Abstract

A series of single-phase Ca9Ln(PO4)7:Eu2+,Mn2+ (Ln = Gd, La, Lu) phosphors with enhanced quantum yields were successfully developed through a topochemical reduction reaction strategy by using elemental aluminum as the reducing agent. Changes were observed both in the spectral shapes and photoluminescence intensities. New broadband emission covering the whole red region and centered at 630 nm from the remote Al reduced Ca9Ln(PO4)7:Eu2+ phosphors was observed, and their PL intensity was found to be greatly enhanced. The remote Al reduced Ca9Gd(PO4)7:Eu2+ reaches 4.3 times higher PL than the phosphors prepared by the traditional reduction method under CO atmosphere with the optimal Eu2+ dopant content. Finally, enhanced white-light emissions were gradually obtained by co-doping Eu2+ and Mn2+ in Ca9Ln(PO4)7, and the PLQY value is raised from extremely low to 61.6%. The mechanism for the changes of luminescence behavior was studied and discussed. This research also provides an enlightening reference for the preparation and development of high efficiency single-phase white light emitting phosphors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. T. Nien, K. M. Chen, and I. G. Chen, “Improved photoluminescence of Y3Al5O12: Ce nanoparticles by silica coating,” J. Am. Ceram. Soc. 93(6), 1688–1691 (2010).
    [Crossref]
  2. S. Huang and G. G. Li, “Photoluminescence properties of Li2SrGeO4: RE3+ (RE = Ce/Tb/Dy) phosphors and enhanced luminescence through energy transfer between Ce3+ and Tb3+/Dy3+,” Opt. Mater. 36(9), 1555–1560 (2014).
    [Crossref]
  3. C. H. Huang and T. M. Chen, “A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4: Ce3+,Mn2+,Tb3+ phosphor for UV-light emitting diodes,” J. Phys. Chem. C 115(5), 2349–2355 (2011).
    [Crossref]
  4. M. M. Shang, C. X. Li, and J. Lin, “How to produce white light in a single-phase host,” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
    [Crossref]
  5. M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. S. Rao, and D. Haranath, “Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs,” J. Lumin. 202, 475–483 (2018).
    [Crossref]
  6. Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12: Ce3+,Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. 47(38), 10677–10679 (2011).
    [Crossref]
  7. K. Li, M. J. Xu, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Tunable green-yellowish-orange phosphor Na3LuSi2O7: Eu2+,Mn2+ via energy transfer for UV-LEDs,” J. Mater. Chem. C 3(44), 11618–11628 (2015).
    [Crossref]
  8. K. Li, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Sr2Y8(SiO4)6O2: Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C 3(38), 9989–9998 (2015).
    [Crossref]
  9. Y. Tian, Y. Wei, Y. Zhao, Z. W. Quan, G. G. Li, and J. Li, “Photoluminescent tuning of Ca5(PO4)3Cl: Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability,” J. Mater. Chem. C 4(6), 1281–1294 (2016).
    [Crossref]
  10. C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7: Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces 2(1), 259–264 (2010).
    [Crossref]
  11. C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7: Eu2+,Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
    [Crossref]
  12. N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
    [Crossref]
  13. C. C. Zhao, X. Yin, Y. M. Wang, F. Q. Huang, and Y. Hang, “Photoluminescence properties of Ca9Lu(PO4)7: Ce3+,Mn2+ prepared by conventional solid-state reaction,” J. Lumin. 132(3), 617–621 (2012).
    [Crossref]
  14. N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
    [Crossref]
  15. C. H. Huang and T. M. Chen, “Ca9La(PO4)7: Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express 18(5), 5089–5099 (2010).
    [Crossref]
  16. C. H. Huang, P. J. Wu, J. F. Lee, and T. M. Chen, “(Ca,Mg,Sr)9Y(PO4)7: Eu2+,Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer,” J. Mater. Chem. 21(28), 10489–10495 (2011).
    [Crossref]
  17. J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
    [Crossref]
  18. W. R. Liu, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescence and energy transfer mechanism in Ca10K(PO4)7: Eu2+,Mn2+ phosphor,” J. Electrochem. Soc. 156(7), J165–J169 (2009).
    [Crossref]
  19. Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2: Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett. 94(9), 091902 (2009).
    [Crossref]
  20. C. K. Chang and T. M. Chen, “Sr3B2O6: Ce3+,Eu2+: a potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 91(8), 081902 (2007).
    [Crossref]
  21. R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
    [Crossref]
  22. C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
    [Crossref]
  23. K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
    [Crossref]
  24. B. F. Lei, K. I. Machida, T. Horikawa, and H. Hanzawa, “Preparation of Ca2Si5N8: Eu2+,Tm3+ phosphor by calcium hydride and its afterglow properties,” Proc. SPIE 7493, 74936U (2009).
    [Crossref]
  25. G. Kaur Behrh, H. Serier-Brault, S. Jobic, and R. Gautier, “A chemical route towards single-phase materials with controllable photoluminescence,” Angew. Chem., Int. Ed. 54(39), 11501–11503 (2015).
    [Crossref]
  26. K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
    [Crossref]
  27. L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
    [Crossref]
  28. T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
    [Crossref]
  29. G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
    [Crossref]
  30. Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
    [Crossref]
  31. J. S. Hou, W. Z. Jiang, Y. Z. Fang, and F. Q. Huang, “Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2: Ce3+,Eu2+,Eu3+ phosphor,” J. Mater. Chem. C 1(37), 5892–5898 (2013).
    [Crossref]
  32. B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
    [Crossref]
  33. A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
    [Crossref]
  34. V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
    [Crossref]
  35. F. P. Du, Y. Nakai, T. Tsuboi, Y. L. Huang, and H. J. Seo, “Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu),” J. Mater. Chem. 21(12), 4669–4678 (2011).
    [Crossref]
  36. R. Ma, C. Y. Ma, J. T. Zhang, J. Q. Long, Z. C. Wen, X. Y. Yuan, and Y. G. Cao, “Energy transfer properties and enhanced color rendring index of chromaticity tunable green-yellow-red-emitting Y3Al5O12: Ce3+,Cr3+ phosphors for white-emitting diodes,” Opt. Mater. Express 7(2), 454–467 (2017).
    [Crossref]
  37. J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
    [Crossref]
  38. Z. P. Ci, Q. S. Sun, M. X. Sun, X. J. Jiang, S. C. Qin, and Y. H. Wang, “Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor,” J. Mater. Chem. C 2(29), 5850–5856 (2014).
    [Crossref]
  39. F. W. Kang, Y. Zhang, and M. Y. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5: Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
    [Crossref]
  40. D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
    [Crossref]
  41. L. A. Moreno, “Absolute quantum yield measurement of powder samples,” J. Vis. Exp. (63), e3066 (2012).
    [Crossref]
  42. M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
    [Crossref]
  43. N. Guo, Y. H. Zheng, Y. C. Jia, H. Qiao, and H. P. You, “Warm-white-emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116(1), 1329–1334 (2012).
    [Crossref]

