Abstract

Third-order nonlinear optical properties of Ge10AsxTe90-x chalcogenide glasses were investigated utilizing the Z-scan method at the mid-infrared wavelengths of 2.5 and 3.0 µm. The compositional dependence of the third-order nonlinearity was analyzed, and their correlation with the refractive index and the optical bandgap was discussed. The results show that nonlinear refractive index n2 can be significantly enhanced by the addition of tellurium, and larger n2 values are observed at 3.0 µm rather than 2.5 µm due to the two-photon resonance effect, and the maximum of n2 is 4.96 × 10−13 cm2/W at the composition of Ge10As20Te70. In addition, the experimental results are in good agreement with the semi-empirical Miller’s rule whilst the variation of dispersive n2 values are in relatively good coincidence with the theoretical model by Sheik-Bahae et.al. for direct bandgap semiconductors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Spinger, 2007)
  2. V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
    [Crossref]
  3. F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
    [Crossref]
  4. J. S. Sanghera and I. D. Aggarwal, “Active and Passive Chalcogenide Glass Optical Fibers for IR Applications: A Review,” J. Non-Cryst. Solids 256-257(16), 6–16 (1999).
    [Crossref]
  5. C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  6. X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
    [Crossref]
  7. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Lutherdavies, “1.8-10  µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [Crossref]
  8. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
    [Crossref]
  9. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
    [Crossref]
  10. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, “Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching,” Opt. Lett. 29(3), 265–267 (2004).
    [Crossref]
  11. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [Crossref]
  12. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [Crossref]
  13. S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23(2), 1300–1307 (2015).
    [Crossref]
  14. M. Olivier, J. C. Tchahame, P. Němec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, and E. Baudet, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525 (2014).
    [Crossref]
  15. T. Halencovic, J. Gutwirth, T. Kuriakose, M. Bouska, and V. Nazabal, “Linear and nonlinear optical properties of co-sputtered Ge-Sb-Se amorphous thin films,” Opt. Lett. 45(6), 1523–1526 (2020).
    [Crossref]
  16. K. Tanaka and K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, 2011)
  17. R. P. Wang, Amorphous Chalcogenides : Advances and Applications (Pan Stanford Publishing, 2014)
  18. P. Sharma and S. C. Katyal, “Effect of deposition parameters on the optical energy gap and refractive index of a-Ge–Se–Te thin films,” Philos. Mag. 88(17), 2549–2557 (2008).
    [Crossref]
  19. J. Akola and R. O. Jones, “Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe,” Phys. Rev. B 76(23), 235201 (2007).
    [Crossref]
  20. J. A. Savage, “Glass forming region and DTA survey in the Ge-As-te memory switching glass system,” J. Mater. Sci. 6(7), 964–968 (1971).
    [Crossref]
  21. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Publishers, 2000)
  22. M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  23. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
    [Crossref]
  24. B. Gu, J. Wang, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “Z-scan theory for material with two- and three-photon absorption,” Opt. Express 13(23), 9230–9234 (2005).
    [Crossref]
  25. P. Hawlová, F. Verger, V. Nazabal, R. Boidin, and P. Němec, “Accurate Determination of Optical Functions of Ge-As-Te Glasses via Spectroscopic Ellipsometry,” J. Am. Ceram. Soc. 97(10), 3044–3047 (2014).
    [Crossref]
  26. J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10(8), 569–585 (1972).
    [Crossref]
  27. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
    [Crossref]
  28. N. Sharma, S. Sharda, S. C. Katyal, V. Sharma, and P. Sharma, “Effect of Te on linear and non-linear optical properties of new quaternary Ge-Se-Sb-Te chalcogenide glasses,” Electron. Mater. Lett. 10(1), 101–106 (2014).
    [Crossref]
  29. M. Kastner, “Bonding Bands, Lone-Pair Bands, and Impurity States in Chalcogenide Semiconductors,” Phys. Rev. Lett. 28(6), 355–357 (1972).
    [Crossref]
  30. R. Holomb, V. Mitsa, S. Akyuz, and E. Akalin, “New ring-like models and ab initio DFT study of the medium-range structures, energy and electronic properties of GeSe2 glass,” Philos. Mag. 93(19), 2549–2562 (2013).
    [Crossref]
  31. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
    [Crossref]
  32. S. Sen, E. L. Gjersing, and B. G. and Aitken, “Physical properties of GexAs2xTe100 − 3x glasses and Raman spectroscopic analysis of their short-range structure,” J. Non-Cryst. Solids 356(41-42), 2083–2088 (2010).
    [Crossref]
  33. K. Sútorová, P. Hawlová, L. Prokes, P. Němec, R. Boidin, and J. Havel, “Laser desorption ionization time-of-flight mass spectrometry of Ge-As-Te chalcogenides,” Rapid Commun. Mass Spectrom. 29(5), 408–414 (2015).
    [Crossref]
  34. H. Pan, Z. Yang, Y. Chen, R. Wang, and X. Shen, “X-ray photoelectron spectra of Ge-As-Te glasses,” AIP Adv. 8(7), 075208 (2018).
    [Crossref]
  35. R. W. Boyd, Nonlinear Optics, second Edition (Academic Press Inc., 2003)
  36. M. Sheik Bahae, D. J. Hagan andE, and W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
    [Crossref]
  37. M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39(11), 1498–1503 (2003).
    [Crossref]

