Abstract

Inorganic perovskite has attracted great interest due to its excellent optoelectronic properties. There are much less low band gap halide perovskite semiconductors, and CsPbCl3 is one of a wide band gap semiconductor in the perovskite family. In this study, a 0.5-mm CsPbCl3 perovskite single crystal with tetragonal structure and a direct band gap of 2.86 ± 0.3 eV is synthesized by flash evaporation of CsCl-PbCl2 solution. An ultraviolet photodetector based on a CsPbCl3 single crystal is fabricated, showing a photoresponse in a wide wavelength range of 280–435 nm, with a maximum responsivity of 0.272 A/W at 410 nm. Rise and decay response times of the device are less than 28.4 and 2.7 ms, respectively. The good performance of this CsPbCl3 photodetector indicates promising applications in the field of UV optoelectronic devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, K. Deng, J. Hu, and L. Li, “Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability,” Angew. Chem., Int. Ed. 58(33), 11497–11504 (2019).
    [Crossref]
  2. J. Shi, J. Chen, Y. Li, Y. Zhu, G. Xu, and J. Xu, “Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells,” J. Power Sources 282, 51–57 (2015).
    [Crossref]
  3. Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
    [Crossref]
  4. P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
    [Crossref]
  5. P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
    [Crossref]
  6. P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
    [Crossref]
  7. X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, “MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting,” Adv. Energy Mater. 8(18), 1800101 (2018).
    [Crossref]
  8. H. Wang, F. Sun, Y. Zhang, K. Gu, W. Chen, and W. Li, “Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis,” J. Mater. Chem. 21(33), 12407 (2011).
    [Crossref]
  9. L. Wei, C. Yu, Q. Zhang, H. Liu, and Y. Wang, “TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels,” J. Mater. Chem. A 6(45), 22411–22436 (2018).
    [Crossref]
  10. Y. Zhang, J. Zhou, X. Chen, Q. Feng, and W. Cai, “MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light,” J. Alloys Compd. 777, 109–118 (2019).
    [Crossref]
  11. K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
    [Crossref]
  12. L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angew. Chem., Int. Ed. 58(20), 6761–6765 (2019).
    [Crossref]
  13. C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
    [Crossref]
  14. Y.-Q. Ye, G.-H. Gu, X.-T. Wang, T. Ouyang, Y. Chen, and Z.-Q. Liu, “3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity,” Int. J. Hydrogen Energy 44(39), 21865–21872 (2019).
    [Crossref]
  15. G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
    [Crossref]
  16. S. Pan, X. Zhang, W. Lu, and S. F. Yu, “Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity,” J. Mater. Chem. A 6(38), 18687–18693 (2018).
    [Crossref]
  17. Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
    [Crossref]
  18. K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
    [Crossref]
  19. H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
    [Crossref]
  20. F. Cao, L. Meng, M. Wang, W. Tian, and L. Li, “Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector,” Adv. Mater. 31(12), 1806725 (2019).
    [Crossref]
  21. F. Cao, W. Tian, L. Meng, M. Wang, and L. Li, “Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction,” Adv. Funct. Mater. 29(15), 1808415 (2019).
    [Crossref]
  22. Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
    [Crossref]
  23. W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
    [Crossref]
  24. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
    [Crossref]
  25. S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
    [Crossref]
  26. X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
    [Crossref]
  27. H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
    [Crossref]
  28. Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
    [Crossref]
  29. R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
    [Crossref]
  30. D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces 11(10), 10059–10067 (2019).
    [Crossref]
  31. Y. Li, Z.-F. Shi, X.-J. Li, and C.-X. Shan, “Photodetectors based on inorganic halide perovskites: Materials and devices,” Chin. Phys. B 28(1), 017803 (2019).
    [Crossref]
  32. S. Chu, S. Pan, and G. Li, “Trap state passivation and photoactivation in wide band gap inorganic perovskite semiconductors,” Phys. Chem. Chem. Phys. 20(39), 25476–25481 (2018).
    [Crossref]
  33. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
    [Crossref]
  34. P. Gui, H. Zhou, F. Yao, Z. Song, B. Li, and G. Fang, “Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection,” Small 15(39), 1902618 (2019).
    [Crossref]
  35. Y. Chen, D. Feng, S. Xu, S. Zeng, and X. Wei, “Synthesis and photoluminescence of Eu2+ doped Lu2CaMg2Si3O12 garnet phosphors,” Mater. Lett. 164, 180–182 (2016).
    [Crossref]
  36. Y. Chen, X. Wu, S. Zeng, J. Li, and J. Lin, “Effect of alkali metal ions on structure and luminescent properties of red emitting -Ca3(PO4)2: Eu3+ phosphor,” J. Ceram. Soc. Jpn. 123(1434), 69–72 (2015).
    [Crossref]
  37. Y. Chen, C. Yang, M. Deng, J. He, Y. Xu, and Z.-Q. Liu, “A highly luminescent Mn4+ activated LaAlO3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn4+ incorporation,” Dalton Trans. 48(20), 6738–6745 (2019).
    [Crossref]
  38. X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
    [Crossref]
  39. X. Zhang, J. Zhang, Y. Chen, and M. Gong, “Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+co-doped Sr3La(PO4)3 phosphors,” Ceram. Int. 42(12), 13919–13924 (2016).
    [Crossref]
  40. C. Li, Y. Li, T. Zhou, and R.-J. Xie, “Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence,” Opt. Mater. 94, 41–46 (2019).
    [Crossref]
  41. A. De, N. Mondal, and A. Samanta, “Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals,” Nanoscale 9(43), 16722–16727 (2017).
    [Crossref]
  42. Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
    [Crossref]
  43. G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
    [Crossref]
  44. G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
    [Crossref]
  45. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
    [Crossref]
  46. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref]
  47. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
    [Crossref]
  48. Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
    [Crossref]
  49. P. Zhang, S. Yu, X. Zhang, and S.-H. Wei, “Design of p-type transparent conductors from inverted band structure: The case of inorganic metal halide perovskites,” Phys. Rev. Mater. 3(5), 055201 (2019).
    [Crossref]
  50. Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
    [Crossref]
  51. M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
    [Crossref]
  52. O. N. Yunakova, V. K. Miloslavsky, E. N. Kovalenko, and V. V. Kovalenko, “Effect of structural phase transitions on the exciton absorption spectrum of thin CsPbCl3films,” Low Temp. Phys. 40(8), 690–693 (2014).
    [Crossref]
  53. S. Pan, Q. Liu, J. Zhao, and G. Li, “Ultrahigh Detectivity and Wide Dynamic Range Ultraviolet Photodetectors Based on BixSn1–xO2 Intermediate Band Semiconductor,” ACS Appl. Mater. Interfaces 9(34), 28737–28742 (2017).
    [Crossref]
  54. G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
    [Crossref]
  55. J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
    [Crossref]
  56. X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
    [Crossref]
  57. T. Gao, Q. Zhang, J. Chen, X. Xiong, and T. Zhai, “Performance-Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnO-Nanowire Hybrid Structures,” Adv. Opt. Mater. 5(12), 1700206 (2017).
    [Crossref]
  58. E. Zheng, B. Yuh, G. A. Tosado, and Q. Yu, “Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films,” J. Mater. Chem. C 5(15), 3796–3806 (2017).
    [Crossref]
  59. S. Pan, Z. Rao, Y. Wu, Z. Liu, J. Ge, and S. Zhang, “Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor,” Sol. Energy Mater. Sol. Cells 209, 110477 (2020).
    [Crossref]