2019 (1)

J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
[Crossref]

2018 (1)

M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. S. Rao, and D. Haranath, “Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs,” J. Lumin. 202, 475–483 (2018).
[Crossref]

2017 (1)

2016 (4)

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

Y. Tian, Y. Wei, Y. Zhao, Z. W. Quan, G. G. Li, and J. Li, “Photoluminescent tuning of Ca5(PO4)3Cl: Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability,” J. Mater. Chem. C 4(6), 1281–1294 (2016).
[Crossref]

2015 (4)

K. Li, M. J. Xu, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Tunable green-yellowish-orange phosphor Na3LuSi2O7: Eu2+,Mn2+ via energy transfer for UV-LEDs,” J. Mater. Chem. C 3(44), 11618–11628 (2015).
[Crossref]

K. Li, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Sr2Y8(SiO4)6O2: Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C 3(38), 9989–9998 (2015).
[Crossref]

G. Kaur Behrh, H. Serier-Brault, S. Jobic, and R. Gautier, “A chemical route towards single-phase materials with controllable photoluminescence,” Angew. Chem., Int. Ed. 54(39), 11501–11503 (2015).
[Crossref]

F. W. Kang, Y. Zhang, and M. Y. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5: Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref]

2014 (4)

Z. P. Ci, Q. S. Sun, M. X. Sun, X. J. Jiang, S. C. Qin, and Y. H. Wang, “Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor,” J. Mater. Chem. C 2(29), 5850–5856 (2014).
[Crossref]

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

S. Huang and G. G. Li, “Photoluminescence properties of Li2SrGeO4: RE3+ (RE = Ce/Tb/Dy) phosphors and enhanced luminescence through energy transfer between Ce3+ and Tb3+/Dy3+,” Opt. Mater. 36(9), 1555–1560 (2014).
[Crossref]

M. M. Shang, C. X. Li, and J. Lin, “How to produce white light in a single-phase host,” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref]

2013 (3)

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

J. S. Hou, W. Z. Jiang, Y. Z. Fang, and F. Q. Huang, “Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2: Ce3+,Eu2+,Eu3+ phosphor,” J. Mater. Chem. C 1(37), 5892–5898 (2013).
[Crossref]

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

2012 (4)

C. C. Zhao, X. Yin, Y. M. Wang, F. Q. Huang, and Y. Hang, “Photoluminescence properties of Ca9Lu(PO4)7: Ce3+,Mn2+ prepared by conventional solid-state reaction,” J. Lumin. 132(3), 617–621 (2012).
[Crossref]

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

N. Guo, Y. H. Zheng, Y. C. Jia, H. Qiao, and H. P. You, “Warm-white-emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116(1), 1329–1334 (2012).
[Crossref]

2011 (6)

F. P. Du, Y. Nakai, T. Tsuboi, Y. L. Huang, and H. J. Seo, “Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu),” J. Mater. Chem. 21(12), 4669–4678 (2011).
[Crossref]

C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
[Crossref]

C. H. Huang, P. J. Wu, J. F. Lee, and T. M. Chen, “(Ca,Mg,Sr)9Y(PO4)7: Eu2+,Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer,” J. Mater. Chem. 21(28), 10489–10495 (2011).
[Crossref]

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

C. H. Huang and T. M. Chen, “A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4: Ce3+,Mn2+,Tb3+ phosphor for UV-light emitting diodes,” J. Phys. Chem. C 115(5), 2349–2355 (2011).
[Crossref]

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12: Ce3+,Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. 47(38), 10677–10679 (2011).
[Crossref]

2010 (6)

Y. T. Nien, K. M. Chen, and I. G. Chen, “Improved photoluminescence of Y3Al5O12: Ce nanoparticles by silica coating,” J. Am. Ceram. Soc. 93(6), 1688–1691 (2010).
[Crossref]

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7: Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces 2(1), 259–264 (2010).
[Crossref]

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7: Eu2+,Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref]

C. H. Huang and T. M. Chen, “Ca9La(PO4)7: Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express 18(5), 5089–5099 (2010).
[Crossref]

2009 (4)

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

B. F. Lei, K. I. Machida, T. Horikawa, and H. Hanzawa, “Preparation of Ca2Si5N8: Eu2+,Tm3+ phosphor by calcium hydride and its afterglow properties,” Proc. SPIE 7493, 74936U (2009).
[Crossref]

W. R. Liu, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescence and energy transfer mechanism in Ca10K(PO4)7: Eu2+,Mn2+ phosphor,” J. Electrochem. Soc. 156(7), J165–J169 (2009).
[Crossref]

Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2: Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett. 94(9), 091902 (2009).
[Crossref]

2007 (1)

C. K. Chang and T. M. Chen, “Sr3B2O6: Ce3+,Eu2+: a potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 91(8), 081902 (2007).
[Crossref]

2002 (2)

A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
[Crossref]

V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
[Crossref]

1954 (1)

D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

Belik, A. A.

V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
[Crossref]

A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
[Crossref]

Bouilly, G.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

Cao, C. Y.

C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
[Crossref]

Cao, Y. G.

R. Ma, C. Y. Ma, J. T. Zhang, J. Q. Long, Z. C. Wen, X. Y. Yuan, and Y. G. Cao, “Energy transfer properties and enhanced color rendring index of chromaticity tunable green-yellow-red-emitting Y3Al5O12: Ce3+,Cr3+ phosphors for white-emitting diodes,” Opt. Mater. Express 7(2), 454–467 (2017).
[Crossref]

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Chang, C. K.

C. K. Chang and T. M. Chen, “Sr3B2O6: Ce3+,Eu2+: a potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 91(8), 081902 (2007).
[Crossref]

Chen, I. G.

Y. T. Nien, K. M. Chen, and I. G. Chen, “Improved photoluminescence of Y3Al5O12: Ce nanoparticles by silica coating,” J. Am. Ceram. Soc. 93(6), 1688–1691 (2010).
[Crossref]

Chen, K. M.

Y. T. Nien, K. M. Chen, and I. G. Chen, “Improved photoluminescence of Y3Al5O12: Ce nanoparticles by silica coating,” J. Am. Ceram. Soc. 93(6), 1688–1691 (2010).
[Crossref]

Chen, P.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Chen, T. M.

