref]

2000 (2)

I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surf. Coat. Technol. 127(2-3), 203–218 (2000).
[Crossref]

T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1-2), 57–63 (2000).
[Crossref]

1998 (1)

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(4), 48–54 (1998).
[Crossref]

1997 (1)

W. Koh, S.-J. Ku, and Y. Kim, “Chemical vapor deposition of Al2O3 films using highly volatile single sources,” Thin Solid Films 304(1-2), 222–224 (1997).
[Crossref]

1991 (1)

R. S. Zhou and R. L. Snyder, “Structures and transformation mechanisms of the η, γ and θ transition aluminas,” Acta Crystallogr., Sect. B: Struct. Sci. 47(5), 617–630 (1991).
[Crossref]

1990 (2)

S. Kadlec, J. Musil, and J. Vyskočil, “Modeling of inhomogeneous film deposition and target erosion in reactive sputtering,” J. Vac. Sci. Technol., A 8(3), 1560–1565 (1990).
[Crossref]

C. J. Kang, J. S. Chun, and W. J. Lee, “Properties of aluminium oxide films prepared by plasma-enhanced metal-organic chemical vapour deposition,” Thin Solid Films 189(1), 161–173 (1990).
[Crossref]

1988 (1)

A. G. Spencer, R. P. Howson, and R. W. Lewin, “Pressure stability in reactive magnetron sputtering,” Thin Solid Films 158(1), 141–149 (1988).
[Crossref]

1987 (1)

S. Berg, H. Blom, T. Larsson, and C. Nender, “Modeling of reactive sputtering of compound materials,” J. Vac. Sci. Technol., A 5, 202–207 (1987).
[Crossref]

1986 (1)

M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
[Crossref]

1973 (1)

D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22(7), 307–309 (1973).
[Crossref]

1962 (1)

Açikbas, E.

M. Demirtaş, A. Özden, E. Açikbaş, and F. Ay, “Extensive mode mapping and novel polarization filter design for ALD grown Al2O3 ridge waveguides,” Opt. Quantum Electron. 48(7), 357 (2016).
[Crossref]

Acket, G. A.

M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
[Crossref]

Adam, T. N.

Afonso, C. N.

A. Suárez-García, J. Gonzalo, and C. N. Afonso, “Low-loss Al2O3 waveguides produced by pulsed laser deposition at room temperature,” Appl. Phys. A: Mater. Sci. Process. 77(6), 779–783 (2003).
[Crossref]

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
[Crossref]

Agazzi, L.

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3: Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. D. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703 (2010).
[Crossref]

Almtoft, K. P.

N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
[Crossref]

Alonso-Ramos, C.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

Aslan, M. M.

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
[Crossref]

Autere, A.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

Ay, F.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

M. Demirtaş, A. Özden, E. Açikbaş, and F. Ay, “Extensive mode mapping and novel polarization filter design for ALD grown Al2O3 ridge waveguides,” Opt. Quantum Electron. 48(7), 357 (2016).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993 (2014).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703 (2010).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1-2), 119–127 (2010).
[Crossref]

J. D. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73 (2010).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2-3), 311–318 (2007).
[Crossref]

K. Worhoff, F. Ay, and M. Pollnau, “Optimization of low-loss Al2O3 waveguide fabrication for application in active integrated optical devices,” ECS Trans. 3, 17–26 (2006).
[Crossref]

Baets, R.

Baiocco, C.

Bakker, A.

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

Belt, M.

Berg, S.

E. Särhammar, T. Nyberg, and S. Berg, “Applying ‘the upgraded Berg model’ to predict hysteresis free reactive sputtering,” Surf. Coat. Technol. 290, 34–38 (2016).
[Crossref]

S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476(2), 215–230 (2005).
[Crossref]

S. Berg, H. Blom, T. Larsson, and C. Nender, “Modeling of reactive sputtering of compound materials,” J. Vac. Sci. Technol., A 5, 202–207 (1987).
[Crossref]

Bernhardi, E. H.

Berthelsen, A. N.

N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
[Crossref]

Bhat, D. G.

A. Khanna and D. G. Bhat, “Nanocrystalline gamma alumina coatings by inverted cylindrical magnetron sputtering,” Surf. Coat. Technol. 201(1-2), 168–173 (2006).
[Crossref]

Birkedal, H.

M. Sridharan, M. Sillassen, J. Bøttiger, J. Chevallier, and H. Birkedal, “Pulsed DC magnetron sputtered Al2O3 films and their hardness,” Surf. Coat. Technol. 202(4-7), 920–924 (2007).
[Crossref]

Blauwendraat, T. P.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Blom, H.

S. Berg, H. Blom, T. Larsson, and C. Nender, “Modeling of reactive sputtering of compound materials,” J. Vac. Sci. Technol., A 5, 202–207 (1987).
[Crossref]

Blumenthal, D. J.

Bobzin, K.

K. Bobzin, E. Lugscheider, M. Maes, and C. Piñero, “Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering,” Thin Solid Films 494(1-2), 255–262 (2006).
[Crossref]

Bøttiger, J.

N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
[Crossref]

M. Sridharan, M. Sillassen, J. Bøttiger, J. Chevallier, and H. Birkedal, “Pulsed DC magnetron sputtered Al2O3 films and their hardness,” Surf. Coat. Technol. 202(4-7), 920–924 (2007).
[Crossref]

Bradley, J. D.

Bradley, J. D. B.

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26(3), 2220 (2018).
[Crossref]

E. S. Magden, N. Li, P. Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref]

N. Li, P. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708 (2016).
[Crossref]

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 9744U (2016).

E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106 (2014).
[Crossref]

J. D. B. Bradley, E. S. Hosseini, P. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226 (2014).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703 (2010).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2-3), 311–318 (2007).
[Crossref]

Brambilla, G.

Bräuer, G.

G. Bräuer, “Magnetron Sputtering,” Comprehensive Materials Processing 4, 57–73 (2014).
[Crossref]

Byard, C. L.

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
[Crossref]

Byrd, M.

Byrd, M. J.

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

Callahan, P. T.

Carter, D. C.

W. D. Sproul, D. J. Christie, and D. C. Carter, “Control of reactive sputtering processes,” Thin Solid Films 491(1-2), 1–17 (2005).
[Crossref]

Cassan, E.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

Chang, L.