2020 (1)

S. Pan, Z. Rao, Y. Wu, Z. Liu, J. Ge, and S. Zhang, “Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor,” Sol. Energy Mater. Sol. Cells 209, 110477 (2020).
[Crossref]

2019 (18)

C. Li, Y. Li, T. Zhou, and R.-J. Xie, “Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence,” Opt. Mater. 94, 41–46 (2019).
[Crossref]

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

P. Zhang, S. Yu, X. Zhang, and S.-H. Wei, “Design of p-type transparent conductors from inverted band structure: The case of inorganic metal halide perovskites,” Phys. Rev. Mater. 3(5), 055201 (2019).
[Crossref]

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Z. Liu, K. Deng, J. Hu, and L. Li, “Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability,” Angew. Chem., Int. Ed. 58(33), 11497–11504 (2019).
[Crossref]

Y. Zhang, J. Zhou, X. Chen, Q. Feng, and W. Cai, “MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light,” J. Alloys Compd. 777, 109–118 (2019).
[Crossref]

L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angew. Chem., Int. Ed. 58(20), 6761–6765 (2019).
[Crossref]

Y.-Q. Ye, G.-H. Gu, X.-T. Wang, T. Ouyang, Y. Chen, and Z.-Q. Liu, “3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity,” Int. J. Hydrogen Energy 44(39), 21865–21872 (2019).
[Crossref]

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
[Crossref]

F. Cao, L. Meng, M. Wang, W. Tian, and L. Li, “Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector,” Adv. Mater. 31(12), 1806725 (2019).
[Crossref]

F. Cao, W. Tian, L. Meng, M. Wang, and L. Li, “Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction,” Adv. Funct. Mater. 29(15), 1808415 (2019).
[Crossref]

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces 11(10), 10059–10067 (2019).
[Crossref]

Y. Li, Z.-F. Shi, X.-J. Li, and C.-X. Shan, “Photodetectors based on inorganic halide perovskites: Materials and devices,” Chin. Phys. B 28(1), 017803 (2019).
[Crossref]

P. Gui, H. Zhou, F. Yao, Z. Song, B. Li, and G. Fang, “Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection,” Small 15(39), 1902618 (2019).
[Crossref]

Y. Chen, C. Yang, M. Deng, J. He, Y. Xu, and Z.-Q. Liu, “A highly luminescent Mn4+ activated LaAlO3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn4+ incorporation,” Dalton Trans. 48(20), 6738–6745 (2019).
[Crossref]

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

2018 (11)

S. Chu, S. Pan, and G. Li, “Trap state passivation and photoactivation in wide band gap inorganic perovskite semiconductors,” Phys. Chem. Chem. Phys. 20(39), 25476–25481 (2018).
[Crossref]

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

S. Pan, X. Zhang, W. Lu, and S. F. Yu, “Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity,” J. Mater. Chem. A 6(38), 18687–18693 (2018).
[Crossref]

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
[Crossref]

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, “MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting,” Adv. Energy Mater. 8(18), 1800101 (2018).
[Crossref]

L. Wei, C. Yu, Q. Zhang, H. Liu, and Y. Wang, “TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels,” J. Mater. Chem. A 6(45), 22411–22436 (2018).
[Crossref]

2017 (9)

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

A. De, N. Mondal, and A. Samanta, “Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals,” Nanoscale 9(43), 16722–16727 (2017).
[Crossref]

S. Pan, Q. Liu, J. Zhao, and G. Li, “Ultrahigh Detectivity and Wide Dynamic Range Ultraviolet Photodetectors Based on BixSn1–xO2 Intermediate Band Semiconductor,” ACS Appl. Mater. Interfaces 9(34), 28737–28742 (2017).
[Crossref]

J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
[Crossref]

T. Gao, Q. Zhang, J. Chen, X. Xiong, and T. Zhai, “Performance-Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnO-Nanowire Hybrid Structures,” Adv. Opt. Mater. 5(12), 1700206 (2017).
[Crossref]

E. Zheng, B. Yuh, G. A. Tosado, and Q. Yu, “Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films,” J. Mater. Chem. C 5(15), 3796–3806 (2017).
[Crossref]

2016 (6)

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

X. Zhang, J. Zhang, Y. Chen, and M. Gong, “Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+co-doped Sr3La(PO4)3 phosphors,” Ceram. Int. 42(12), 13919–13924 (2016).
[Crossref]

Y. Chen, D. Feng, S. Xu, S. Zeng, and X. Wei, “Synthesis and photoluminescence of Eu2+ doped Lu2CaMg2Si3O12 garnet phosphors,” Mater. Lett. 164, 180–182 (2016).
[Crossref]

P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
[Crossref]

2015 (7)

P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
[Crossref]

P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
[Crossref]

J. Shi, J. Chen, Y. Li, Y. Zhu, G. Xu, and J. Xu, “Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells,” J. Power Sources 282, 51–57 (2015).
[Crossref]

Y. Chen, X. Wu, S. Zeng, J. Li, and J. Lin, “Effect of alkali metal ions on structure and luminescent properties of red emitting -Ca3(PO4)2: Eu3+ phosphor,” J. Ceram. Soc. Jpn. 123(1434), 69–72 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

2014 (1)

O. N. Yunakova, V. K. Miloslavsky, E. N. Kovalenko, and V. V. Kovalenko, “Effect of structural phase transitions on the exciton absorption spectrum of thin CsPbCl3films,” Low Temp. Phys. 40(8), 690–693 (2014).
[Crossref]

2011 (1)

H. Wang, F. Sun, Y. Zhang, K. Gu, W. Chen, and W. Li, “Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis,” J. Mater. Chem. 21(33), 12407 (2011).
[Crossref]

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

1996 (3)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

1976 (1)

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Abdelhady, A. L.

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Ahmad, I.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

Ahmad, M.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

Ahmad, R.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

Ahmed, G. H.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

Ahumada-Lazo, R.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

Alanis, J. A.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

Alarousu, E.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Ali, L.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

All, A. H.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Almutlaq, J.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Alshareef, H. N.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

Bai, D.

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

Bai, X.

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Bakr, O. M.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Bettinelli, M.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Bian, H.

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

Binks, D. J.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

Bodnarchuk, M. I.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

Böhm, M. L.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Cahen, D.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Cai, W.

Y. Zhang, J. Zhou, X. Chen, Q. Feng, and W. Cai, “MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light,” J. Alloys Compd. 777, 109–118 (2019).
[Crossref]

Cao, F.

L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angew. Chem., Int. Ed. 58(20), 6761–6765 (2019).
[Crossref]

F. Cao, L. Meng, M. Wang, W. Tian, and L. Li, “Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector,” Adv. Mater. 31(12), 1806725 (2019).
[Crossref]

F. Cao, W. Tian, L. Meng, M. Wang, and L. Li, “Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction,” Adv. Funct. Mater. 29(15), 1808415 (2019).
[Crossref]

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Cao, Y.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Caputo, R.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

Chen, C.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Chen, D.

D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces 11(10), 10059–10067 (2019).
[Crossref]

Chen, G.-F.