C. H. Huang, P. J. Wu, J. F. Lee, and T. M. Chen, “(Ca,Mg,Sr)9Y(PO4)7: Eu2+,Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer,” J. Mater. Chem. 21(28), 10489–10495 (2011).
[Crossref]

C. H. Huang and T. M. Chen, “A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4: Ce3+,Mn2+,Tb3+ phosphor for UV-light emitting diodes,” J. Phys. Chem. C 115(5), 2349–2355 (2011).
[Crossref]

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7: Eu2+,Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7: Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces 2(1), 259–264 (2010).
[Crossref]

C. H. Huang and T. M. Chen, “Ca9La(PO4)7: Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express 18(5), 5089–5099 (2010).
[Crossref]

W. R. Liu, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescence and energy transfer mechanism in Ca10K(PO4)7: Eu2+,Mn2+ phosphor,” J. Electrochem. Soc. 156(7), J165–J169 (2009).
[Crossref]

C. K. Chang and T. M. Chen, “Sr3B2O6: Ce3+,Eu2+: a potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 91(8), 081902 (2007).
[Crossref]

Chen, X. Y.

J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
[Crossref]

Chiu, Y. C.

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7: Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces 2(1), 259–264 (2010).
[Crossref]

W. R. Liu, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescence and energy transfer mechanism in Ca10K(PO4)7: Eu2+,Mn2+ phosphor,” J. Electrochem. Soc. 156(7), J165–J169 (2009).
[Crossref]

Choi, B. C.

C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
[Crossref]

Chung, J. W.

C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
[Crossref]

Ci, Z. P.

Z. P. Ci, Q. S. Sun, M. X. Sun, X. J. Jiang, S. C. Qin, and Y. H. Wang, “Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor,” J. Mater. Chem. C 2(29), 5850–5856 (2014).
[Crossref]

Dexter, D. L.

D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

Du, F. P.

F. P. Du, Y. Nakai, T. Tsuboi, Y. L. Huang, and H. J. Seo, “Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu),” J. Mater. Chem. 21(12), 4669–4678 (2011).
[Crossref]

Du, M. M.

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Fan, J.

K. Li, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Sr2Y8(SiO4)6O2: Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C 3(38), 9989–9998 (2015).
[Crossref]

K. Li, M. J. Xu, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Tunable green-yellowish-orange phosphor Na3LuSi2O7: Eu2+,Mn2+ via energy transfer for UV-LEDs,” J. Mater. Chem. C 3(44), 11618–11628 (2015).
[Crossref]

Fang, Y. Z.

J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
[Crossref]

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

J. S. Hou, W. Z. Jiang, Y. Z. Fang, and F. Q. Huang, “Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2: Ce3+,Eu2+,Eu3+ phosphor,” J. Mater. Chem. C 1(37), 5892–5898 (2013).
[Crossref]

Fujita, K.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

Gautier, R.

G. Kaur Behrh, H. Serier-Brault, S. Jobic, and R. Gautier, “A chemical route towards single-phase materials with controllable photoluminescence,” Angew. Chem., Int. Ed. 54(39), 11501–11503 (2015).
[Crossref]

Geng, D. L.

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Grebenev, V. V.

V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
[Crossref]

Guo, N.

N. Guo, Y. H. Zheng, Y. C. Jia, H. Qiao, and H. P. You, “Warm-white-emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116(1), 1329–1334 (2012).
[Crossref]

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref]

Hang, Y.

C. C. Zhao, X. Yin, Y. M. Wang, F. Q. Huang, and Y. Hang, “Photoluminescence properties of Ca9Lu(PO4)7: Ce3+,Mn2+ prepared by conventional solid-state reaction,” J. Lumin. 132(3), 617–621 (2012).
[Crossref]

Hanzawa, H.

B. F. Lei, K. I. Machida, T. Horikawa, and H. Hanzawa, “Preparation of Ca2Si5N8: Eu2+,Tm3+ phosphor by calcium hydride and its afterglow properties,” Proc. SPIE 7493, 74936U (2009).
[Crossref]

Hao, Z. D.

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12: Ce3+,Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. 47(38), 10677–10679 (2011).
[Crossref]

Haranath, D.

M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. S. Rao, and D. Haranath, “Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs,” J. Lumin. 202, 475–483 (2018).
[Crossref]

Hayashi, N.

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Horikawa, T.

B. F. Lei, K. I. Machida, T. Horikawa, and H. Hanzawa, “Preparation of Ca2Si5N8: Eu2+,Tm3+ phosphor by calcium hydride and its afterglow properties,” Proc. SPIE 7493, 74936U (2009).
[Crossref]

Hou, J. S.

J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
[Crossref]

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

J. S. Hou, W. Z. Jiang, Y. Z. Fang, and F. Q. Huang, “Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2: Ce3+,Eu2+,Eu3+ phosphor,” J. Mater. Chem. C 1(37), 5892–5898 (2013).
[Crossref]

Huang, C. H.

C. H. Huang, P. J. Wu, J. F. Lee, and T. M. Chen, “(Ca,Mg,Sr)9Y(PO4)7: Eu2+,Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer,” J. Mater. Chem. 21(28), 10489–10495 (2011).
[Crossref]

C. H. Huang and T. M. Chen, “A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4: Ce3+,Mn2+,Tb3+ phosphor for UV-light emitting diodes,” J. Phys. Chem. C 115(5), 2349–2355 (2011).
[Crossref]

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7: Eu2+,Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7: Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces 2(1), 259–264 (2010).
[Crossref]

C. H. Huang and T. M. Chen, “Ca9La(PO4)7: Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express 18(5), 5089–5099 (2010).
[Crossref]

Huang, F. Q.

J. S. Hou, W. Z. Jiang, Y. Z. Fang, and F. Q. Huang, “Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2: Ce3+,Eu2+,Eu3+ phosphor,” J. Mater. Chem. C 1(37), 5892–5898 (2013).
[Crossref]

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

C. C. Zhao, X. Yin, Y. M. Wang, F. Q. Huang, and Y. Hang, “Photoluminescence properties of Ca9Lu(PO4)7: Ce3+,Mn2+ prepared by conventional solid-state reaction,” J. Lumin. 132(3), 617–621 (2012).
[Crossref]

Huang, S.

S. Huang and G. G. Li, “Photoluminescence properties of Li2SrGeO4: RE3+ (RE = Ce/Tb/Dy) phosphors and enhanced luminescence through energy transfer between Ce3+ and Tb3+/Dy3+,” Opt. Mater. 36(9), 1555–1560 (2014).
[Crossref]

Huang, Y. J.