Chaos, J. A.

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
[Crossref]

Chen, G. F. R.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare – earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref]

Chen, X.

P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
[Crossref]

Chevallier, J.

M. Sridharan, M. Sillassen, J. Bøttiger, J. Chevallier, and H. Birkedal, “Pulsed DC magnetron sputtered Al2O3 films and their hardness,” Surf. Coat. Technol. 202(4-7), 920–924 (2007).
[Crossref]

Christensen, B. H.

N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
[Crossref]

Christie, D. J.

W. D. Sproul, D. J. Christie, and D. C. Carter, “Control of reactive sputtering processes,” Thin Solid Films 491(1-2), 1–17 (2005).
[Crossref]

Chun, J. S.

C. J. Kang, J. S. Chun, and W. J. Lee, “Properties of aluminium oxide films prepared by plasma-enhanced metal-organic chemical vapour deposition,” Thin Solid Films 189(1), 161–173 (1990).
[Crossref]

Chung, Y.-W.

J. Wang, Y.-H. Yu, S. Lee, and Y.-W. Chung, “Tribological and optical properties of crystalline and amorphous alumina thin films grown by low-temperature reactive magnetron sputter-deposition,” Surf. Coat. Technol. 146-147, 189–194 (2001).
[Crossref]

Coolbaugh, D.

Coolbaugh, D. D.

Corbari, C.

Cremer, R.

R. Cremer, K. Reichert, D. Neuschütz, G. Erkens, and T. Leyendecker, “Sputter deposition of crystalline alumina coatings,” Surf. Coat. Technol. 163-164, 157–163 (2003).
[Crossref]

Dai, B.

P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
[Crossref]

Dai, S.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

de Castro, M. J.

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
[Crossref]

de Goede, M.

J. Mu, M. Dijkstra, Y. S. Yong, M. de Goede, L. Chang, and S. M. Garcia Blanco, “Monolithic integration towards double-layer active passive platform,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

M. de Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Opt. Express 27(13), 18508 (2019).
[Crossref]

M. de Goede, L. Chang, J. Mu, M. Dijkstra, R. Obregón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3:Yb3+ integrated microdisk laser label-free biosensor,” Opt. Lett. 44(24), 5937 (2019).
[Crossref]

J. Mu, M. de Goede, M. Dijkstra, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 for double-layer integrated photonic chips,” inAdvanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. ITh1I.1.

De Gryse, R.

D. Depla, K. Strijckmans, and R. De Gryse, “The role of the erosion groove during reactive sputter deposition,” Surf. Coat. Technol. 258, 1011–1015 (2014).
[Crossref]

D. Depla, S. Mahieu, and R. De Gryse, “Magnetron sputter deposition: Linking discharge voltage with target properties,” Thin Solid Films 517(9), 2825–2839 (2009).
[Crossref]

D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101(1), 013301 (2007).
[Crossref]

Demirtas, M.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

M. Demirtaş, A. Özden, E. Açikbaş, and F. Ay, “Extensive mode mapping and novel polarization filter design for ALD grown Al2O3 ridge waveguides,” Opt. Quantum Electron. 48(7), 357 (2016).
[Crossref]

Depla, D.

K. Strijckmans, R. Schelfhout, and D. Depla, “Tutorial: Hysteresis during the reactive magnetron sputtering process,” J. Appl. Phys. 124(24), 241101 (2018).
[Crossref]

P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
[Crossref]

D. Depla, K. Strijckmans, and R. De Gryse, “The role of the erosion groove during reactive sputter deposition,” Surf. Coat. Technol. 258, 1011–1015 (2014).
[Crossref]

D. Depla, S. Mahieu, and R. De Gryse, “Magnetron sputter deposition: Linking discharge voltage with target properties,” Thin Solid Films 517(9), 2825–2839 (2009).
[Crossref]

D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101(1), 013301 (2007).
[Crossref]

Diaz Leon, J. J.

J. J. Diaz Leon, D. M. Fryauf, J. E. Volk, and N. P. Kobayashi, “Aluminum oxide waveguides for improved transmission in the visible and near-infrared spectrum,” IEEE Photonics Technol. Lett. 31(1), 43–45 (2019).
[Crossref]

Dijkstra, M.

M. de Goede, L. Chang, J. Mu, M. Dijkstra, R. Obregón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3:Yb3+ integrated microdisk laser label-free biosensor,” Opt. Lett. 44(24), 5937 (2019).
[Crossref]

J. Mu, M. Dijkstra, and S. M. Garcia-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photonics Technol. Lett. 31(10), 771–774 (2019).
[Crossref]

M. de Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Opt. Express 27(13), 18508 (2019).
[Crossref]

J. Mu, M. Dijkstra, Y. S. Yong, M. de Goede, L. Chang, and S. M. Garcia Blanco, “Monolithic integration towards double-layer active passive platform,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993 (2014).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703 (2010).
[Crossref]

J. Mu, M. de Goede, M. Dijkstra, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 for double-layer integrated photonic chips,” inAdvanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. ITh1I.1.

Dobrovinskaya, E. R.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire Material, Manufacturing, Applications (Springer, 2009).

Dreher, W.

W. Engelhart, W. Dreher, O. Eibl, and V. Schier, “Deposition of alumina thin film by dual magnetron sputtering: Is it γ-Al2O3?” Acta Mater. 59(20), 7757–7767 (2011).
[Crossref]

Du, S.

X. Zhang, J. Zhu, L. Zhang, K. Kishimoto, S. Du, and X. Yin, “Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature,” Surf. Coat. Technol. 228, S393–S396 (2013).
[Crossref]

Edlmayr, V.

V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, “Thermal stability of sputtered Al2O3 coatings,” Surf. Coat. Technol. 204(9-10), 1576–1581 (2010).
[Crossref]

Egerton, R. F.

R. F. Egerton, Physical Principles of Electron Microscopy (Springer US, 2006).

Eibl, O.

W. Engelhart, W. Dreher, O. Eibl, and V. Schier, “Deposition of alumina thin film by dual magnetron sputtering: Is it γ-Al2O3?” Acta Mater. 59(20), 7757–7767 (2011).
[Crossref]

Engelhart, W.