P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
[Crossref]

Chen, J.

D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces 11(10), 10059–10067 (2019).
[Crossref]

T. Gao, Q. Zhang, J. Chen, X. Xiong, and T. Zhai, “Performance-Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnO-Nanowire Hybrid Structures,” Adv. Opt. Mater. 5(12), 1700206 (2017).
[Crossref]

J. Shi, J. Chen, Y. Li, Y. Zhu, G. Xu, and J. Xu, “Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells,” J. Power Sources 282, 51–57 (2015).
[Crossref]

Chen, Q.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Chen, S.

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

Chen, W.

H. Wang, F. Sun, Y. Zhang, K. Gu, W. Chen, and W. Li, “Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis,” J. Mater. Chem. 21(33), 12407 (2011).
[Crossref]

Chen, X.

Y. Zhang, J. Zhou, X. Chen, Q. Feng, and W. Cai, “MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light,” J. Alloys Compd. 777, 109–118 (2019).
[Crossref]

D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces 11(10), 10059–10067 (2019).
[Crossref]

K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
[Crossref]

Chen, Y.

Y.-Q. Ye, G.-H. Gu, X.-T. Wang, T. Ouyang, Y. Chen, and Z.-Q. Liu, “3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity,” Int. J. Hydrogen Energy 44(39), 21865–21872 (2019).
[Crossref]

Y. Chen, C. Yang, M. Deng, J. He, Y. Xu, and Z.-Q. Liu, “A highly luminescent Mn4+ activated LaAlO3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn4+ incorporation,” Dalton Trans. 48(20), 6738–6745 (2019).
[Crossref]

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

X. Zhang, J. Zhang, Y. Chen, and M. Gong, “Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+co-doped Sr3La(PO4)3 phosphors,” Ceram. Int. 42(12), 13919–13924 (2016).
[Crossref]

Y. Chen, D. Feng, S. Xu, S. Zeng, and X. Wei, “Synthesis and photoluminescence of Eu2+ doped Lu2CaMg2Si3O12 garnet phosphors,” Mater. Lett. 164, 180–182 (2016).
[Crossref]

Y. Chen, X. Wu, S. Zeng, J. Li, and J. Lin, “Effect of alkali metal ions on structure and luminescent properties of red emitting -Ca3(PO4)2: Eu3+ phosphor,” J. Ceram. Soc. Jpn. 123(1434), 69–72 (2015).
[Crossref]

Cheng, J.

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

Chu, S.

S. Chu, S. Pan, and G. Li, “Trap state passivation and photoactivation in wide band gap inorganic perovskite semiconductors,” Phys. Chem. Chem. Phys. 20(39), 25476–25481 (2018).
[Crossref]

Dang, H.

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

Davis, N. J. L. K.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

De, A.

A. De, N. Mondal, and A. Samanta, “Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals,” Nanoscale 9(43), 16722–16727 (2017).
[Crossref]

De Luca, G.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

Deng, K.

H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
[Crossref]

Z. Liu, K. Deng, J. Hu, and L. Li, “Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability,” Angew. Chem., Int. Ed. 58(33), 11497–11504 (2019).
[Crossref]

Deng, M.

Y. Chen, C. Yang, M. Deng, J. He, Y. Xu, and Z.-Q. Liu, “A highly luminescent Mn4+ activated LaAlO3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn4+ incorporation,” Dalton Trans. 48(20), 6738–6745 (2019).
[Crossref]

Deng, Z.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Dong, B.

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Dou, L.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

Du, G.

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Du, X.

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

Ducati, C.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

Eaton, S. W.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

El-Demellawi, J. K.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Fan, D.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Fan, K.

X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, “MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting,” Adv. Energy Mater. 8(18), 1800101 (2018).
[Crossref]

Fang, G.

P. Gui, H. Zhou, F. Yao, Z. Song, B. Li, and G. Fang, “Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection,” Small 15(39), 1902618 (2019).
[Crossref]

Feng, D.

Y. Chen, D. Feng, S. Xu, S. Zeng, and X. Wei, “Synthesis and photoluminescence of Eu2+ doped Lu2CaMg2Si3O12 garnet phosphors,” Mater. Lett. 164, 180–182 (2016).
[Crossref]

Feng, Q.

Y. Zhang, J. Zhou, X. Chen, Q. Feng, and W. Cai, “MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light,” J. Alloys Compd. 777, 109–118 (2019).
[Crossref]

Fiebig, M.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

Friend, R. H.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Furthmuller, J.

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

Gao, T.

T. Gao, Q. Zhang, J. Chen, X. Xiong, and T. Zhai, “Performance-Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnO-Nanowire Hybrid Structures,” Adv. Opt. Mater. 5(12), 1700206 (2017).
[Crossref]

Gao, Y.

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

Gao, Z.

J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
[Crossref]

Ge, C.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Ge, J.

S. Pan, Z. Rao, Y. Wu, Z. Liu, J. Ge, and S. Zhang, “Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor,” Sol. Energy Mater. Sol. Cells 209, 110477 (2020).
[Crossref]

Gibson, N. A.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

Gong, M.

X. Zhang, J. Zhang, Y. Chen, and M. Gong, “Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+co-doped Sr3La(PO4)3 phosphors,” Ceram. Int. 42(12), 13919–13924 (2016).
[Crossref]

Griffiths, J. T.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

Gu, G.-H.

Y.-Q. Ye, G.-H. Gu, X.-T. Wang, T. Ouyang, Y. Chen, and Z.-Q. Liu, “3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity,” Int. J. Hydrogen Energy 44(39), 21865–21872 (2019).
[Crossref]

Gu, K.

H. Wang, F. Sun, Y. Zhang, K. Gu, W. Chen, and W. Li, “Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis,” J. Mater. Chem. 21(33), 12407 (2011).
[Crossref]

Gu, Y.

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Guan, X.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Gui, P.

P. Gui, H. Zhou, F. Yao, Z. Song, B. Li, and G. Fang, “Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection,” Small 15(39), 1902618 (2019).
[Crossref]

Guo, X.

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

Gupta, S.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Han, S.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Haque, M. A.

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Hardman, S. J. O.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

He, J.

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

Y. Chen, C. Yang, M. Deng, J. He, Y. Xu, and Z.-Q. Liu, “A highly luminescent Mn4+ activated LaAlO3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn4+ incorporation,” Dalton Trans. 48(20), 6738–6745 (2019).
[Crossref]

He, K.

K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
[Crossref]

Hedhili, M. N.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

Heiss, W.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

Hendon, C. H.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

Hodes, G.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Hu, J.

Z. Liu, K. Deng, J. Hu, and L. Li, “Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability,” Angew. Chem., Int. Ed. 58(33), 11497–11504 (2019).
[Crossref]

K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
[Crossref]

Huang, B.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Huang, M.

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

Huang, W.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Huang, Y.

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

Humer, M.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

Humphrey, C. J.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

Iqbal, R.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

Jalali-Asadabadi, S.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

Jiang, J.

J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
[Crossref]

Jiang, X.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Jin, Z.

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
[Crossref]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

Kalchenko, V.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Ke, X.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Kedem, N.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Khan, T.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

Kim, D. H.

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
[Crossref]

Kovalenko, E. N.