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref]

Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2: Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett. 94(9), 091902 (2009).
[Crossref]

Huang, Y. L.

F. P. Du, Y. Nakai, T. Tsuboi, Y. L. Huang, and H. J. Seo, “Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu),” J. Mater. Chem. 21(12), 4669–4678 (2011).
[Crossref]

Ikeda, T.

A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
[Crossref]

Izumi, F.

A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
[Crossref]

Jang, S. M.

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7: Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces 2(1), 259–264 (2010).
[Crossref]

W. R. Liu, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescence and energy transfer mechanism in Ca10K(PO4)7: Eu2+,Mn2+ phosphor,” J. Electrochem. Soc. 156(7), J165–J169 (2009).
[Crossref]

Jayasimhadri, M.

M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. S. Rao, and D. Haranath, “Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs,” J. Lumin. 202, 475–483 (2018).
[Crossref]

Jeong, J. H.

C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
[Crossref]

Jha, K.

M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. S. Rao, and D. Haranath, “Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs,” J. Lumin. 202, 475–483 (2018).
[Crossref]

Jia, G.

Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2: Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett. 94(9), 091902 (2009).
[Crossref]

Jia, Y. C.

N. Guo, Y. H. Zheng, Y. C. Jia, H. Qiao, and H. P. You, “Warm-white-emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116(1), 1329–1334 (2012).
[Crossref]

Jiang, M. H.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Jiang, W. Z.

J. S. Hou, W. Z. Jiang, Y. Z. Fang, and F. Q. Huang, “Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2: Ce3+,Eu2+,Eu3+ phosphor,” J. Mater. Chem. C 1(37), 5892–5898 (2013).
[Crossref]

Jiang, X. J.

Z. P. Ci, Q. S. Sun, M. X. Sun, X. J. Jiang, S. C. Qin, and Y. H. Wang, “Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor,” J. Mater. Chem. C 2(29), 5850–5856 (2014).
[Crossref]

Jobic, S.

G. Kaur Behrh, H. Serier-Brault, S. Jobic, and R. Gautier, “A chemical route towards single-phase materials with controllable photoluminescence,” Angew. Chem., Int. Ed. 54(39), 11501–11503 (2015).
[Crossref]

Kageyama, H.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Kang, F. W.

F. W. Kang, Y. Zhang, and M. Y. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5: Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref]

Kang, X. J.

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Kasahara, S.

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

Kaur Behrh, G.

G. Kaur Behrh, H. Serier-Brault, S. Jobic, and R. Gautier, “A chemical route towards single-phase materials with controllable photoluminescence,” Angew. Chem., Int. Ed. 54(39), 11501–11503 (2015).
[Crossref]

Kim, K. H.

C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
[Crossref]

Kitada, A.

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Kobayashi, Y.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Kohara, K.

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

Kurata, H.

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

Kususe, Y.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

Lazoryak, B. I.

V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
[Crossref]

A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
[Crossref]

Lebedev, O. I.

V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
[Crossref]

Lee, J. F.

C. H. Huang, P. J. Wu, J. F. Lee, and T. M. Chen, “(Ca,Mg,Sr)9Y(PO4)7: Eu2+,Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer,” J. Mater. Chem. 21(28), 10489–10495 (2011).
[Crossref]

Lei, B. F.

B. F. Lei, K. I. Machida, T. Horikawa, and H. Hanzawa, “Preparation of Ca2Si5N8: Eu2+,Tm3+ phosphor by calcium hydride and its afterglow properties,” Proc. SPIE 7493, 74936U (2009).
[Crossref]

Li, C. X.

M. M. Shang, C. X. Li, and J. Lin, “How to produce white light in a single-phase host,” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref]

Li, C. Y.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

Li, G. G.

Y. Tian, Y. Wei, Y. Zhao, Z. W. Quan, G. G. Li, and J. Li, “Photoluminescent tuning of Ca5(PO4)3Cl: Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability,” J. Mater. Chem. C 4(6), 1281–1294 (2016).
[Crossref]

S. Huang and G. G. Li, “Photoluminescence properties of Li2SrGeO4: RE3+ (RE = Ce/Tb/Dy) phosphors and enhanced luminescence through energy transfer between Ce3+ and Tb3+/Dy3+,” Opt. Mater. 36(9), 1555–1560 (2014).
[Crossref]

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Li, J.

Y. Tian, Y. Wei, Y. Zhao, Z. W. Quan, G. G. Li, and J. Li, “Photoluminescent tuning of Ca5(PO4)3Cl: Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability,” J. Mater. Chem. C 4(6), 1281–1294 (2016).
[Crossref]

K. Li, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Sr2Y8(SiO4)6O2: Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C 3(38), 9989–9998 (2015).
[Crossref]

K. Li, M. J. Xu, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Tunable green-yellowish-orange phosphor Na3LuSi2O7: Eu2+,Mn2+ via energy transfer for UV-LEDs,” J. Mater. Chem. C 3(44), 11618–11628 (2015).
[Crossref]

Li, J. T.

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Li, K.

K. Li, M. J. Xu, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Tunable green-yellowish-orange phosphor Na3LuSi2O7: Eu2+,Mn2+ via energy transfer for UV-LEDs,” J. Mater. Chem. C 3(44), 11618–11628 (2015).
[Crossref]

K. Li, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Sr2Y8(SiO4)6O2: Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C 3(38), 9989–9998 (2015).
[Crossref]

Li, L. N.

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

Li, Y.

J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
[Crossref]

Lian, H. Z.

K. Li, M. J. Xu, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Tunable green-yellowish-orange phosphor Na3LuSi2O7: Eu2+,Mn2+ via energy transfer for UV-LEDs,” J. Mater. Chem. C 3(44), 11618–11628 (2015).
[Crossref]

K. Li, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Sr2Y8(SiO4)6O2: Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C 3(38), 9989–9998 (2015).
[Crossref]

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Lin, J.

M. M. Shang, C. X. Li, and J. Lin, “How to produce white light in a single-phase host,” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref]

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Lin, J. H.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Lin, T. Q.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Liu, B. M.

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

Liu, K.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref]

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

Liu, W. R.

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7: Eu2+,Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7: Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces 2(1), 259–264 (2010).
[Crossref]

W. R. Liu, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescence and energy transfer mechanism in Ca10K(PO4)7: Eu2+,Mn2+ phosphor,” J. Electrochem. Soc. 156(7), J165–J169 (2009).
[Crossref]

Liu, Y. F.