W. Engelhart, W. Dreher, O. Eibl, and V. Schier, “Deposition of alumina thin film by dual magnetron sputtering: Is it γ-Al2O3?” Acta Mater. 59(20), 7757–7767 (2011).
[Crossref]

Erkens, G.

R. Cremer, K. Reichert, D. Neuschütz, G. Erkens, and T. Leyendecker, “Sputter deposition of crystalline alumina coatings,” Surf. Coat. Technol. 163-164, 157–163 (2003).
[Crossref]

Fahrenkopf, N. M.

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

Fernandez, M.

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
[Crossref]

Frateschi, N. C.

P. F. Jarschel and N. C. Frateschi, “Resonant amplification via Er-doped clad Si photonic molecules: Towards compact low-loss/high-Q Si photonic devices,” Solid-State Electron. 155, 144–149 (2019).
[Crossref]

P. F. Jarschel, M. C. M. M. Souza, R. B. Merlo, and N. C. Frateschi, “Loss compensation in microring-based Si photonics devices via Er3+ doped claddings,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

Fryauf, D. M.

J. J. Diaz Leon, D. M. Fryauf, J. E. Volk, and N. P. Kobayashi, “Aluminum oxide waveguides for improved transmission in the visible and near-infrared spectrum,” IEEE Photonics Technol. Lett. 31(1), 43–45 (2019).
[Crossref]

Garcia Blanco, S. M.

J. Mu, M. Dijkstra, Y. S. Yong, M. de Goede, L. Chang, and S. M. Garcia Blanco, “Monolithic integration towards double-layer active passive platform,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

Garcia-Blanco, S. M.

García-Blanco, S. M.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993 (2014).
[Crossref]

J. Mu, M. de Goede, M. Dijkstra, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 for double-layer integrated photonic chips,” inAdvanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. ITh1I.1.

Geskus, D.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Giannuzzi, L. A.

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

Goede, M.

Gonzalo, J.

A. Suárez-García, J. Gonzalo, and C. N. Afonso, “Low-loss Al2O3 waveguides produced by pulsed laser deposition at room temperature,” Appl. Phys. A: Mater. Sci. Process. 77(6), 779–783 (2003).
[Crossref]

Goodhew, P. J.

P. J. Goodhew and J. Humphreys, Electron Microscopy and Analysis, 3 edit. Taylor & Francis (2001).

Grivas, C.

Haemers, J.

D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101(1), 013301 (2007).
[Crossref]

Han, J.

P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
[Crossref]

Hayes, C. M.

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
[Crossref]

Heirwegh, S.

D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101(1), 013301 (2007).
[Crossref]

Herek, J. L.

Hosseini, E. S.

Howson, R. P.

A. G. Spencer, R. P. Howson, and R. W. Lewin, “Pressure stability in reactive magnetron sputtering,” Thin Solid Films 158(1), 141–149 (1988).
[Crossref]

Hu, L.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Huang, Z.

X. Tang, F. Luo, F. Ou, W. Zhou, D. Zhu, and Z. Huang, “Effects of negative substrate bias voltage on the structure and properties of aluminum oxide films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci. 259, 448–453 (2012).
[Crossref]

Huber, G.

Humphreys, J.

P. J. Goodhew and J. Humphreys, Electron Microscopy and Analysis, 3 edit. Taylor & Francis (2001).

Ippen, E. P.

Ishizaka, T.

T. Ishizaka, R. Nozaki, and Y. Kurokawa, “Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence,” J. Phys. Chem. Solids 63(4), 613–617 (2002).
[Crossref]

T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1-2), 57–63 (2000).
[Crossref]

Jarschel, P. F.

P. F. Jarschel and N. C. Frateschi, “Resonant amplification via Er-doped clad Si photonic molecules: Towards compact low-loss/high-Q Si photonic devices,” Solid-State Electron. 155, 144–149 (2019).
[Crossref]

P. F. Jarschel, M. C. M. M. Souza, R. B. Merlo, and N. C. Frateschi, “Loss compensation in microring-based Si photonics devices via Er3+ doped claddings,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

Kadlec, S.

S. Kadlec, J. Musil, and J. Vyskočil, “Modeling of inhomogeneous film deposition and target erosion in reactive sputtering,” J. Vac. Sci. Technol., A 8(3), 1560–1565 (1990).
[Crossref]

Kamino, T.

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

Kang, C. J.

C. J. Kang, J. S. Chun, and W. J. Lee, “Properties of aluminium oxide films prepared by plasma-enhanced metal-organic chemical vapour deposition,” Thin Solid Films 189(1), 161–173 (1990).
[Crossref]

Kärtner, F. X.

Karvonen, L.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Kauppinen, C.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Keck, D. B.

D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22(7), 307–309 (1973).
[Crossref]

Khanna, A.

A. Khanna and D. G. Bhat, “Nanocrystalline gamma alumina coatings by inverted cylindrical magnetron sputtering,” Surf. Coat. Technol. 201(1-2), 168–173 (2006).
[Crossref]

Kik, P. G.

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(4), 48–54 (1998).
[Crossref]

Kim, Y.

W. Koh, S.-J. Ku, and Y. Kim, “Chemical vapor deposition of Al2O3 films using highly volatile single sources,” Thin Solid Films 304(1-2), 222–224 (1997).
[Crossref]

Kip, D.

Kishimoto, K.

X. Zhang, J. Zhu, L. Zhang, K. Kishimoto, S. Du, and X. Yin, “Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature,” Surf. Coat. Technol. 228, S393–S396 (2013).
[Crossref]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 8th ed., vol. 37, no. 11 (John Wiley & Sons, Ltd, 2005).

Kobayashi, N. P.

J. J. Diaz Leon, D. M. Fryauf, J. E. Volk, and N. P. Kobayashi, “Aluminum oxide waveguides for improved transmission in the visible and near-infrared spectrum,” IEEE Photonics Technol. Lett. 31(1), 43–45 (2019).
[Crossref]

Koh, W.

W. Koh, S.-J. Ku, and Y. Kim, “Chemical vapor deposition of Al2O3 films using highly volatile single sources,” Thin Solid Films 304(1-2), 222–224 (1997).
[Crossref]

Kolodziejski, L. A.

Kränkel, C.

Ku, S.-J.