O. N. Yunakova, V. K. Miloslavsky, E. N. Kovalenko, and V. V. Kovalenko, “Effect of structural phase transitions on the exciton absorption spectrum of thin CsPbCl3films,” Low Temp. Phys. 40(8), 690–693 (2014).
[Crossref]

Kovalenko, M. V.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

Kovalenko, V. V.

O. N. Yunakova, V. K. Miloslavsky, E. N. Kovalenko, and V. V. Kovalenko, “Effect of structural phase transitions on the exciton absorption spectrum of thin CsPbCl3films,” Low Temp. Phys. 40(8), 690–693 (2014).
[Crossref]

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

Krieg, F.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

Kuang, P.-Y.

P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
[Crossref]

P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
[Crossref]

P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
[Crossref]

Kuang, W.

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

Kulbak, M.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Lai, M.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

Lei, J.-L.

P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
[Crossref]

Lei, L.

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Leone, S. R.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

Li, B.

P. Gui, H. Zhou, F. Yao, Z. Song, B. Li, and G. Fang, “Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection,” Small 15(39), 1902618 (2019).
[Crossref]

Li, C.

C. Li, Y. Li, T. Zhou, and R.-J. Xie, “Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence,” Opt. Mater. 94, 41–46 (2019).
[Crossref]

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

Li, G.

S. Chu, S. Pan, and G. Li, “Trap state passivation and photoactivation in wide band gap inorganic perovskite semiconductors,” Phys. Chem. Chem. Phys. 20(39), 25476–25481 (2018).
[Crossref]

S. Pan, Q. Liu, J. Zhao, and G. Li, “Ultrahigh Detectivity and Wide Dynamic Range Ultraviolet Photodetectors Based on BixSn1–xO2 Intermediate Band Semiconductor,” ACS Appl. Mater. Interfaces 9(34), 28737–28742 (2017).
[Crossref]

Li, J.

D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces 11(10), 10059–10067 (2019).
[Crossref]

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Y. Chen, X. Wu, S. Zeng, J. Li, and J. Lin, “Effect of alkali metal ions on structure and luminescent properties of red emitting -Ca3(PO4)2: Eu3+ phosphor,” J. Ceram. Soc. Jpn. 123(1434), 69–72 (2015).
[Crossref]

Li, L.

Z. Liu, K. Deng, J. Hu, and L. Li, “Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability,” Angew. Chem., Int. Ed. 58(33), 11497–11504 (2019).
[Crossref]

L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angew. Chem., Int. Ed. 58(20), 6761–6765 (2019).
[Crossref]

F. Cao, L. Meng, M. Wang, W. Tian, and L. Li, “Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector,” Adv. Mater. 31(12), 1806725 (2019).
[Crossref]

F. Cao, W. Tian, L. Meng, M. Wang, and L. Li, “Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction,” Adv. Funct. Mater. 29(15), 1808415 (2019).
[Crossref]

H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
[Crossref]

Li, N.

K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
[Crossref]

P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
[Crossref]

P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
[Crossref]

P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
[Crossref]

Li, Q.

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

Li, S.

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Li, W.

H. Wang, F. Sun, Y. Zhang, K. Gu, W. Chen, and W. Li, “Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis,” J. Mater. Chem. 21(33), 12407 (2011).
[Crossref]

Li, X.

X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, “MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting,” Adv. Energy Mater. 8(18), 1800101 (2018).
[Crossref]

K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
[Crossref]

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Li, X.-J.

Y. Li, Z.-F. Shi, X.-J. Li, and C.-X. Shan, “Photodetectors based on inorganic halide perovskites: Materials and devices,” Chin. Phys. B 28(1), 017803 (2019).
[Crossref]

Li, Y.

Y. Li, Z.-F. Shi, X.-J. Li, and C.-X. Shan, “Photodetectors based on inorganic halide perovskites: Materials and devices,” Chin. Phys. B 28(1), 017803 (2019).
[Crossref]

C. Li, Y. Li, T. Zhou, and R.-J. Xie, “Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence,” Opt. Mater. 94, 41–46 (2019).
[Crossref]

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

J. Shi, J. Chen, Y. Li, Y. Zhu, G. Xu, and J. Xu, “Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells,” J. Power Sources 282, 51–57 (2015).
[Crossref]

Liang, L.

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Lin, J.

Y. Chen, X. Wu, S. Zeng, J. Li, and J. Lin, “Effect of alkali metal ions on structure and luminescent properties of red emitting -Ca3(PO4)2: Eu3+ phosphor,” J. Ceram. Soc. Jpn. 123(1434), 69–72 (2015).
[Crossref]

Lin, Y.

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

Liu, H.

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

L. Wei, C. Yu, Q. Zhang, H. Liu, and Y. Wang, “TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels,” J. Mater. Chem. A 6(45), 22411–22436 (2018).
[Crossref]

Liu, Q.

S. Pan, Q. Liu, J. Zhao, and G. Li, “Ultrahigh Detectivity and Wide Dynamic Range Ultraviolet Photodetectors Based on BixSn1–xO2 Intermediate Band Semiconductor,” ACS Appl. Mater. Interfaces 9(34), 28737–28742 (2017).
[Crossref]

Liu, S.

X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, “MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting,” Adv. Energy Mater. 8(18), 1800101 (2018).
[Crossref]

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
[Crossref]

Liu, X.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Liu, Y.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Liu, Z.

S. Pan, Z. Rao, Y. Wu, Z. Liu, J. Ge, and S. Zhang, “Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor,” Sol. Energy Mater. Sol. Cells 209, 110477 (2020).
[Crossref]

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

Z. Liu, K. Deng, J. Hu, and L. Li, “Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability,” Angew. Chem., Int. Ed. 58(33), 11497–11504 (2019).
[Crossref]

X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, “MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting,” Adv. Energy Mater. 8(18), 1800101 (2018).
[Crossref]

Liu, Z.-Q.

Y.-Q. Ye, G.-H. Gu, X.-T. Wang, T. Ouyang, Y. Chen, and Z.-Q. Liu, “3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity,” Int. J. Hydrogen Energy 44(39), 21865–21872 (2019).
[Crossref]

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

Y. Chen, C. Yang, M. Deng, J. He, Y. Xu, and Z.-Q. Liu, “A highly luminescent Mn4+ activated LaAlO3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn4+ incorporation,” Dalton Trans. 48(20), 6738–6745 (2019).
[Crossref]

K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
[Crossref]

P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
[Crossref]

P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
[Crossref]

P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
[Crossref]

Long, R.

L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angew. Chem., Int. Ed. 58(20), 6761–6765 (2019).
[Crossref]

Lu, W.

S. Pan, X. Zhang, W. Lu, and S. F. Yu, “Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity,” J. Mater. Chem. A 6(38), 18687–18693 (2018).
[Crossref]

Lu, Y.

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

Luo, J.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Luo, Z.

P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
[Crossref]

Lv, K.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Ma, J.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

Ma, K.

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

Ma, T.-Y.

P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
[Crossref]

Ma, Z.

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Maculan, G.

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Mao, Y.

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

Maqbool, M.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

Meng, L.

L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angew. Chem., Int. Ed. 58(20), 6761–6765 (2019).
[Crossref]

H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
[Crossref]

F. Cao, L. Meng, M. Wang, W. Tian, and L. Li, “Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector,” Adv. Mater. 31(12), 1806725 (2019).
[Crossref]

F. Cao, W. Tian, L. Meng, M. Wang, and L. Li, “Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction,” Adv. Funct. Mater. 29(15), 1808415 (2019).
[Crossref]

Miloslavsky, V. K.