J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
[Crossref]

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12: Ce3+,Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. 47(38), 10677–10679 (2011).
[Crossref]

Long, J. Q.

R. Ma, C. Y. Ma, J. T. Zhang, J. Q. Long, Z. C. Wen, X. Y. Yuan, and Y. G. Cao, “Energy transfer properties and enhanced color rendring index of chromaticity tunable green-yellow-red-emitting Y3Al5O12: Ce3+,Cr3+ phosphors for white-emitting diodes,” Opt. Mater. Express 7(2), 454–467 (2017).
[Crossref]

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Ma, C. Y.

R. Ma, C. Y. Ma, J. T. Zhang, J. Q. Long, Z. C. Wen, X. Y. Yuan, and Y. G. Cao, “Energy transfer properties and enhanced color rendring index of chromaticity tunable green-yellow-red-emitting Y3Al5O12: Ce3+,Cr3+ phosphors for white-emitting diodes,” Opt. Mater. Express 7(2), 454–467 (2017).
[Crossref]

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Ma, R.

R. Ma, C. Y. Ma, J. T. Zhang, J. Q. Long, Z. C. Wen, X. Y. Yuan, and Y. G. Cao, “Energy transfer properties and enhanced color rendring index of chromaticity tunable green-yellow-red-emitting Y3Al5O12: Ce3+,Cr3+ phosphors for white-emitting diodes,” Opt. Mater. Express 7(2), 454–467 (2017).
[Crossref]

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Machida, K. I.

B. F. Lei, K. I. Machida, T. Horikawa, and H. Hanzawa, “Preparation of Ca2Si5N8: Eu2+,Tm3+ phosphor by calcium hydride and its afterglow properties,” Proc. SPIE 7493, 74936U (2009).
[Crossref]

Malakho, A. P.

A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
[Crossref]

Moon, B. K.

C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
[Crossref]

Moreno, L. A.

L. A. Moreno, “Absolute quantum yield measurement of powder samples,” J. Vis. Exp. (63), e3066 (2012).
[Crossref]

Morozov, V. A.

A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
[Crossref]

V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
[Crossref]

Murakami, T.

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

Nakai, Y.

F. P. Du, Y. Nakai, T. Tsuboi, Y. L. Huang, and H. J. Seo, “Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu),” J. Mater. Chem. 21(12), 4669–4678 (2011).
[Crossref]

Nien, Y. T.

Y. T. Nien, K. M. Chen, and I. G. Chen, “Improved photoluminescence of Y3Al5O12: Ce nanoparticles by silica coating,” J. Am. Ceram. Soc. 93(6), 1688–1691 (2010).
[Crossref]

Nishi, M.

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Ogawa, T.

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

Ohoyama, K.

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Okui, M.

A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
[Crossref]

Pan, C. X.

J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
[Crossref]

Pang, R.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

Paulus, W.

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Peng, M. Y.

F. W. Kang, Y. Zhang, and M. Y. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5: Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref]

Qiao, H.

N. Guo, Y. H. Zheng, Y. C. Jia, H. Qiao, and H. P. You, “Warm-white-emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116(1), 1329–1334 (2012).
[Crossref]

Qin, S. C.

Z. P. Ci, Q. S. Sun, M. X. Sun, X. J. Jiang, S. C. Qin, and Y. H. Wang, “Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor,” J. Mater. Chem. C 2(29), 5850–5856 (2014).
[Crossref]

Quan, Z. W.

Y. Tian, Y. Wei, Y. Zhao, Z. W. Quan, G. G. Li, and J. Li, “Photoluminescent tuning of Ca5(PO4)3Cl: Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability,” J. Mater. Chem. C 4(6), 1281–1294 (2016).
[Crossref]

Rao, A. S.

M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. S. Rao, and D. Haranath, “Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs,” J. Lumin. 202, 475–483 (2018).
[Crossref]

Sahu, M. K.

M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. S. Rao, and D. Haranath, “Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs,” J. Lumin. 202, 475–483 (2018).
[Crossref]

Sakaguchi, T.

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

Schulman, J. H.

D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

Seinberg, L.

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Seo, H. J.

F. P. Du, Y. Nakai, T. Tsuboi, Y. L. Huang, and H. J. Seo, “Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu),” J. Mater. Chem. 21(12), 4669–4678 (2011).
[Crossref]

Serier-Brault, H.

G. Kaur Behrh, H. Serier-Brault, S. Jobic, and R. Gautier, “A chemical route towards single-phase materials with controllable photoluminescence,” Angew. Chem., Int. Ed. 54(39), 11501–11503 (2015).
[Crossref]

Shang, M. M.

K. Li, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Sr2Y8(SiO4)6O2: Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C 3(38), 9989–9998 (2015).
[Crossref]

K. Li, M. J. Xu, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Tunable green-yellowish-orange phosphor Na3LuSi2O7: Eu2+,Mn2+ via energy transfer for UV-LEDs,” J. Mater. Chem. C 3(44), 11618–11628 (2015).
[Crossref]

M. M. Shang, C. X. Li, and J. Lin, “How to produce white light in a single-phase host,” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref]

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Shi, L. L.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

Sivaiah, B.

M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. S. Rao, and D. Haranath, “Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs,” J. Lumin. 202, 475–483 (2018).
[Crossref]

Song, Y. H.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref]

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2: Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett. 94(9), 091902 (2009).
[Crossref]

Stefanovich, S. Yu.

V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
[Crossref]

Su, Q.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

Sumida, Y.

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Sun, H. T.

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

Sun, M. X.

Z. P. Ci, Q. S. Sun, M. X. Sun, X. J. Jiang, S. C. Qin, and Y. H. Wang, “Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor,” J. Mater. Chem. C 2(29), 5850–5856 (2014).
[Crossref]

Sun, Q. S.

Z. P. Ci, Q. S. Sun, M. X. Sun, X. J. Jiang, S. C. Qin, and Y. H. Wang, “Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor,” J. Mater. Chem. C 2(29), 5850–5856 (2014).
[Crossref]

Takano, M.

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Tanaka, K.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

Tassel, C.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Tendeloo, G. V.

V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
[Crossref]

Terashima, T.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

Tian, Y.

Y. Tian, Y. Wei, Y. Zhao, Z. W. Quan, G. G. Li, and J. Li, “Photoluminescent tuning of Ca5(PO4)3Cl: Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability,” J. Mater. Chem. C 4(6), 1281–1294 (2016).
[Crossref]

Tsuboi, T.