W. Koh, S.-J. Ku, and Y. Kim, “Chemical vapor deposition of Al2O3 films using highly volatile single sources,” Thin Solid Films 304(1-2), 222–224 (1997).
[Crossref]

Kurokawa, Y.

T. Ishizaka, R. Nozaki, and Y. Kurokawa, “Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence,” J. Phys. Chem. Solids 63(4), 613–617 (2002).
[Crossref]

T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1-2), 57–63 (2000).
[Crossref]

Lagoudakis, P. G.

Larsson, T.

S. Berg, H. Blom, T. Larsson, and C. Nender, “Modeling of reactive sputtering of compound materials,” J. Vac. Sci. Technol., A 5, 202–207 (1987).
[Crossref]

Leake, G.

Lee, S.

J. Wang, Y.-H. Yu, S. Lee, and Y.-W. Chung, “Tribological and optical properties of crystalline and amorphous alumina thin films grown by low-temperature reactive magnetron sputter-deposition,” Surf. Coat. Technol. 146-147, 189–194 (2001).
[Crossref]

Lee, W. J.

C. J. Kang, J. S. Chun, and W. J. Lee, “Properties of aluminium oxide films prepared by plasma-enhanced metal-organic chemical vapour deposition,” Thin Solid Films 189(1), 161–173 (1990).
[Crossref]

Lei, P.

P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
[Crossref]

Leroux, X.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

Leroy, W.

P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
[Crossref]

Lewin, R. W.

A. G. Spencer, R. P. Howson, and R. W. Lewin, “Pressure stability in reactive magnetron sputtering,” Thin Solid Films 158(1), 141–149 (1988).
[Crossref]

Leyendecker, T.

R. Cremer, K. Reichert, D. Neuschütz, G. Erkens, and T. Leyendecker, “Sputter deposition of crystalline alumina coatings,” Surf. Coat. Technol. 163-164, 157–163 (2003).
[Crossref]

Li, N.

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
[Crossref]

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26(3), 2220 (2018).
[Crossref]

E. S. Magden, N. Li, P. Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref]

N. Li, P. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708 (2016).
[Crossref]

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 9744U (2016).

Lipsanen, H.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Lohner, T.

M. Serényi, T. Lohner, G. Sáfrán, and J. Szívós, “Comparison in formation, optical properties and applicability of DC magnetron and RF sputtered aluminum oxide films,” Vacuum 128, 213–218 (2016).
[Crossref]

Louringa, S.

N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
[Crossref]

Lugscheider, E.

K. Bobzin, E. Lugscheider, M. Maes, and C. Piñero, “Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering,” Thin Solid Films 494(1-2), 255–262 (2006).
[Crossref]

Luo, F.

X. Tang, F. Luo, F. Ou, W. Zhou, D. Zhu, and Z. Huang, “Effects of negative substrate bias voltage on the structure and properties of aluminum oxide films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci. 259, 448–453 (2012).
[Crossref]

Lytvynov, L. A.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire Material, Manufacturing, Applications (Springer, 2009).

Madsen, N. D.

N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
[Crossref]

Maes, M.

K. Bobzin, E. Lugscheider, M. Maes, and C. Piñero, “Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering,” Thin Solid Films 494(1-2), 255–262 (2006).
[Crossref]

Magden, E. S.

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
[Crossref]

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26(3), 2220 (2018).
[Crossref]

E. S. Magden, N. Li, P. Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref]

N. Li, P. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708 (2016).
[Crossref]

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 9744U (2016).

Magnon, E. S.

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

Mahieu, S.

D. Depla, S. Mahieu, and R. De Gryse, “Magnetron sputter deposition: Linking discharge voltage with target properties,” Thin Solid Films 517(9), 2825–2839 (2009).
[Crossref]

D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101(1), 013301 (2007).
[Crossref]

Malitson, I. H.

Martínez, E.

Maurer, R. D.

D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22(7), 307–309 (1973).
[Crossref]

Mayer, J.

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

Mendes, S. B.

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
[Crossref]

Merlo, R. B.

P. F. Jarschel, M. C. M. M. Souza, R. B. Merlo, and N. C. Frateschi, “Loss compensation in microring-based Si photonics devices via Er3+ doped claddings,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

Michael, J.

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

Mitjans, F.

Mitterer, C.

V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, “Thermal stability of sputtered Al2O3 coatings,” Surf. Coat. Technol. 204(9-10), 1576–1581 (2010).
[Crossref]

Moser, M.

V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, “Thermal stability of sputtered Al2O3 coatings,” Surf. Coat. Technol. 204(9-10), 1576–1581 (2010).
[Crossref]

Mu, J.

J. Mu, M. Dijkstra, and S. M. Garcia-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photonics Technol. Lett. 31(10), 771–774 (2019).
[Crossref]

M. de Goede, L. Chang, J. Mu, M. Dijkstra, R. Obregón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3:Yb3+ integrated microdisk laser label-free biosensor,” Opt. Lett. 44(24), 5937 (2019).
[Crossref]

J. Mu, M. Dijkstra, Y. S. Yong, M. de Goede, L. Chang, and S. M. Garcia Blanco, “Monolithic integration towards double-layer active passive platform,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

C. I. van Emmerik, L. Chang, M. Goede, J. Mu, and S. M. Garcia-Blanco, “Single-layer active-passive Al2O3 photonic integration platform,” Opt. Mater. Express 8(10), 3049–3054 (2018).
[Crossref]

J. Mu, M. de Goede, M. Dijkstra, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 for double-layer integrated photonic chips,” inAdvanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. ITh1I.1.

Musil, J.

S. Kadlec, J. Musil, and J. Vyskočil, “Modeling of inhomogeneous film deposition and target erosion in reactive sputtering,” J. Vac. Sci. Technol., A 8(3), 1560–1565 (1990).
[Crossref]

Nender, C.

S. Berg, H. Blom, T. Larsson, and C. Nender, “Modeling of reactive sputtering of compound materials,” J. Vac. Sci. Technol., A 5, 202–207 (1987).
[Crossref]

Neuschütz, D.

R. Cremer, K. Reichert, D. Neuschütz, G. Erkens, and T. Leyendecker, “Sputter deposition of crystalline alumina coatings,” Surf. Coat. Technol. 163-164, 157–163 (2003).
[Crossref]

Ng, D. K. T.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare – earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref]

Nielsen, L. P.