O. N. Yunakova, V. K. Miloslavsky, E. N. Kovalenko, and V. V. Kovalenko, “Effect of structural phase transitions on the exciton absorption spectrum of thin CsPbCl3films,” Low Temp. Phys. 40(8), 690–693 (2014).
[Crossref]

Mohammed, O. F.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Mondal, N.

A. De, N. Mondal, and A. Samanta, “Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals,” Nanoscale 9(43), 16722–16727 (2017).
[Crossref]

Monkhorst, H. J.

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Murali, B.

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Nedelcu, G.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

Niu, G.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Ou, X.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Ouyang, G.

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

Ouyang, T.

Y.-Q. Ye, G.-H. Gu, X.-T. Wang, T. Ouyang, Y. Chen, and Z.-Q. Liu, “3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity,” Int. J. Hydrogen Energy 44(39), 21865–21872 (2019).
[Crossref]

Pack, J. D.

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Pan, G.

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Pan, J.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

Pan, S.

S. Pan, Z. Rao, Y. Wu, Z. Liu, J. Ge, and S. Zhang, “Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor,” Sol. Energy Mater. Sol. Cells 209, 110477 (2020).
[Crossref]

S. Pan, X. Zhang, W. Lu, and S. F. Yu, “Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity,” J. Mater. Chem. A 6(38), 18687–18693 (2018).
[Crossref]

S. Chu, S. Pan, and G. Li, “Trap state passivation and photoactivation in wide band gap inorganic perovskite semiconductors,” Phys. Chem. Chem. Phys. 20(39), 25476–25481 (2018).
[Crossref]

S. Pan, Q. Liu, J. Zhao, and G. Li, “Ultrahigh Detectivity and Wide Dynamic Range Ultraviolet Photodetectors Based on BixSn1–xO2 Intermediate Band Semiconductor,” ACS Appl. Mater. Interfaces 9(34), 28737–28742 (2017).
[Crossref]

Pan, W.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Parkinson, P.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

Peng, C.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Peng, F.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Protesescu, L.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

Rakita, Y.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Rao, Z.

S. Pan, Z. Rao, Y. Wu, Z. Liu, J. Ge, and S. Zhang, “Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor,” Sol. Energy Mater. Sol. Cells 209, 110477 (2020).
[Crossref]

Rehman, G.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

Sadhanala, A.

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Saidaminov, M. I.

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Samanta, A.

A. De, N. Mondal, and A. Samanta, “Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals,” Nanoscale 9(43), 16722–16727 (2017).
[Crossref]

Shafiq, M.

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

Shan, C.

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Shan, C.-X.

Y. Li, Z.-F. Shi, X.-J. Li, and C.-X. Shan, “Photodetectors based on inorganic halide perovskites: Materials and devices,” Chin. Phys. B 28(1), 017803 (2019).
[Crossref]

Shang, Q.

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

Shao, H.

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Sheikh, A. D.

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Shi, J.

J. Shi, J. Chen, Y. Li, Y. Zhu, G. Xu, and J. Xu, “Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells,” J. Power Sources 282, 51–57 (2015).
[Crossref]

Shi, L.

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

Shi, Q.

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

Shi, R.

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

Shi, Z.

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Shi, Z.-F.

Y. Li, Z.-F. Shi, X.-J. Li, and C.-X. Shan, “Photodetectors based on inorganic halide perovskites: Materials and devices,” Chin. Phys. B 28(1), 017803 (2019).
[Crossref]

Song, B.

X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, “MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting,” Adv. Energy Mater. 8(18), 1800101 (2018).
[Crossref]

Song, H.

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Song, J.

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Song, Z.

P. Gui, H. Zhou, F. Yao, Z. Song, B. Li, and G. Fang, “Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection,” Small 15(39), 1902618 (2019).
[Crossref]

Su, Y.-Z.

P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
[Crossref]

P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
[Crossref]

Sui, M.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Sun, F.

H. Wang, F. Sun, Y. Zhang, K. Gu, W. Chen, and W. Li, “Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis,” J. Mater. Chem. 21(33), 12407 (2011).
[Crossref]

Sun, H.

H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
[Crossref]

Tan, P.-F.

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

Tan, S.

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

Tang, J.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Teh, D. B. L.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Tian, W.

F. Cao, W. Tian, L. Meng, M. Wang, and L. Li, “Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction,” Adv. Funct. Mater. 29(15), 1808415 (2019).
[Crossref]

F. Cao, L. Meng, M. Wang, W. Tian, and L. Li, “Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector,” Adv. Mater. 31(12), 1806725 (2019).
[Crossref]

L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angew. Chem., Int. Ed. 58(20), 6761–6765 (2019).
[Crossref]

Tong, Y.

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

Tosado, G. A.

E. Zheng, B. Yuh, G. A. Tosado, and Q. Yu, “Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films,” J. Mater. Chem. C 5(15), 3796–3806 (2017).
[Crossref]

Velusamy, D. B.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

Walsh, A.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

Wang, H.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
[Crossref]

H. Wang, F. Sun, Y. Zhang, K. Gu, W. Chen, and W. Li, “Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis,” J. Mater. Chem. 21(33), 12407 (2011).
[Crossref]

Wang, H.-J.

P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
[Crossref]

Wang, K.

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

Wang, L. W.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

Wang, M.

F. Cao, L. Meng, M. Wang, W. Tian, and L. Li, “Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector,” Adv. Mater. 31(12), 1806725 (2019).
[Crossref]

F. Cao, W. Tian, L. Meng, M. Wang, and L. Li, “Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction,” Adv. Funct. Mater. 29(15), 1808415 (2019).
[Crossref]

Wang, Q.

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
[Crossref]

Wang, S.

L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angew. Chem., Int. Ed. 58(20), 6761–6765 (2019).
[Crossref]

Wang, X.

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

Wang, X.-T.

Y.-Q. Ye, G.-H. Gu, X.-T. Wang, T. Ouyang, Y. Chen, and Z.-Q. Liu, “3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity,” Int. J. Hydrogen Energy 44(39), 21865–21872 (2019).
[Crossref]

Wang, Y.

L. Wei, C. Yu, Q. Zhang, H. Liu, and Y. Wang, “TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels,” J. Mater. Chem. A 6(45), 22411–22436 (2018).
[Crossref]

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Wei, L.

L. Wei, C. Yu, Q. Zhang, H. Liu, and Y. Wang, “TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels,” J. Mater. Chem. A 6(45), 22411–22436 (2018).
[Crossref]

Wei, P.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Wei, S.-H.

P. Zhang, S. Yu, X. Zhang, and S.-H. Wei, “Design of p-type transparent conductors from inverted band structure: The case of inorganic metal halide perovskites,” Phys. Rev. Mater. 3(5), 055201 (2019).
[Crossref]

Wei, X.

Y. Chen, D. Feng, S. Xu, S. Zeng, and X. Wei, “Synthesis and photoluminescence of Eu2+ doped Lu2CaMg2Si3O12 garnet phosphors,” Mater. Lett. 164, 180–182 (2016).
[Crossref]

Wei, Y.