F. P. Du, Y. Nakai, T. Tsuboi, Y. L. Huang, and H. J. Seo, “Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu),” J. Mater. Chem. 21(12), 4669–4678 (2011).
[Crossref]

Tsujimoto, M.

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

Wan, D. Y.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Wang, X. J.

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12: Ce3+,Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. 47(38), 10677–10679 (2011).
[Crossref]

Wang, Y. H.

Z. P. Ci, Q. S. Sun, M. X. Sun, X. J. Jiang, S. C. Qin, and Y. H. Wang, “Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor,” J. Mater. Chem. C 2(29), 5850–5856 (2014).
[Crossref]

Wang, Y. M.

C. C. Zhao, X. Yin, Y. M. Wang, F. Q. Huang, and Y. Hang, “Photoluminescence properties of Ca9Lu(PO4)7: Ce3+,Mn2+ prepared by conventional solid-state reaction,” J. Lumin. 132(3), 617–621 (2012).
[Crossref]

Wang, Z.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Watanabe, T.

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Wei, Y.

Y. Tian, Y. Wei, Y. Zhao, Z. W. Quan, G. G. Li, and J. Li, “Photoluminescent tuning of Ca5(PO4)3Cl: Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability,” J. Mater. Chem. C 4(6), 1281–1294 (2016).
[Crossref]

Wen, Z. C.

R. Ma, C. Y. Ma, J. T. Zhang, J. Q. Long, Z. C. Wen, X. Y. Yuan, and Y. G. Cao, “Energy transfer properties and enhanced color rendring index of chromaticity tunable green-yellow-red-emitting Y3Al5O12: Ce3+,Cr3+ phosphors for white-emitting diodes,” Opt. Mater. Express 7(2), 454–467 (2017).
[Crossref]

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Wu, P. J.

C. H. Huang, P. J. Wu, J. F. Lee, and T. M. Chen, “(Ca,Mg,Sr)9Y(PO4)7: Eu2+,Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer,” J. Mater. Chem. 21(28), 10489–10495 (2011).
[Crossref]

Xie, X. M.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Xu, F. F.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Xu, M. J.

K. Li, M. J. Xu, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Tunable green-yellowish-orange phosphor Na3LuSi2O7: Eu2+,Mn2+ via energy transfer for UV-LEDs,” J. Mater. Chem. C 3(44), 11618–11628 (2015).
[Crossref]

Yajima, T.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

Yamamoto, S.

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

Yamamoto, T.

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

Yang, C. Y.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Yang, D. M.

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Yang, H. K.

C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
[Crossref]

Yang, M.

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref]

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2: Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett. 94(9), 091902 (2009).
[Crossref]

Yeh, Y. T.

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7: Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces 2(1), 259–264 (2010).
[Crossref]

W. R. Liu, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescence and energy transfer mechanism in Ca10K(PO4)7: Eu2+,Mn2+ phosphor,” J. Electrochem. Soc. 156(7), J165–J169 (2009).
[Crossref]

Yin, H.

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Yin, X.

C. C. Zhao, X. Yin, Y. M. Wang, F. Q. Huang, and Y. Hang, “Photoluminescence properties of Ca9Lu(PO4)7: Ce3+,Mn2+ prepared by conventional solid-state reaction,” J. Lumin. 132(3), 617–621 (2012).
[Crossref]

Yong, Z. J.

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

Yoshimura, K.

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

You, H. P.

N. Guo, Y. H. Zheng, Y. C. Jia, H. Qiao, and H. P. You, “Warm-white-emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116(1), 1329–1334 (2012).
[Crossref]

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref]

Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2: Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett. 94(9), 091902 (2009).
[Crossref]

Yu, H. M.

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

Yuan, X. Y.

R. Ma, C. Y. Ma, J. T. Zhang, J. Q. Long, Z. C. Wen, X. Y. Yuan, and Y. G. Cao, “Energy transfer properties and enhanced color rendring index of chromaticity tunable green-yellow-red-emitting Y3Al5O12: Ce3+,Cr3+ phosphors for white-emitting diodes,” Opt. Mater. Express 7(2), 454–467 (2017).
[Crossref]

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Zhang, H. J.

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2: Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett. 94(9), 091902 (2009).
[Crossref]

Zhang, J. H.

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12: Ce3+,Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. 47(38), 10677–10679 (2011).
[Crossref]

Zhang, J. T.

R. Ma, C. Y. Ma, J. T. Zhang, J. Q. Long, Z. C. Wen, X. Y. Yuan, and Y. G. Cao, “Energy transfer properties and enhanced color rendring index of chromaticity tunable green-yellow-red-emitting Y3Al5O12: Ce3+,Cr3+ phosphors for white-emitting diodes,” Opt. Mater. Express 7(2), 454–467 (2017).
[Crossref]

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Zhang, K.

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

Zhang, X.

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12: Ce3+,Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. 47(38), 10677–10679 (2011).
[Crossref]

Zhang, Y.

F. W. Kang, Y. Zhang, and M. Y. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5: Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref]

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Zhao, C. C.

C. C. Zhao, X. Yin, Y. M. Wang, F. Q. Huang, and Y. Hang, “Photoluminescence properties of Ca9Lu(PO4)7: Ce3+,Mn2+ prepared by conventional solid-state reaction,” J. Lumin. 132(3), 617–621 (2012).
[Crossref]

Zhao, G. Y.

J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
[Crossref]

Zhao, Y.

Y. Tian, Y. Wei, Y. Zhao, Z. W. Quan, G. G. Li, and J. Li, “Photoluminescent tuning of Ca5(PO4)3Cl: Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability,” J. Mater. Chem. C 4(6), 1281–1294 (2016).
[Crossref]

Zheng, L. R.

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

Zheng, Y. H.

N. Guo, Y. H. Zheng, Y. C. Jia, H. Qiao, and H. P. You, “Warm-white-emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116(1), 1329–1334 (2012).
[Crossref]

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref]

Zhou, D. D.

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

Zhou, Y.