2020 (1)

2018 (1)

H. Pan, Z. Yang, Y. Chen, R. Wang, and X. Shen, “X-ray photoelectron spectra of Ge-As-Te glasses,” AIP Adv. 8(7), 075208 (2018).
[Crossref]

2015 (3)

2014 (6)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

M. Olivier, J. C. Tchahame, P. Němec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, and E. Baudet, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525 (2014).
[Crossref]

P. Hawlová, F. Verger, V. Nazabal, R. Boidin, and P. Němec, “Accurate Determination of Optical Functions of Ge-As-Te Glasses via Spectroscopic Ellipsometry,” J. Am. Ceram. Soc. 97(10), 3044–3047 (2014).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

N. Sharma, S. Sharda, S. C. Katyal, V. Sharma, and P. Sharma, “Effect of Te on linear and non-linear optical properties of new quaternary Ge-Se-Sb-Te chalcogenide glasses,” Electron. Mater. Lett. 10(1), 101–106 (2014).
[Crossref]

2013 (1)

R. Holomb, V. Mitsa, S. Akyuz, and E. Akalin, “New ring-like models and ab initio DFT study of the medium-range structures, energy and electronic properties of GeSe2 glass,” Philos. Mag. 93(19), 2549–2562 (2013).
[Crossref]

2012 (1)

2010 (1)

S. Sen, E. L. Gjersing, and B. G. and Aitken, “Physical properties of GexAs2xTe100 − 3x glasses and Raman spectroscopic analysis of their short-range structure,” J. Non-Cryst. Solids 356(41-42), 2083–2088 (2010).
[Crossref]

2009 (1)

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
[Crossref]

2008 (2)

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[Crossref]

P. Sharma and S. C. Katyal, “Effect of deposition parameters on the optical energy gap and refractive index of a-Ge–Se–Te thin films,” Philos. Mag. 88(17), 2549–2557 (2008).
[Crossref]

2007 (2)

2005 (1)

2004 (1)

2003 (1)

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39(11), 1498–1503 (2003).
[Crossref]

2002 (2)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref]

2000 (2)

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and Passive Chalcogenide Glass Optical Fibers for IR Applications: A Review,” J. Non-Cryst. Solids 256-257(16), 6–16 (1999).
[Crossref]

1990 (2)

M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Sheik Bahae, D. J. Hagan andE, and W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

1972 (2)

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10(8), 569–585 (1972).
[Crossref]

M. Kastner, “Bonding Bands, Lone-Pair Bands, and Impurity States in Chalcogenide Semiconductors,” Phys. Rev. Lett. 28(6), 355–357 (1972).
[Crossref]

1971 (1)

J. A. Savage, “Glass forming region and DTA survey in the Ge-As-te memory switching glass system,” J. Mater. Sci. 6(7), 964–968 (1971).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Adam, J.-L.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
[Crossref]

Aggarwal, I. D.

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Akalin, E.

R. Holomb, V. Mitsa, S. Akyuz, and E. Akalin, “New ring-like models and ab initio DFT study of the medium-range structures, energy and electronic properties of GeSe2 glass,” Philos. Mag. 93(19), 2549–2562 (2013).
[Crossref]

Akola, J.

J. Akola and R. O. Jones, “Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe,” Phys. Rev. B 76(23), 235201 (2007).
[Crossref]

Akyuz, S.