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Wisnivesky Rocca Rivarola, F.

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

Wong, A. B.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

Wu, D.

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Wu, G.

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

Wu, H.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
[Crossref]

Wu, J.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Wu, T.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

Wu, X.

Y. Chen, X. Wu, S. Zeng, J. Li, and J. Lin, “Effect of alkali metal ions on structure and luminescent properties of red emitting -Ca3(PO4)2: Eu3+ phosphor,” J. Ceram. Soc. Jpn. 123(1434), 69–72 (2015).
[Crossref]

Wu, Y.

S. Pan, Z. Rao, Y. Wu, Z. Liu, J. Ge, and S. Zhang, “Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor,” Sol. Energy Mater. Sol. Cells 209, 110477 (2020).
[Crossref]

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Xiao, K.

P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
[Crossref]

Xie, J.

K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
[Crossref]

Xie, Q.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Xie, R.-J.

C. Li, Y. Li, T. Zhou, and R.-J. Xie, “Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence,” Opt. Mater. 94, 41–46 (2019).
[Crossref]

Xie, X.

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Xin, Y.

H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
[Crossref]

Xing, S.-Y.

P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
[Crossref]

Xiong, J.

H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
[Crossref]

Xiong, X.

T. Gao, Q. Zhang, J. Chen, X. Xiong, and T. Zhai, “Performance-Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnO-Nanowire Hybrid Structures,” Adv. Opt. Mater. 5(12), 1700206 (2017).
[Crossref]

Xu, G.

J. Shi, J. Chen, Y. Li, Y. Zhu, G. Xu, and J. Xu, “Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells,” J. Power Sources 282, 51–57 (2015).
[Crossref]

Xu, J.

J. Shi, J. Chen, Y. Li, Y. Zhu, G. Xu, and J. Xu, “Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells,” J. Power Sources 282, 51–57 (2015).
[Crossref]

Xu, L.

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Xu, S.

Y. Chen, D. Feng, S. Xu, S. Zeng, and X. Wei, “Synthesis and photoluminescence of Eu2+ doped Lu2CaMg2Si3O12 garnet phosphors,” Mater. Lett. 164, 180–182 (2016).
[Crossref]

Xu, T.

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Xu, Y.

Y. Chen, C. Yang, M. Deng, J. He, Y. Xu, and Z.-Q. Liu, “A highly luminescent Mn4+ activated LaAlO3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn4+ incorporation,” Dalton Trans. 48(20), 6738–6745 (2019).
[Crossref]

Yakunin, S.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

Yan, Y.

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

Yang, C.

Y. Chen, C. Yang, M. Deng, J. He, Y. Xu, and Z.-Q. Liu, “A highly luminescent Mn4+ activated LaAlO3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn4+ incorporation,” Dalton Trans. 48(20), 6738–6745 (2019).
[Crossref]

Yang, H.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Yang, P.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

Yang, R. X.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

Yang, Y.

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

Yao, F.

P. Gui, H. Zhou, F. Yao, Z. Song, B. Li, and G. Fang, “Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection,” Small 15(39), 1902618 (2019).
[Crossref]

Ye, X.

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

Ye, Y.-Q.

Y.-Q. Ye, G.-H. Gu, X.-T. Wang, T. Ouyang, Y. Chen, and Z.-Q. Liu, “3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity,” Int. J. Hydrogen Energy 44(39), 21865–21872 (2019).
[Crossref]

Yi, Z.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Yin, J.

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

Yin, L.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Yin, W.-J.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Yu, C.

L. Wei, C. Yu, Q. Zhang, H. Liu, and Y. Wang, “TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels,” J. Mater. Chem. A 6(45), 22411–22436 (2018).
[Crossref]

Yu, D.

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Yu, H.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Yu, J.

X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, “MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting,” Adv. Energy Mater. 8(18), 1800101 (2018).
[Crossref]

Yu, Q.

E. Zheng, B. Yuh, G. A. Tosado, and Q. Yu, “Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films,” J. Mater. Chem. C 5(15), 3796–3806 (2017).
[Crossref]

Yu, S.

P. Zhang, S. Yu, X. Zhang, and S.-H. Wei, “Design of p-type transparent conductors from inverted band structure: The case of inorganic metal halide perovskites,” Phys. Rev. Mater. 3(5), 055201 (2019).
[Crossref]

Yu, S. F.

S. Pan, X. Zhang, W. Lu, and S. F. Yu, “Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity,” J. Mater. Chem. A 6(38), 18687–18693 (2018).
[Crossref]

Yuh, B.

E. Zheng, B. Yuh, G. A. Tosado, and Q. Yu, “Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films,” J. Mater. Chem. C 5(15), 3796–3806 (2017).
[Crossref]

Yunakova, O. N.

O. N. Yunakova, V. K. Miloslavsky, E. N. Kovalenko, and V. V. Kovalenko, “Effect of structural phase transitions on the exciton absorption spectrum of thin CsPbCl3films,” Low Temp. Phys. 40(8), 690–693 (2014).
[Crossref]

Zeng, H.

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Zeng, S.

Y. Chen, D. Feng, S. Xu, S. Zeng, and X. Wei, “Synthesis and photoluminescence of Eu2+ doped Lu2CaMg2Si3O12 garnet phosphors,” Mater. Lett. 164, 180–182 (2016).
[Crossref]

Y. Chen, X. Wu, S. Zeng, J. Li, and J. Lin, “Effect of alkali metal ions on structure and luminescent properties of red emitting -Ca3(PO4)2: Eu3+ phosphor,” J. Ceram. Soc. Jpn. 123(1434), 69–72 (2015).
[Crossref]

Zhai, T.

T. Gao, Q. Zhang, J. Chen, X. Xiong, and T. Zhai, “Performance-Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnO-Nanowire Hybrid Structures,” Adv. Opt. Mater. 5(12), 1700206 (2017).
[Crossref]

Zhai, Y.

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Zhang, B.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Zhang, F.

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Zhang, J.

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
[Crossref]

X. Zhang, J. Zhang, Y. Chen, and M. Gong, “Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+co-doped Sr3La(PO4)3 phosphors,” Ceram. Int. 42(12), 13919–13924 (2016).
[Crossref]

P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
[Crossref]

Zhang, L.

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Zhang, P.

P. Zhang, S. Yu, X. Zhang, and S.-H. Wei, “Design of p-type transparent conductors from inverted band structure: The case of inorganic metal halide perovskites,” Phys. Rev. Mater. 3(5), 055201 (2019).
[Crossref]

Zhang, Q.

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

L. Wei, C. Yu, Q. Zhang, H. Liu, and Y. Wang, “TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels,” J. Mater. Chem. A 6(45), 22411–22436 (2018).
[Crossref]

T. Gao, Q. Zhang, J. Chen, X. Xiong, and T. Zhai, “Performance-Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnO-Nanowire Hybrid Structures,” Adv. Opt. Mater. 5(12), 1700206 (2017).
[Crossref]

Zhang, S.

S. Pan, Z. Rao, Y. Wu, Z. Liu, J. Ge, and S. Zhang, “Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor,” Sol. Energy Mater. Sol. Cells 209, 110477 (2020).
[Crossref]

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

Zhang, X.