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7: Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces 2(1), 259–264 (2010).
[Crossref]

Angew. Chem., Int. Ed. (1)

G. Kaur Behrh, H. Serier-Brault, S. Jobic, and R. Gautier, “A chemical route towards single-phase materials with controllable photoluminescence,” Angew. Chem., Int. Ed. 54(39), 11501–11503 (2015).
[Crossref]

Appl. Phys. Lett. (2)

Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2: Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett. 94(9), 091902 (2009).
[Crossref]

C. K. Chang and T. M. Chen, “Sr3B2O6: Ce3+,Eu2+: a potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 91(8), 081902 (2007).
[Crossref]

Chem. Commun. (2)

K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, and M. Takano, “Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications,” Chem. Commun. 49(25), 2563–2565 (2013).
[Crossref]

Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, and J. H. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12: Ce3+,Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. 47(38), 10677–10679 (2011).
[Crossref]

Chem. Soc. Rev. (1)

M. M. Shang, C. X. Li, and J. Lin, “How to produce white light in a single-phase host,” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref]

CrystEngComm (1)

G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, “Substrate-induced anion rearrangement in epitaxial thin films of LaSrCoO4−xHx,” CrystEngComm 16(41), 9669–9674 (2014).
[Crossref]

Energy Environ. Sci. (1)

Z. Wang, C. Y. Yang, T. Q. Lin, H. Yin, P. Chen, D. Y. Wan, F. F. Xu, F. Q. Huang, J. H. Lin, X. M. Xie, and M. H. Jiang, “Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania,” Energy Environ. Sci. 6(10), 3007–3014 (2013).
[Crossref]

Inorg. Chem. (3)

L. Seinberg, T. Yamamoto, C. Tassel, Y. Kobayashi, N. Hayashi, A. Kitada, Y. Sumida, T. Watanabe, M. Nishi, K. Ohoyama, K. Yoshimura, M. Takano, W. Paulus, and H. Kageyama, “Fe-site substitution effect on the structural and magnetic properties in SrFeO2,” Inorg. Chem. 50(9), 3988–3995 (2011).
[Crossref]

N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, and Y. H. Zheng, “Ca9Lu(PO4)7: Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref]

F. W. Kang, Y. Zhang, and M. Y. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5: Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

Y. T. Nien, K. M. Chen, and I. G. Chen, “Improved photoluminescence of Y3Al5O12: Ce nanoparticles by silica coating,” J. Am. Ceram. Soc. 93(6), 1688–1691 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, “Epitaxial thin films of ATiO3−xHx (A = Ba,Sr,Ca) with metallic conductivity,” J. Am. Chem. Soc. 134(21), 8782–8785 (2012).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

J. Electrochem. Soc. (1)

W. R. Liu, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescence and energy transfer mechanism in Ca10K(PO4)7: Eu2+,Mn2+ phosphor,” J. Electrochem. Soc. 156(7), J165–J169 (2009).
[Crossref]

J. Lumin. (2)

C. C. Zhao, X. Yin, Y. M. Wang, F. Q. Huang, and Y. Hang, “Photoluminescence properties of Ca9Lu(PO4)7: Ce3+,Mn2+ prepared by conventional solid-state reaction,” J. Lumin. 132(3), 617–621 (2012).
[Crossref]

M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. S. Rao, and D. Haranath, “Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs,” J. Lumin. 202, 475–483 (2018).
[Crossref]

J. Mater. Chem. (4)

C. H. Huang, P. J. Wu, J. F. Lee, and T. M. Chen, “(Ca,Mg,Sr)9Y(PO4)7: Eu2+,Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer,” J. Mater. Chem. 21(28), 10489–10495 (2011).
[Crossref]

N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, and H. J. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7: Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes,” J. Mater. Chem. 20(41), 9061–9067 (2010).
[Crossref]

C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals,” J. Mater. Chem. 21(28), 10342 (2011).
[Crossref]

F. P. Du, Y. Nakai, T. Tsuboi, Y. L. Huang, and H. J. Seo, “Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu),” J. Mater. Chem. 21(12), 4669–4678 (2011).
[Crossref]

J. Mater. Chem. C (6)

J. S. Hou, W. Z. Jiang, Y. Z. Fang, and F. Q. Huang, “Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2: Ce3+,Eu2+,Eu3+ phosphor,” J. Mater. Chem. C 1(37), 5892–5898 (2013).
[Crossref]

B. M. Liu, Z. J. Yong, Y. Zhou, D. D. Zhou, L. R. Zheng, L. N. Li, H. M. Yu, and H. T. Sun, “Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals,” J. Mater. Chem. C 4(40), 9489–9498 (2016).
[Crossref]

K. Li, M. J. Xu, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Tunable green-yellowish-orange phosphor Na3LuSi2O7: Eu2+,Mn2+ via energy transfer for UV-LEDs,” J. Mater. Chem. C 3(44), 11618–11628 (2015).
[Crossref]

K. Li, J. Fan, M. M. Shang, H. Z. Lian, and J. Li, “Sr2Y8(SiO4)6O2: Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C 3(38), 9989–9998 (2015).
[Crossref]

Y. Tian, Y. Wei, Y. Zhao, Z. W. Quan, G. G. Li, and J. Li, “Photoluminescent tuning of Ca5(PO4)3Cl: Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability,” J. Mater. Chem. C 4(6), 1281–1294 (2016).
[Crossref]

Z. P. Ci, Q. S. Sun, M. X. Sun, X. J. Jiang, S. C. Qin, and Y. H. Wang, “Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor,” J. Mater. Chem. C 2(29), 5850–5856 (2014).
[Crossref]

J. Phys. Chem. C (4)

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

N. Guo, Y. H. Zheng, Y. C. Jia, H. Qiao, and H. P. You, “Warm-white-emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116(1), 1329–1334 (2012).
[Crossref]

C. H. Huang and T. M. Chen, “A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4: Ce3+,Mn2+,Tb3+ phosphor for UV-light emitting diodes,” J. Phys. Chem. C 115(5), 2349–2355 (2011).
[Crossref]

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7: Eu2+,Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

J. Phys. Chem. Solids (1)

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

J. Solid State Chem. (2)

A. A. Belik, F. Izumi, T. Ikeda, M. Okui, A. P. Malakho, V. A. Morozov, and B. I. Lazoryak, “Whitlockite-related phosphates Sr9A(PO4)7(A = Sc,Cr,Fe,Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data,” J. Solid State Chem. 168(1), 237–244 (2002).
[Crossref]

V. A. Morozov, A. A. Belik, S. Yu. Stefanovich, V. V. Grebenev, O. I. Lebedev, G. V. Tendeloo, and B. I. Lazoryak, “High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7,” J. Solid State Chem. 165(2), 278–288 (2002).
[Crossref]

Mater. Technol. (1)

J. S. Hou, C. X. Pan, X. Y. Chen, G. Y. Zhao, Y. F. Liu, Y. Li, and Y. Z. Fang, “White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs,” Mater. Technol. 34(3), 135–142 (2019).
[Crossref]

Opt. Express (1)

Opt. Mater. (2)