R. Holomb, V. Mitsa, S. Akyuz, and E. Akalin, “New ring-like models and ab initio DFT study of the medium-range structures, energy and electronic properties of GeSe2 glass,” Philos. Mag. 93(19), 2549–2562 (2013).
[Crossref]

and Aitken, B. G.

S. Sen, E. L. Gjersing, and B. G. and Aitken, “Physical properties of GexAs2xTe100 − 3x glasses and Raman spectroscopic analysis of their short-range structure,” J. Non-Cryst. Solids 356(41-42), 2083–2088 (2010).
[Crossref]

Baker, N. J.

Bang, O.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Baudet, E.

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Besse, V.

Boidin, R.

K. Sútorová, P. Hawlová, L. Prokes, P. Němec, R. Boidin, and J. Havel, “Laser desorption ionization time-of-flight mass spectrometry of Ge-As-Te chalcogenides,” Rapid Commun. Mass Spectrom. 29(5), 408–414 (2015).
[Crossref]

P. Hawlová, F. Verger, V. Nazabal, R. Boidin, and P. Němec, “Accurate Determination of Optical Functions of Ge-As-Te Glasses via Spectroscopic Ellipsometry,” J. Am. Ceram. Soc. 97(10), 3044–3047 (2014).
[Crossref]

M. Olivier, J. C. Tchahame, P. Němec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, and E. Baudet, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525 (2014).
[Crossref]

Boudebs, G.

Bouska, M.

Boussard-Plédel, C.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, second Edition (Academic Press Inc., 2003)

Bureau, B.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
[Crossref]

Cassagne, C.

Charpentier, F.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
[Crossref]

Chauvet, M.

Chen, F.

Chen, J.

Chen, Y.

H. Pan, Z. Yang, Y. Chen, R. Wang, and X. Shen, “X-ray photoelectron spectra of Ge-As-Te glasses,” AIP Adv. 8(7), 075208 (2018).
[Crossref]

Cheong, S. W.

Choi, D. Y.

Choi, D.-Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
[Crossref]

Dai, S.

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Ding, J. P.

Dinu, M.

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39(11), 1498–1503 (2003).
[Crossref]

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Eggleton, B. J.

Elliott, S. R.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Spinger, 2007)

Fan, Y. X.

Finsterbusch, K.

Fu, L. B.

Furniss, D.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

Gjersing, E. L.

S. Sen, E. L. Gjersing, and B. G. and Aitken, “Physical properties of GexAs2xTe100 − 3x glasses and Raman spectroscopic analysis of their short-range structure,” J. Non-Cryst. Solids 356(41-42), 2083–2088 (2010).
[Crossref]

Gu, B.

Guo, W.

Gutwirth, J.

Hagan, D. J.

M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hagan andE, D. J.

M. Sheik Bahae, D. J. Hagan andE, and W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

Halencovic, T.

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref]

Havel, J.

K. Sútorová, P. Hawlová, L. Prokes, P. Němec, R. Boidin, and J. Havel, “Laser desorption ionization time-of-flight mass spectrometry of Ge-As-Te chalcogenides,” Rapid Commun. Mass Spectrom. 29(5), 408–414 (2015).
[Crossref]

Hawlová, P.

K. Sútorová, P. Hawlová, L. Prokes, P. Němec, R. Boidin, and J. Havel, “Laser desorption ionization time-of-flight mass spectrometry of Ge-As-Te chalcogenides,” Rapid Commun. Mass Spectrom. 29(5), 408–414 (2015).
[Crossref]

P. Hawlová, F. Verger, V. Nazabal, R. Boidin, and P. Němec, “Accurate Determination of Optical Functions of Ge-As-Te Glasses via Spectroscopic Ellipsometry,” J. Am. Ceram. Soc. 97(10), 3044–3047 (2014).
[Crossref]

Holomb, R.

R. Holomb, V. Mitsa, S. Akyuz, and E. Akalin, “New ring-like models and ab initio DFT study of the medium-range structures, energy and electronic properties of GeSe2 glass,” Philos. Mag. 93(19), 2549–2562 (2013).
[Crossref]

Hwang, H. Y.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Ji, W.

S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23(2), 1300–1307 (2015).
[Crossref]

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Jones, R. O.

J. Akola and R. O. Jones, “Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe,” Phys. Rev. B 76(23), 235201 (2007).
[Crossref]

Kastner, M.

M. Kastner, “Bonding Bands, Lone-Pair Bands, and Impurity States in Chalcogenide Semiconductors,” Phys. Rev. Lett. 28(6), 355–357 (1972).
[Crossref]

Katsufuji, T.