P. Zhang, S. Yu, X. Zhang, and S.-H. Wei, “Design of p-type transparent conductors from inverted band structure: The case of inorganic metal halide perovskites,” Phys. Rev. Mater. 3(5), 055201 (2019).
[Crossref]

S. Pan, X. Zhang, W. Lu, and S. F. Yu, “Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity,” J. Mater. Chem. A 6(38), 18687–18693 (2018).
[Crossref]

J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
[Crossref]

X. Zhang, J. Zhang, Y. Chen, and M. Gong, “Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+co-doped Sr3La(PO4)3 phosphors,” Ceram. Int. 42(12), 13919–13924 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, J. Zhou, X. Chen, Q. Feng, and W. Cai, “MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light,” J. Alloys Compd. 777, 109–118 (2019).
[Crossref]

H. Wang, F. Sun, Y. Zhang, K. Gu, W. Chen, and W. Li, “Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis,” J. Mater. Chem. 21(33), 12407 (2011).
[Crossref]

Zhang, Y.-W.

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

Zhao, J.

S. Pan, Q. Liu, J. Zhao, and G. Li, “Ultrahigh Detectivity and Wide Dynamic Range Ultraviolet Photodetectors Based on BixSn1–xO2 Intermediate Band Semiconductor,” ACS Appl. Mater. Interfaces 9(34), 28737–28742 (2017).
[Crossref]

Zhao, L.

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

Zheng, E.

E. Zheng, B. Yuh, G. A. Tosado, and Q. Yu, “Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films,” J. Mater. Chem. C 5(15), 3796–3806 (2017).
[Crossref]

Zheng, P.-X.

P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
[Crossref]

Zhong, J.

D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces 11(10), 10059–10067 (2019).
[Crossref]

Zhou, H.

P. Gui, H. Zhou, F. Yao, Z. Song, B. Li, and G. Fang, “Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection,” Small 15(39), 1902618 (2019).
[Crossref]

Zhou, J.

Y. Zhang, J. Zhou, X. Chen, Q. Feng, and W. Cai, “MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light,” J. Alloys Compd. 777, 109–118 (2019).
[Crossref]

Zhou, T.

C. Li, Y. Li, T. Zhou, and R.-J. Xie, “Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence,” Opt. Mater. 94, 41–46 (2019).
[Crossref]

Zhou, Y.

H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Zhu, J.

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Zhu, L.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Zhu, Y.

J. Shi, J. Chen, Y. Li, Y. Zhu, G. Xu, and J. Xu, “Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells,” J. Power Sources 282, 51–57 (2015).
[Crossref]

Zhumekenov, A. A.

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (3)

P.-Y. Kuang, Y.-Z. Su, K. Xiao, Z.-Q. Liu, N. Li, H.-J. Wang, and J. Zhang, “Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications,” ACS Appl. Mater. Interfaces 7(30), 16387–16394 (2015).
[Crossref]

D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces 11(10), 10059–10067 (2019).
[Crossref]

S. Pan, Q. Liu, J. Zhao, and G. Li, “Ultrahigh Detectivity and Wide Dynamic Range Ultraviolet Photodetectors Based on BixSn1–xO2 Intermediate Band Semiconductor,” ACS Appl. Mater. Interfaces 9(34), 28737–28742 (2017).
[Crossref]

ACS Energy Lett. (1)

G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, and O. F. Mohammed, “Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Lett. 3(10), 2301–2307 (2018).
[Crossref]

ACS Photonics (1)

Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan, and G. Du, “Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors,” ACS Photonics 5(6), 2524–2532 (2018).
[Crossref]

Adv. Energy Mater. (1)

X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, “MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting,” Adv. Energy Mater. 8(18), 1800101 (2018).
[Crossref]

Adv. Funct. Mater. (3)

H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, and L. Li, “Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells,” Adv. Funct. Mater. 29(11), 1808667 (2019).
[Crossref]

F. Cao, W. Tian, L. Meng, M. Wang, and L. Li, “Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction,” Adv. Funct. Mater. 29(15), 1808415 (2019).
[Crossref]

X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, and H. Zeng, “Healing All-Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability,” Adv. Funct. Mater. 26(32), 5903–5912 (2016).
[Crossref]

Adv. Mater. (1)

F. Cao, L. Meng, M. Wang, W. Tian, and L. Li, “Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector,” Adv. Mater. 31(12), 1806725 (2019).
[Crossref]

Adv. Opt. Mater. (1)

T. Gao, Q. Zhang, J. Chen, X. Xiong, and T. Zhai, “Performance-Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnO-Nanowire Hybrid Structures,” Adv. Opt. Mater. 5(12), 1700206 (2017).
[Crossref]

Angew. Chem., Int. Ed. (2)

Z. Liu, K. Deng, J. Hu, and L. Li, “Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability,” Angew. Chem., Int. Ed. 58(33), 11497–11504 (2019).
[Crossref]

L. Meng, S. Wang, F. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angew. Chem., Int. Ed. 58(20), 6761–6765 (2019).
[Crossref]

Appl. Surf. Sci. (1)

P.-Y. Kuang, Y.-Z. Su, G.-F. Chen, Z. Luo, S.-Y. Xing, N. Li, and Z.-Q. Liu, “g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance,” Appl. Surf. Sci. 358, 296–303 (2015).
[Crossref]

Ceram. Int. (1)

X. Zhang, J. Zhang, Y. Chen, and M. Gong, “Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+co-doped Sr3La(PO4)3 phosphors,” Ceram. Int. 42(12), 13919–13924 (2016).
[Crossref]

Chem. Soc. Rev. (1)

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
[Crossref]

Chin. Phys. B (1)

Y. Li, Z.-F. Shi, X.-J. Li, and C.-X. Shan, “Photodetectors based on inorganic halide perovskites: Materials and devices,” Chin. Phys. B 28(1), 017803 (2019).
[Crossref]

Comput. Mater. Sci. (1)

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

Cryst. Growth Des. (1)

Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, and G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization,” Cryst. Growth Des. 16(10), 5717–5725 (2016).
[Crossref]

Dalton Trans. (1)

Y. Chen, C. Yang, M. Deng, J. He, Y. Xu, and Z.-Q. Liu, “A highly luminescent Mn4+ activated LaAlO3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn4+ incorporation,” Dalton Trans. 48(20), 6738–6745 (2019).
[Crossref]

Int. J. Hydrogen Energy (1)

Y.-Q. Ye, G.-H. Gu, X.-T. Wang, T. Ouyang, Y. Chen, and Z.-Q. Liu, “3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity,” Int. J. Hydrogen Energy 44(39), 21865–21872 (2019).
[Crossref]

J. Alloys Compd. (3)

Y. Zhang, J. Zhou, X. Chen, Q. Feng, and W. Cai, “MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light,” J. Alloys Compd. 777, 109–118 (2019).
[Crossref]

Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan, “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd. 777, 234–243 (2019).
[Crossref]

M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, “Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications,” J. Alloys Compd. 705, 828–839 (2017).
[Crossref]

J. Ceram. Soc. Jpn. (1)

Y. Chen, X. Wu, S. Zeng, J. Li, and J. Lin, “Effect of alkali metal ions on structure and luminescent properties of red emitting -Ca3(PO4)2: Eu3+ phosphor,” J. Ceram. Soc. Jpn. 123(1434), 69–72 (2015).
[Crossref]