S. Huang and G. G. Li, “Photoluminescence properties of Li2SrGeO4: RE3+ (RE = Ce/Tb/Dy) phosphors and enhanced luminescence through energy transfer between Ce3+ and Tb3+/Dy3+,” Opt. Mater. 36(9), 1555–1560 (2014).
[Crossref]

J. T. Zhang, C. Y. Ma, Z. C. Wen, M. M. Du, J. Q. Long, R. Ma, X. Y. Yuan, J. T. Li, and Y. G. Cao, “Photoluminescence and energy transfer properties of Eu2+ and Tb3+ co-doped gamma aluminum oxynitride powers,” Opt. Mater. 58, 290–295 (2016).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (1)

B. F. Lei, K. I. Machida, T. Horikawa, and H. Hanzawa, “Preparation of Ca2Si5N8: Eu2+,Tm3+ phosphor by calcium hydride and its afterglow properties,” Proc. SPIE 7493, 74936U (2009).
[Crossref]

RSC Adv. (1)

K. Zhang, J. S. Hou, B. M. Liu, Y. Zhou, Z. J. Yong, L. N. Li, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide,” RSC Adv. 6(82), 78396–78402 (2016).
[Crossref]

Other (1)

L. A. Moreno, “Absolute quantum yield measurement of powder samples,” J. Vis. Exp. (63), e3066 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) XRD patterns of the selected Al-reduced CLnP:Eu2+,Mn2+ (Ln = Gd, La, Lu) samples. (b) XRD patterns of the selected Al-reduced CLnP:0.01Eu2+ samples and CO-reduced CLnP:0.01Eu2+.
Fig. 2.
Fig. 2. (a) PL spectra of CGP:xEu2+-Al with different Eu2+ doping contents and CGP:0.01Eu2+-CO. The inset shows the relation between PL intensity and Eu2+ content. (b) PL spectra of CGP:0.025Eu2+-Al (λex = 327 nm), CGP:0.025Eu2+-CO (λex = 329 nm). (c) Experimental spectrum (solid line), fitted curve (red dashed line), and deconvoluted Gaussian components (greed lines) of Al-reduced CGP:0.03Eu2+ sample. (d) PL spectra of CGP:0.025Eu2+,yMn2+-Al with different Mn2+ doping contents.
Fig. 3.
Fig. 3. PL decay curves of the Al-reduced CGP:0.025Eu2+,yMn2+ samples (y = 0, 0.005, 0.01, 0.015, 0.02, 0.025, excited at 328 nm and monitored at 490 nm). The inset shows the average decay time of Eu2+ in CGP:0.025Eu2+,yMn2+ as a function of Mn2+ content y.
Fig. 4.
Fig. 4. Dependence of IS0/IS of Eu2+ on (I) $C_{\textrm{M}{\textrm{n}^{\textrm{2 + }}}}^{\textrm{6/3}}$; (II) $C_{\textrm{M}{\textrm{n}^{\textrm{2 + }}}}^{\textrm{8/3}}$ and (III) $C_{\textrm{M}{\textrm{n}^{\textrm{2 + }}}}^{\textrm{10/3}}$ in CGP:Eu2+,Mn2+-Al.
Fig. 5.
Fig. 5. CIE chromaticity diagram for Ca9Ln(PO4)7:Eu2+,yMn2+-Al (Ln = Gd, La, Lu) phosphors excited at 340 nm.
Fig. 6.
Fig. 6. The electroluminescent spectra of white LED lamps fabricated using a near-UV 340 nm chip combined with a single-phased phosphor CLnP:Eu2+,Mn2+ (Ln = Gd, Lu, La) driven by a 300 mA current.
Fig. 7.
Fig. 7. XRD patterns of pure phase CLnP:Eu2+ phosphors prepared by CO atmosphere reduction.
Fig. 8.
Fig. 8. PLE (λem = 482 nm) / PL (λex = 324 nm) spectra of the CO-reduced CGP:xEu2+ samples (x = 0.005, 0.01, 0.015, 0.02, 0.025, 0.03).
Fig. 9.
Fig. 9. (a) PL (λex = 395 nm) and (b) PLE (λem = 613 nm) spectra of CGP:xEu3+. (c) PL (λex = 395 nm) and (d) PLE (λem = 613 nm) spectra of CLP:xEu3+. (e) PL (λex = 395 nm) and (f) PLE (λem = 613 nm) spectra of CLuP:xEu3+.
Fig. 10.
Fig. 10. PL spectra of (a) CLP:xEu2+-Al sample (λex = 319 nm) and CLP:0.01Eu2+-CO sample (λex = 324 nm). (b) CLuP:xEu2+-Al (x = 0.01, 0.015, 0.02, 0.025, 0.03, 0.04; λex = 328 nm) and CLuP:0.01Eu2+-CO (λex = 325 nm). The inset shows the PL intensity of the Al reduced samples as a function of the Eu2+ content x.
Fig. 11.
Fig. 11. (a) PLE (λem = 500 nm) / PL (λex = 311 nm) spectra of CLP:0.03Eu2+,yMn2+-Al and (b) PLE (λem = 488 nm) / PL (λex = 331 nm) spectra of CLuP:0.025Eu2+,yMn2+-Al.
Fig. 12.
Fig. 12. PL decay curves of the Al-reduced (a) CLP:0.03Eu2+,yMn2+ and (b) CLuP:0.025Eu2+,yMn2+ samples. The inset shows the average decay time of Eu2+ as a function of Mn2+ content y.
Fig. 13.
Fig. 13. Dependence of IS0/IS of Eu2+ on (I) $C_{\textrm{M}{\textrm{n}^{\textrm{2 + }}}}^{\textrm{6/3}}$; (II) $C_{\textrm{M}{\textrm{n}^{\textrm{2 + }}}}^{\textrm{8/3}}$; (III) $C_{\textrm{M}{\textrm{n}^{\textrm{2 + }}}}^{\textrm{10/3}}$ in (a) CLP:Eu2+,Mn2+-Al and (b) CLuP:Eu2+,Mn2+-Al.
Fig. 14.
Fig. 14. PL (λex = 275 nm) spectra of CGP:0.02Mn2+ prepared by remote Al reduction reaction and CO atmosphere, respectively.

Tables (1)

Tables Icon

Table 1. PL quantum yield of Ca9Ln(PO4)7:Eu2+,Mn2+ (Ln = La, Lu, Gd) and the references at different excitation wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

< τ >   =   ( A 1 τ 1 2 + A 2 τ 2 2 ) / ( A 1 τ 1 + A 2 τ 2 )
η ET    =    1  -  τ s τ s o
I so I s C n / 3
PLQY    =    φ d ( 1 A d ) φ i