N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
[Crossref]

Notaros, J.

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
[Crossref]

Nozaki, R.

T. Ishizaka, R. Nozaki, and Y. Kurokawa, “Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence,” J. Phys. Chem. Solids 63(4), 613–617 (2002).
[Crossref]

Nyberg, T.

E. Särhammar, T. Nyberg, and S. Berg, “Applying ‘the upgraded Berg model’ to predict hysteresis free reactive sputtering,” Surf. Coat. Technol. 290, 34–38 (2016).
[Crossref]

S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476(2), 215–230 (2005).
[Crossref]

Obregón, R.

Odaci, C.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Ou, F.

X. Tang, F. Luo, F. Ou, W. Zhou, D. Zhu, and Z. Huang, “Effects of negative substrate bias voltage on the structure and properties of aluminum oxide films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci. 259, 448–453 (2012).
[Crossref]

Özden, A.

M. Demirtaş, A. Özden, E. Açikbaş, and F. Ay, “Extensive mode mapping and novel polarization filter design for ALD grown Al2O3 ridge waveguides,” Opt. Quantum Electron. 48(7), 357 (2016).
[Crossref]

Padilla, L.

Pakarinen, L.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

Pereira, M. B.

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
[Crossref]

Perkgoz, N. K.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Perros, A. P.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Petrich, G. S.

Peyghambarian, N.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Piñero, C.

K. Bobzin, E. Lugscheider, M. Maes, and C. Piñero, “Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering,” Thin Solid Films 494(1-2), 255–262 (2006).
[Crossref]

Pishchik, V.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire Material, Manufacturing, Applications (Springer, 2009).

Pollnau, M.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993 (2014).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3: Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1-2), 119–127 (2010).
[Crossref]

J. D. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703 (2010).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2-3), 311–318 (2007).
[Crossref]

K. Worhoff, F. Ay, and M. Pollnau, “Optimization of low-loss Al2O3 waveguide fabrication for application in active integrated optical devices,” ECS Trans. 3, 17–26 (2006).
[Crossref]

Polman, A.

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(4), 48–54 (1998).
[Crossref]

Poulton, C. V.

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
[Crossref]

Purnawirman, P.

E. S. Magden, N. Li, P. Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref]

N. Li, P. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181 (2017).
[Crossref]

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 9744U (2016).

Z. Su, N. Li, E. S. Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708 (2016).
[Crossref]

E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106 (2014).
[Crossref]

J. D. B. Bradley, E. S. Hosseini, P. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226 (2014).
[Crossref]

Ramón-Azcón, J.

Reichert, K.

R. Cremer, K. Reichert, D. Neuschütz, G. Erkens, and T. Leyendecker, “Sputter deposition of crystalline alumina coatings,” Surf. Coat. Technol. 163-164, 157–163 (2003).
[Crossref]

Roelkens, G.

Rönn, J.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Ruocco, A.

Rüter, C. E.

Safi, I.

I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surf. Coat. Technol. 127(2-3), 203–218 (2000).
[Crossref]

Sáfrán, G.

M. Serényi, T. Lohner, G. Sáfrán, and J. Szívós, “Comparison in formation, optical properties and applicability of DC magnetron and RF sputtered aluminum oxide films,” Vacuum 128, 213–218 (2016).
[Crossref]

Särhammar, E.

E. Särhammar, T. Nyberg, and S. Berg, “Applying ‘the upgraded Berg model’ to predict hysteresis free reactive sputtering,” Surf. Coat. Technol. 290, 34–38 (2016).
[Crossref]

Säynätjoki, A.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Schelfhout, R.

K. Strijckmans, R. Schelfhout, and D. Depla, “Tutorial: Hysteresis during the reactive magnetron sputtering process,” J. Appl. Phys. 124(24), 241101 (2018).
[Crossref]

Schier, V.

W. Engelhart, W. Dreher, O. Eibl, and V. Schier, “Deposition of alumina thin film by dual magnetron sputtering: Is it γ-Al2O3?” Acta Mater. 59(20), 7757–7767 (2011).
[Crossref]

Schultz, P. C.

D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22(7), 307–309 (1973).
[Crossref]

Serényi, M.

M. Serényi, T. Lohner, G. Sáfrán, and J. Szívós, “Comparison in formation, optical properties and applicability of DC magnetron and RF sputtered aluminum oxide films,” Vacuum 128, 213–218 (2016).
[Crossref]

Serna, R.

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
[Crossref]

Sevik, C.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Shtyrkova, K.

Sillassen, M.

M. Sridharan, M. Sillassen, J. Bøttiger, J. Chevallier, and H. Birkedal, “Pulsed DC magnetron sputtered Al2O3 films and their hardness,” Surf. Coat. Technol. 202(4-7), 920–924 (2007).
[Crossref]

Singh, N.

Smit, M. K.

M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
[Crossref]

Snyder, R. L.

R. S. Zhou and R. L. Snyder, “Structures and transformation mechanisms of the η, γ and θ transition aluminas,” Acta Crystallogr., Sect. B: Struct. Sci. 47(5), 617–630 (1991).
[Crossref]

Souza, M. C. M. M.

P. F. Jarschel, M. C. M. M. Souza, R. B. Merlo, and N. C. Frateschi, “Loss compensation in microring-based Si photonics devices via Er3+ doped claddings,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

Spencer, A. G.

A. G. Spencer, R. P. Howson, and R. W. Lewin, “Pressure stability in reactive magnetron sputtering,” Thin Solid Films 158(1), 141–149 (1988).
[Crossref]

Sproul, W. D.

W. D. Sproul, D. J. Christie, and D. C. Carter, “Control of reactive sputtering processes,” Thin Solid Films 491(1-2), 1–17 (2005).
[Crossref]

Sridharan, M.

M. Sridharan, M. Sillassen, J. Bøttiger, J. Chevallier, and H. Birkedal, “Pulsed DC magnetron sputtered Al2O3 films and their hardness,” Surf. Coat. Technol. 202(4-7), 920–924 (2007).
[Crossref]

Stoffer, R.

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. D. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73 (2010).
[Crossref]

Strijckmans, K.