J. Mater. Chem. (1)

H. Wang, F. Sun, Y. Zhang, K. Gu, W. Chen, and W. Li, “Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis,” J. Mater. Chem. 21(33), 12407 (2011).
[Crossref]

J. Mater. Chem. A (4)

L. Wei, C. Yu, Q. Zhang, H. Liu, and Y. Wang, “TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels,” J. Mater. Chem. A 6(45), 22411–22436 (2018).
[Crossref]

Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, and Y. Tong, “Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants,” J. Mater. Chem. A 6(48), 24740–24747 (2018).
[Crossref]

S. Pan, X. Zhang, W. Lu, and S. F. Yu, “Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity,” J. Mater. Chem. A 6(38), 18687–18693 (2018).
[Crossref]

K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li, “Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light,” J. Mater. Chem. A 6(27), 13110–13122 (2018).
[Crossref]

J. Mater. Chem. C (1)

E. Zheng, B. Yuh, G. A. Tosado, and Q. Yu, “Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films,” J. Mater. Chem. C 5(15), 3796–3806 (2017).
[Crossref]

J. Phys. Chem. C (1)

R. Ahumada-Lazo, J. A. Alanis, P. Parkinson, D. J. Binks, S. J. O. Hardman, J. T. Griffiths, F. Wisnivesky Rocca Rivarola, C. J. Humphrey, C. Ducati, and N. J. L. K. Davis, “Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals,” J. Phys. Chem. C 123(4), 2651–2657 (2019).
[Crossref]

J. Phys. Chem. Lett. (1)

G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector,” J. Phys. Chem. Lett. 6(19), 3781–3786 (2015).
[Crossref]

J. Power Sources (1)

J. Shi, J. Chen, Y. Li, Y. Zhu, G. Xu, and J. Xu, “Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells,” J. Power Sources 282, 51–57 (2015).
[Crossref]

J. Semicond. (1)

Y. Gao, L. Zhao, Q. Shang, C. Li, Z. Liu, Q. Li, X. Wang, and Q. Zhang, “Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate,” J. Semicond. 40(5), 052201 (2019).
[Crossref]

Low Temp. Phys. (1)

O. N. Yunakova, V. K. Miloslavsky, E. N. Kovalenko, and V. V. Kovalenko, “Effect of structural phase transitions on the exciton absorption spectrum of thin CsPbCl3films,” Low Temp. Phys. 40(8), 690–693 (2014).
[Crossref]

Mater. Lett. (1)

Y. Chen, D. Feng, S. Xu, S. Zeng, and X. Wei, “Synthesis and photoluminescence of Eu2+ doped Lu2CaMg2Si3O12 garnet phosphors,” Mater. Lett. 164, 180–182 (2016).
[Crossref]

Mater. Res. Bull. (1)

X. Guo, J. He, M. Huang, R. Shi, Y. Chen, Y. Huang, J. Zhang, and Z.-Q. Liu, “Photoluminescence and thermal stability of Tb3+-doped K4SrSi3O9 phosphor with electron transition mechanisms,” Mater. Res. Bull. 118, 110523 (2019).
[Crossref]

Nano Energy (1)

C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, B. Zhang, and K. Lv, “High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,” Nano Energy 53, 97–107 (2018).
[Crossref]

Nano Lett. (1)

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett. 15(6), 3692–3696 (2015).
[Crossref]

Nanoscale (2)

A. De, N. Mondal, and A. Samanta, “Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals,” Nanoscale 9(43), 16722–16727 (2017).
[Crossref]

Y. Zhai, X. Bai, G. Pan, J. Zhu, H. Shao, B. Dong, L. Xu, and H. Song, “Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots,” Nanoscale 11(5), 2484–2491 (2019).
[Crossref]

Nat. Commun. (2)

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref]

K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, and S. Liu, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nat. Commun. 9(1), 4544 (2018).
[Crossref]

Nat. Photonics (1)

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11(11), 726–732 (2017).
[Crossref]

Nature (1)

Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, “All-inorganic perovskite nanocrystal scintillators,” Nature 561(7721), 88–93 (2018).
[Crossref]

Opt. Mater. (1)

C. Li, Y. Li, T. Zhou, and R.-J. Xie, “Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence,” Opt. Mater. 94, 41–46 (2019).
[Crossref]

Phys. Chem. Chem. Phys. (1)

S. Chu, S. Pan, and G. Li, “Trap state passivation and photoactivation in wide band gap inorganic perovskite semiconductors,” Phys. Chem. Chem. Phys. 20(39), 25476–25481 (2018).
[Crossref]

Phys. Rev. B (3)

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Phys. Rev. Mater. (1)

P. Zhang, S. Yu, X. Zhang, and S.-H. Wei, “Design of p-type transparent conductors from inverted band structure: The case of inorganic metal halide perovskites,” Phys. Rev. Mater. 3(5), 055201 (2019).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. U. S. A. 113(8), 1993–1998 (2016).
[Crossref]

RSC Adv. (2)

X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, and S. Chen, “High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes,” RSC Adv. 7(17), 10391–10396 (2017).
[Crossref]

J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, and S. Liu, “High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals,” RSC Adv. 7(58), 36722–36727 (2017).
[Crossref]

Small (2)

P. Gui, H. Zhou, F. Yao, Z. Song, B. Li, and G. Fang, “Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection,” Small 15(39), 1902618 (2019).
[Crossref]

P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, and T.-Y. Ma, “Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution,” Small 12(48), 6735–6744 (2016).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. Pan, Z. Rao, Y. Wu, Z. Liu, J. Ge, and S. Zhang, “Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor,” Sol. Energy Mater. Sol. Cells 209, 110477 (2020).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) XRD pattern of an individual CsPbCl3 single crystal. Left inset: optical microscopy of the CsPbCl3 single crystal with enlargement of (002) and (200) peaks; right inset: photograph of the CsPbCl3 single crystal. (b) Optical absorption of CsPbCl3 with tetragonal perovskite structure. Inset: (αhν)2 Tauc plot.
Fig. 2.
Fig. 2. High-resolution XPS analysis of a CsPbCl3 single crystal. (a) XPS valence band spectrum (VBS). Inset: enlargement of VBS around the Fermi level. (b–d) XPS spectra of Cs 3d (b), Pb 4f (c), and Cl 2p (d).
Fig. 3.
Fig. 3. Electronic properties of tetragonal CsPbCl3. (a) Band structure. (b) Total density of states (DOS). (c) Partial density of states (PDOS) for atoms in the unit cell. (d) PDOS for atomic orbitals of atoms in the unit cell.
Fig. 4.
Fig. 4. (a) I−V characteristics of the CsPbCl3 single crystal photodetector measured in the dark and under 320-nm light illumination. (b) Spectral response of the CsPbCl3 single crystal photodetector. (c) Photocurrent and responsivity for different light illumination powers. (d) Detectivity of the photodetector.
Fig. 5.
Fig. 5. (a) On–off switching properties of the CsPbCl3 single crystal photodetector, (b) A single normalized period of the photoresponse for calculating the response times of the devices.

Tables (2)

Tables Icon

Table 1. Comparison of experimental and theoretical values (obtained by PBE and HSE06) of the band gap of tetragonal CsPbCl3.

Tables Icon

Table 2. Comparison of a solution-processed CsPbCl3 single crystal photodetector and other UV photodetectors.