Katyal, S. C.

N. Sharma, S. Sharda, S. C. Katyal, V. Sharma, and P. Sharma, “Effect of Te on linear and non-linear optical properties of new quaternary Ge-Se-Sb-Te chalcogenide glasses,” Electron. Mater. Lett. 10(1), 101–106 (2014).
[Crossref]

P. Sharma and S. C. Katyal, “Effect of deposition parameters on the optical energy gap and refractive index of a-Ge–Se–Te thin films,” Philos. Mag. 88(17), 2549–2557 (2008).
[Crossref]

Kitao, M.

Kubat, I.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kuriakose, T.

Lamont, M. R. E.

Lenz, G.

Li, H. P.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Lines, M. E.

Lutherdavies, B.

Luther-Davies, B.

Ma, P.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Madden, S.

Madden, S. J.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Maeda, S.

Menth, A.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10(8), 569–585 (1972).
[Crossref]

Minakata, M.

Mitsa, V.

R. Holomb, V. Mitsa, S. Akyuz, and E. Akalin, “New ring-like models and ab initio DFT study of the medium-range structures, energy and electronic properties of GeSe2 glass,” Philos. Mag. 93(19), 2549–2562 (2013).
[Crossref]

Moller, U.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moss, D. J.

Nazabal, V.

T. Halencovic, J. Gutwirth, T. Kuriakose, M. Bouska, and V. Nazabal, “Linear and nonlinear optical properties of co-sputtered Ge-Sb-Se amorphous thin films,” Opt. Lett. 45(6), 1523–1526 (2020).
[Crossref]

P. Hawlová, F. Verger, V. Nazabal, R. Boidin, and P. Němec, “Accurate Determination of Optical Functions of Ge-As-Te Glasses via Spectroscopic Ellipsometry,” J. Am. Ceram. Soc. 97(10), 3044–3047 (2014).
[Crossref]

Nemec, P.

K. Sútorová, P. Hawlová, L. Prokes, P. Němec, R. Boidin, and J. Havel, “Laser desorption ionization time-of-flight mass spectrometry of Ge-As-Te chalcogenides,” Rapid Commun. Mass Spectrom. 29(5), 408–414 (2015).
[Crossref]

P. Hawlová, F. Verger, V. Nazabal, R. Boidin, and P. Němec, “Accurate Determination of Optical Functions of Ge-As-Te Glasses via Spectroscopic Ellipsometry,” J. Am. Ceram. Soc. 97(10), 3044–3047 (2014).
[Crossref]

M. Olivier, J. C. Tchahame, P. Němec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, and E. Baudet, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525 (2014).
[Crossref]

Nguyen, H. C.

Nguyen, V. Q.

Ogusu, K.

Olivier, M.

Pan, H.

H. Pan, Z. Yang, Y. Chen, R. Wang, and X. Shen, “X-ray photoelectron spectra of Ge-As-Te glasses,” AIP Adv. 8(7), 075208 (2018).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Pierrès, K. M.-L.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
[Crossref]

Popescu, M. A.

M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Publishers, 2000)

Prasad, A.

Prokes, L.

K. Sútorová, P. Hawlová, L. Prokes, P. Němec, R. Boidin, and J. Havel, “Laser desorption ionization time-of-flight mass spectrometry of Ge-As-Te chalcogenides,” Rapid Commun. Mass Spectrom. 29(5), 408–414 (2015).
[Crossref]

Qi, S.

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Renversez, G.

Said, A. A.

M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sanghera, J. S.

Savage, J. A.

J. A. Savage, “Glass forming region and DTA survey in the Ge-As-te memory switching glass system,” J. Mater. Sci. 6(7), 964–968 (1971).
[Crossref]

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sen, S.

S. Sen, E. L. Gjersing, and B. G. and Aitken, “Physical properties of GexAs2xTe100 − 3x glasses and Raman spectroscopic analysis of their short-range structure,” J. Non-Cryst. Solids 356(41-42), 2083–2088 (2010).
[Crossref]

Sharda, S.

N. Sharma, S. Sharda, S. C. Katyal, V. Sharma, and P. Sharma, “Effect of Te on linear and non-linear optical properties of new quaternary Ge-Se-Sb-Te chalcogenide glasses,” Electron. Mater. Lett. 10(1), 101–106 (2014).
[Crossref]

Sharma, N.