K. Strijckmans, R. Schelfhout, and D. Depla, “Tutorial: Hysteresis during the reactive magnetron sputtering process,” J. Appl. Phys. 124(24), 241101 (2018).
[Crossref]

D. Depla, K. Strijckmans, and R. De Gryse, “The role of the erosion groove during reactive sputter deposition,” Surf. Coat. Technol. 258, 1011–1015 (2014).
[Crossref]

Su, Z.

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
[Crossref]

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26(3), 2220 (2018).
[Crossref]

N. Li, P. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708 (2016).
[Crossref]

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 9744U (2016).

J. D. B. Bradley, E. S. Hosseini, P. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226 (2014).
[Crossref]

Suarez-Garcia, A.

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
[Crossref]

Suárez-García, A.

A. Suárez-García, J. Gonzalo, and C. N. Afonso, “Low-loss Al2O3 waveguides produced by pulsed laser deposition at room temperature,” Appl. Phys. A: Mater. Sci. Process. 77(6), 779–783 (2003).
[Crossref]

Sun, J.

Sun, Z.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Szívós, J.

M. Serényi, T. Lohner, G. Sáfrán, and J. Szívós, “Comparison in formation, optical properties and applicability of DC magnetron and RF sputtered aluminum oxide films,” Vacuum 128, 213–218 (2016).
[Crossref]

Tan, D. T. H.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare – earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref]

Tan, M. C.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare – earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref]

Tang, X.

X. Tang, F. Luo, F. Ou, W. Zhou, D. Zhu, and Z. Huang, “Effects of negative substrate bias voltage on the structure and properties of aluminum oxide films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci. 259, 448–453 (2012).
[Crossref]

Timurdogan, E.

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
[Crossref]

van Dalfsen, K.

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1-2), 119–127 (2010).
[Crossref]

van der Laan, C. J.

M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
[Crossref]

van Emmerik, C. I.

Vázquez-Córdova, S. A.

Vermeulen, D.

Vickridge, I.

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
[Crossref]

Vivien, L.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

Volk, J. E.

J. J. Diaz Leon, D. M. Fryauf, J. E. Volk, and N. P. Kobayashi, “Aluminum oxide waveguides for improved transmission in the visible and near-infrared spectrum,” IEEE Photonics Technol. Lett. 31(1), 43–45 (2019).
[Crossref]

Vyskocil, J.

S. Kadlec, J. Musil, and J. Vyskočil, “Modeling of inhomogeneous film deposition and target erosion in reactive sputtering,” J. Vac. Sci. Technol., A 8(3), 1560–1565 (1990).
[Crossref]

Waeselmann, S. H.

Walter, C.

V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, “Thermal stability of sputtered Al2O3 coatings,” Surf. Coat. Technol. 204(9-10), 1576–1581 (2010).
[Crossref]

Wang, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Wang, J.

J. Wang, Y.-H. Yu, S. Lee, and Y.-W. Chung, “Tribological and optical properties of crystalline and amorphous alumina thin films grown by low-temperature reactive magnetron sputter-deposition,” Surf. Coat. Technol. 146-147, 189–194 (2001).
[Crossref]

Watts, M. R.

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26(3), 2220 (2018).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
[Crossref]

E. S. Magden, N. Li, P. Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref]

N. Li, P. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708 (2016).
[Crossref]

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 9744U (2016).

E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106 (2014).
[Crossref]

J. D. B. Bradley, E. S. Hosseini, P. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226 (2014).
[Crossref]

Webster, N. A.

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
[Crossref]

Wiederkehr, R. S.

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
[Crossref]

Worhoff, K.

K. Worhoff, F. Ay, and M. Pollnau, “Optimization of low-loss Al2O3 waveguide fabrication for application in active integrated optical devices,” ECS Trans. 3, 17–26 (2006).
[Crossref]

Wörhoff, K.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993 (2014).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3: Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1-2), 119–127 (2010).
[Crossref]

J. D. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703 (2010).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2-3), 311–318 (2007).
[Crossref]

Xin, M.

Xing, P.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare – earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref]

Yang, J.

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1-2), 119–127 (2010).
[Crossref]

Yin, X.

X. Zhang, J. Zhu, L. Zhang, K. Kishimoto, S. Du, and X. Yin, “Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature,” Surf. Coat. Technol. 228, S393–S396 (2013).
[Crossref]

Yong, Y. S.

J. Mu, M. Dijkstra, Y. S. Yong, M. de Goede, L. Chang, and S. M. Garcia Blanco, “Monolithic integration towards double-layer active passive platform,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

Yu, C.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Yu, Y.-H.

J. Wang, Y.-H. Yu, S. Lee, and Y.-W. Chung, “Tribological and optical properties of crystalline and amorphous alumina thin films grown by low-temperature reactive magnetron sputter-deposition,” Surf. Coat. Technol. 146-147, 189–194 (2001).
[Crossref]

Zhang, J.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Zhang, L.

X. Zhang, J. Zhu, L. Zhang, K. Kishimoto, S. Du, and X. Yin, “Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature,” Surf. Coat. Technol. 228, S393–S396 (2013).
[Crossref]

Zhang, W.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

Zhang, X.

X. Zhang, J. Zhu, L. Zhang, K. Kishimoto, S. Du, and X. Yin, “Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature,” Surf. Coat. Technol. 228, S393–S396 (2013).
[Crossref]

Zhao, X.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare – earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref]

Zhou, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Zhou, R. S.

R. S. Zhou and R. L. Snyder, “Structures and transformation mechanisms of the η, γ and θ transition aluminas,” Acta Crystallogr., Sect. B: Struct. Sci. 47(5), 617–630 (1991).
[Crossref]

Zhou, W.

X. Tang, F. Luo, F. Ou, W. Zhou, D. Zhu, and Z. Huang, “Effects of negative substrate bias voltage on the structure and properties of aluminum oxide films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci. 259, 448–453 (2012).
[Crossref]

Zhu, D.

X. Tang, F. Luo, F. Ou, W. Zhou, D. Zhu, and Z. Huang, “Effects of negative substrate bias voltage on the structure and properties of aluminum oxide films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci. 259, 448–453 (2012).
[Crossref]

Zhu, J.