N. Sharma, S. Sharda, S. C. Katyal, V. Sharma, and P. Sharma, “Effect of Te on linear and non-linear optical properties of new quaternary Ge-Se-Sb-Te chalcogenide glasses,” Electron. Mater. Lett. 10(1), 101–106 (2014).
[Crossref]

Sharma, P.

N. Sharma, S. Sharda, S. C. Katyal, V. Sharma, and P. Sharma, “Effect of Te on linear and non-linear optical properties of new quaternary Ge-Se-Sb-Te chalcogenide glasses,” Electron. Mater. Lett. 10(1), 101–106 (2014).
[Crossref]

P. Sharma and S. C. Katyal, “Effect of deposition parameters on the optical energy gap and refractive index of a-Ge–Se–Te thin films,” Philos. Mag. 88(17), 2549–2557 (2008).
[Crossref]

Sharma, V.

N. Sharma, S. Sharda, S. C. Katyal, V. Sharma, and P. Sharma, “Effect of Te on linear and non-linear optical properties of new quaternary Ge-Se-Sb-Te chalcogenide glasses,” Electron. Mater. Lett. 10(1), 101–106 (2014).
[Crossref]

Shaw, L. B.

Sheik Bahae, M.

M. Sheik Bahae, D. J. Hagan andE, and W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, X.

Shimakawa, K.

K. Tanaka and K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, 2011)

Slusher, R. E.

Smektala, F.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
[Crossref]

Smith, A.

Spalter, S.

Sujecki, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sútorová, K.

K. Sútorová, P. Hawlová, L. Prokes, P. Němec, R. Boidin, and J. Havel, “Laser desorption ionization time-of-flight mass spectrometry of Ge-As-Te chalcogenides,” Rapid Commun. Mass Spectrom. 29(5), 408–414 (2015).
[Crossref]

Ta’eed, V. G.

Tanaka, K.

K. Tanaka and K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, 2011)

Tang, S. H.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Tang, Z.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tauc, J.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10(8), 569–585 (1972).
[Crossref]

Tchahame, J. C.

Troles, J.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
[Crossref]

Van Stryland, E. W.

M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Van Stryland, W.

M. Sheik Bahae, D. J. Hagan andE, and W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

Verger, F.

P. Hawlová, F. Verger, V. Nazabal, R. Boidin, and P. Němec, “Accurate Determination of Optical Functions of Ge-As-Te Glasses via Spectroscopic Ellipsometry,” J. Am. Ceram. Soc. 97(10), 3044–3047 (2014).
[Crossref]

Wang, H. T.

Wang, J.

Wang, R.

Wang, R. P.

R. P. Wang, Amorphous Chalcogenides : Advances and Applications (Pan Stanford Publishing, 2014)

Wang, R.-P.

Wang, T.

Wei, T. H.

M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wei, W.

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Xu, T.

Xu, Y.

Xu, Z.

Yamasaki, J.

Yang, Z.

Yin, M.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Yu, Y.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Lutherdavies, “1.8-10  µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Spinger, 2007)

Zha, C.-J.

Zhai, C.

Zhang, B.

Zhou, B.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zimmermann, J.

AIP Adv. (1)

H. Pan, Z. Yang, Y. Chen, R. Wang, and X. Shen, “X-ray photoelectron spectra of Ge-As-Te glasses,” AIP Adv. 8(7), 075208 (2018).
[Crossref]

Appl. Phys. B (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Electron. Mater. Lett. (1)

N. Sharma, S. Sharda, S. C. Katyal, V. Sharma, and P. Sharma, “Effect of Te on linear and non-linear optical properties of new quaternary Ge-Se-Sb-Te chalcogenide glasses,” Electron. Mater. Lett. 10(1), 101–106 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39(11), 1498–1503 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

J. Am. Ceram. Soc. (1)

P. Hawlová, F. Verger, V. Nazabal, R. Boidin, and P. Němec, “Accurate Determination of Optical Functions of Ge-As-Te Glasses via Spectroscopic Ellipsometry,” J. Am. Ceram. Soc. 97(10), 3044–3047 (2014).
[Crossref]

J. Mater. Sci. (1)

J. A. Savage, “Glass forming region and DTA survey in the Ge-As-te memory switching glass system,” J. Mater. Sci. 6(7), 964–968 (1971).
[Crossref]