P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
[Crossref]

X. Zhang, J. Zhu, L. Zhang, K. Kishimoto, S. Du, and X. Yin, “Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature,” Surf. Coat. Technol. 228, S393–S396 (2013).
[Crossref]

ACS Photonics (1)

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Acta Crystallogr., Sect. B: Struct. Sci. (1)

R. S. Zhou and R. L. Snyder, “Structures and transformation mechanisms of the η, γ and θ transition aluminas,” Acta Crystallogr., Sect. B: Struct. Sci. 47(5), 617–630 (1991).
[Crossref]

Acta Mater. (1)

W. Engelhart, W. Dreher, O. Eibl, and V. Schier, “Deposition of alumina thin film by dual magnetron sputtering: Is it γ-Al2O3?” Acta Mater. 59(20), 7757–7767 (2011).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

A. Suárez-García, J. Gonzalo, and C. N. Afonso, “Low-loss Al2O3 waveguides produced by pulsed laser deposition at room temperature,” Appl. Phys. A: Mater. Sci. Process. 77(6), 779–783 (2003).
[Crossref]

Appl. Phys. B (2)

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1-2), 119–127 (2010).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2-3), 311–318 (2007).
[Crossref]

Appl. Phys. Lett. (1)

D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22(7), 307–309 (1973).
[Crossref]

Appl. Surf. Sci. (1)

X. Tang, F. Luo, F. Ou, W. Zhou, D. Zhu, and Z. Huang, “Effects of negative substrate bias voltage on the structure and properties of aluminum oxide films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci. 259, 448–453 (2012).
[Crossref]

Comprehensive Materials Processing (1)

G. Bräuer, “Magnetron Sputtering,” Comprehensive Materials Processing 4, 57–73 (2014).
[Crossref]

ECS Trans. (1)

K. Worhoff, F. Ay, and M. Pollnau, “Optimization of low-loss Al2O3 waveguide fabrication for application in active integrated optical devices,” ECS Trans. 3, 17–26 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

J. Mu, M. Dijkstra, Y. S. Yong, M. de Goede, L. Chang, and S. M. Garcia Blanco, “Monolithic integration towards double-layer active passive platform,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

IEEE Photonics J. (1)

P. F. Jarschel, M. C. M. M. Souza, R. B. Merlo, and N. C. Frateschi, “Loss compensation in microring-based Si photonics devices via Er3+ doped claddings,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. J. Diaz Leon, D. M. Fryauf, J. E. Volk, and N. P. Kobayashi, “Aluminum oxide waveguides for improved transmission in the visible and near-infrared spectrum,” IEEE Photonics Technol. Lett. 31(1), 43–45 (2019).
[Crossref]

J. Mu, M. Dijkstra, and S. M. Garcia-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photonics Technol. Lett. 31(10), 771–774 (2019).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. Appl. Phys. (3)

D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101(1), 013301 (2007).
[Crossref]

K. Strijckmans, R. Schelfhout, and D. Depla, “Tutorial: Hysteresis during the reactive magnetron sputtering process,” J. Appl. Phys. 124(24), 241101 (2018).
[Crossref]

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, “Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations,” J. Appl. Phys. 90(10), 5120–5125 (2001).
[Crossref]

J. Lightwave Tech. (1)

J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magnon, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, and M. R. Watts, “CMOS-Compatible Optical Phased Array Powered by a Monolithically-Integrated Erbium Laser,” J. Lightwave Tech. 37, 5982–5987 (2019).
[Crossref]

J. Lumin. (2)

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1-2), 57–63 (2000).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3: Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

J. Phys. Chem. Solids (1)

T. Ishizaka, R. Nozaki, and Y. Kurokawa, “Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence,” J. Phys. Chem. Solids 63(4), 613–617 (2002).
[Crossref]

J. Vac. Sci. Technol., A (2)

S. Berg, H. Blom, T. Larsson, and C. Nender, “Modeling of reactive sputtering of compound materials,” J. Vac. Sci. Technol., A 5, 202–207 (1987).
[Crossref]

S. Kadlec, J. Musil, and J. Vyskočil, “Modeling of inhomogeneous film deposition and target erosion in reactive sputtering,” J. Vac. Sci. Technol., A 8(3), 1560–1565 (1990).
[Crossref]

MRS Bull. (2)

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(4), 48–54 (1998).
[Crossref]

Nat. Commun. (1)

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10(1), 432 (2019).
[Crossref]

Opt. Express (8)

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703 (2010).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993 (2014).
[Crossref]

E. S. Magden, N. Li, P. Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref]

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26(3), 2220 (2018).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200 (2018).
[Crossref]

M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22(9), 10655 (2014).
[Crossref]

J. D. B. Bradley, E. S. Hosseini, P. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226 (2014).
[Crossref]

M. de Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Opt. Express 27(13), 18508 (2019).
[Crossref]

Opt. Lett. (6)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

M. Demirtaş, A. Özden, E. Açikbaş, and F. Ay, “Extensive mode mapping and novel polarization filter design for ALD grown Al2O3 ridge waveguides,” Opt. Quantum Electron. 48(7), 357 (2016).
[Crossref]

Proc. SPIE (1)

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 9744U (2016).

Sci. Rep. (1)

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare – earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref]

Solid-State Electron. (1)

P. F. Jarschel and N. C. Frateschi, “Resonant amplification via Er-doped clad Si photonic molecules: Towards compact low-loss/high-Q Si photonic devices,” Solid-State Electron. 155, 144–149 (2019).
[Crossref]

Surf. Coat. Technol. (11)

R. Cremer, K. Reichert, D. Neuschütz, G. Erkens, and T. Leyendecker, “Sputter deposition of crystalline alumina coatings,” Surf. Coat. Technol. 163-164, 157–163 (2003).
[Crossref]

M. Sridharan, M. Sillassen, J. Bøttiger, J. Chevallier, and H. Birkedal, “Pulsed DC magnetron sputtered Al2O3 films and their hardness,” Surf. Coat. Technol. 202(4-7), 920–924 (2007).
[Crossref]

J. Wang, Y.-H. Yu, S. Lee, and Y.-W. Chung, “Tribological and optical properties of crystalline and amorphous alumina thin films grown by low-temperature reactive magnetron sputter-deposition,” Surf. Coat. Technol. 146-147, 189–194 (2001).
[Crossref]