J. Non-Cryst. Solids (3)

J. S. Sanghera and I. D. Aggarwal, “Active and Passive Chalcogenide Glass Optical Fibers for IR Applications: A Review,” J. Non-Cryst. Solids 256-257(16), 6–16 (1999).
[Crossref]

S. Sen, E. L. Gjersing, and B. G. and Aitken, “Physical properties of GexAs2xTe100 − 3x glasses and Raman spectroscopic analysis of their short-range structure,” J. Non-Cryst. Solids 356(41-42), 2083–2088 (2010).
[Crossref]

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10(8), 569–585 (1972).
[Crossref]

Laser Photonics Rev. (1)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Opt. Mater. (1)

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31(3), 496–500 (2009).
[Crossref]

Opt. Mater. Express (2)

Philos. Mag. (2)

R. Holomb, V. Mitsa, S. Akyuz, and E. Akalin, “New ring-like models and ab initio DFT study of the medium-range structures, energy and electronic properties of GeSe2 glass,” Philos. Mag. 93(19), 2549–2562 (2013).
[Crossref]

P. Sharma and S. C. Katyal, “Effect of deposition parameters on the optical energy gap and refractive index of a-Ge–Se–Te thin films,” Philos. Mag. 88(17), 2549–2557 (2008).
[Crossref]

Phys. Rev. B (1)

J. Akola and R. O. Jones, “Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe,” Phys. Rev. B 76(23), 235201 (2007).
[Crossref]

Phys. Rev. Lett. (2)

M. Kastner, “Bonding Bands, Lone-Pair Bands, and Impurity States in Chalcogenide Semiconductors,” Phys. Rev. Lett. 28(6), 355–357 (1972).
[Crossref]

M. Sheik Bahae, D. J. Hagan andE, and W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref]

Rapid Commun. Mass Spectrom. (1)

K. Sútorová, P. Hawlová, L. Prokes, P. Němec, R. Boidin, and J. Havel, “Laser desorption ionization time-of-flight mass spectrometry of Ge-As-Te chalcogenides,” Rapid Commun. Mass Spectrom. 29(5), 408–414 (2015).
[Crossref]

Other (5)

R. W. Boyd, Nonlinear Optics, second Edition (Academic Press Inc., 2003)

M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Publishers, 2000)

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Spinger, 2007)

K. Tanaka and K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, 2011)

R. P. Wang, Amorphous Chalcogenides : Advances and Applications (Pan Stanford Publishing, 2014)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Closed-aperture Z-scans measurement and fittings for Ge10As20Te70 at 2.5 µm (a) and at 3.0 µm (b). (c) The open aperture measurement and the fitting for four compositions. (d) The linear fitting of Ln(1-TOA) vs peak irradiance Ln(I0). The slope of the fitting line determines the two-photon absorption.
Fig. 2.
Fig. 2. Optical transmittance spectrum and linear of refractive index dispersion for Ge10As20Te70 glass.
Fig. 3.
Fig. 3. (a) Linear refractive index, (b) nonlinear refractive index and (c) two-photon absorption coefficient as a function of As content in mol% at 2.5 µm (blue) and 3.0 µm (red).
Fig. 4.
Fig. 4. Variation of the nonlinear susceptibility versus (n02-1)/4π. Dashed lines are the theoretical fitting based on Eq. (5) at (a) 2.5 µm, and (b) 3.0 µm. The inset is the dependence of experimental n2 on n0.
Fig. 5.
Fig. 5. (a). The behavior of normalized n2 as a function of hv/Eg. (b) The behavior of normalized two photon absorption as a function of hv/Eg. The squares are the experimental data, the solid line are the fitting curves based on Sheik-Bahae’s model and the dashed lines are Dinu’s model.

Tables (1)

Tables Icon

Table 1. Bandgap energy (Eg), refractive index (n0), nonlinear refractive index (n2), two-photon absorption coefficient (β) and FOM = n2/βλ at 2.5 and 3.0 µm, respectively, for Ge10AsxTe90-x glasses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T C A = 1 + 4 x ( x 2 + 9 ) ( x 2 + 1 ) Δ Φ 0 1 2 ( x 2 + 1 ) Δ Ψ 0
T O A = 1 1 2 ( x 2 + 1 ) Δ Ψ 0
Δ Φ 0 = K n 2 I 0 L e f f
Δ Ψ 0 = β I 0 L eff / 2
χ ( 3 ) = n 2 n 0 2 0.0395 = α [ ( n 0 2 1 ) 4 π ] 4