A. Khanna and D. G. Bhat, “Nanocrystalline gamma alumina coatings by inverted cylindrical magnetron sputtering,” Surf. Coat. Technol. 201(1-2), 168–173 (2006).
[Crossref]

N. D. Madsen, B. H. Christensen, S. Louringa, A. N. Berthelsen, K. P. Almtoft, L. P. Nielsen, and J. Bøttiger, “Controlling the deposition rate during target erosion in reactive pulsed DC magnetron sputter deposition of alumina,” Surf. Coat. Technol. 206(23), 4850–4854 (2012).
[Crossref]

P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, and D. Depla, “Study on reactive sputtering of yttrium oxide: Process and thin film properties,” Surf. Coat. Technol. 276, 39–46 (2015).
[Crossref]

I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surf. Coat. Technol. 127(2-3), 203–218 (2000).
[Crossref]

V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, “Thermal stability of sputtered Al2O3 coatings,” Surf. Coat. Technol. 204(9-10), 1576–1581 (2010).
[Crossref]

X. Zhang, J. Zhu, L. Zhang, K. Kishimoto, S. Du, and X. Yin, “Crystallization of alumina films deposited by reactive magnetron sputtering with resputtering technique at low temperature,” Surf. Coat. Technol. 228, S393–S396 (2013).
[Crossref]

E. Särhammar, T. Nyberg, and S. Berg, “Applying ‘the upgraded Berg model’ to predict hysteresis free reactive sputtering,” Surf. Coat. Technol. 290, 34–38 (2016).
[Crossref]

D. Depla, K. Strijckmans, and R. De Gryse, “The role of the erosion groove during reactive sputter deposition,” Surf. Coat. Technol. 258, 1011–1015 (2014).
[Crossref]

Thin Solid Films (9)

A. G. Spencer, R. P. Howson, and R. W. Lewin, “Pressure stability in reactive magnetron sputtering,” Thin Solid Films 158(1), 141–149 (1988).
[Crossref]

S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476(2), 215–230 (2005).
[Crossref]

D. Depla, S. Mahieu, and R. De Gryse, “Magnetron sputter deposition: Linking discharge voltage with target properties,” Thin Solid Films 517(9), 2825–2839 (2009).
[Crossref]

W. D. Sproul, D. J. Christie, and D. C. Carter, “Control of reactive sputtering processes,” Thin Solid Films 491(1-2), 1–17 (2005).
[Crossref]

C. J. Kang, J. S. Chun, and W. J. Lee, “Properties of aluminium oxide films prepared by plasma-enhanced metal-organic chemical vapour deposition,” Thin Solid Films 189(1), 161–173 (1990).
[Crossref]

K. Bobzin, E. Lugscheider, M. Maes, and C. Piñero, “Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering,” Thin Solid Films 494(1-2), 255–262 (2006).
[Crossref]

M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
[Crossref]

W. Koh, S.-J. Ku, and Y. Kim, “Chemical vapor deposition of Al2O3 films using highly volatile single sources,” Thin Solid Films 304(1-2), 222–224 (1997).
[Crossref]

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition,” Thin Solid Films 518(17), 4935–4940 (2010).
[Crossref]

Vacuum (1)

M. Serényi, T. Lohner, G. Sáfrán, and J. Szívós, “Comparison in formation, optical properties and applicability of DC magnetron and RF sputtered aluminum oxide films,” Vacuum 128, 213–218 (2016).
[Crossref]

Other (5)

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire Material, Manufacturing, Applications (Springer, 2009).

C. Kittel, Introduction to Solid State Physics, 8th ed., vol. 37, no. 11 (John Wiley & Sons, Ltd, 2005).

P. J. Goodhew and J. Humphreys, Electron Microscopy and Analysis, 3 edit. Taylor & Francis (2001).

R. F. Egerton, Physical Principles of Electron Microscopy (Springer US, 2006).

J. Mu, M. de Goede, M. Dijkstra, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 for double-layer integrated photonic chips,” inAdvanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. ITh1I.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the AJA ATC 15000 RF reactive co-sputtering system [15].
Fig. 2.
Fig. 2. Examples of the different qualitatively determined classes of guiding. (a) Guiding; (b) On the edge between guiding and lossy guiding; (c) Lossy guiding.
Fig. 3.
Fig. 3. (a) Bias voltage as function of oxygen flow in the chamber. Three regions are indicated: metallic, transition and oxidized. No hysteresis effect is observed; (b) Partial pressure of oxygen as function of the oxygen flow.
Fig. 4.
Fig. 4. (a) Bias voltage curve (Vbias as a function of O2 flow) for different moments along the lifetime of the sputtering target (i.e., 42 h, 70 h and 99 h). The sputtering time is net number of hours of sputtering. Vm and Vox are indicated; (b) Evolution of Vm, and Vox over the lifetime of the target.
Fig. 5.
Fig. 5. (a) Relative oxidation state of the target, ηox, as function of oxygen flow; (b) Evolution of the corresponding O2 flow to achieve a ηox of 5, 50 and 95% as function of lifetime of the target.
Fig. 6.
Fig. 6. (a) Section of the bias voltage curve as function of oxygen flow; (b) Relative oxidation state of the target as function of oxygen flow. In both graphs deposition parameters with their optical guiding properties are indicated.
Fig. 7.
Fig. 7. Refractive index (measured at a wavelength of 632.8 nm using a prism coupler setup) as function of the target oxidation state (error margin of refractive index is 0.001) for undoped Al2O3 layers.
Fig. 8.
Fig. 8. TEM images and corresponding FFTs (fast Fourier transforms) of: (a) A polycrystalline Al2O3 layer with optical guiding (Sample 1 in Table 2); (b) A polycrystalline Al2O3 layer without optical guiding (Sample 2 of Table 2).
Fig. 9.
Fig. 9. XRD measurement of two Al2O3 layers made with different oxygen concentrations resulting in (a) a guiding layer with n = 1.670 (yellow) and (b) non-guiding layer with n = 1.718 (blue) at 632.8 nm. The blue curve has been shifted 100 counts upwards.

Tables (2)

Tables Icon

Table 1. Settings for the deposition of optical guiding Al2O3 layers

Tables Icon

Table 2. Characteristics of undoped Al2O3 layers used for TEM and XRD

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q t o t = Q t + Q c + Q p
η o x V m V O 2 V m V o x

Metrics