Abstract

Ultraviolet persistent luminescence technology holds potential for some new applications where ultraviolet emission is needed but constant external excitation is unavailable. Despite the promising applications, not much is known about such luminescence. Here we report ultraviolet-B (290−320 nm) persistent luminescence phenomenon in isostructural Y3Ga5O12:Bi3+ and Y3Al5O12:Bi3+ phosphors. We further investigate the luminescence by measuring thermoluminescence of the two phosphors. Our spectral results indicate that conventional thermoluminescence measurement cannot directly evaluate the electron population in the traps of Y3Ga5O12:Bi3+, in which the ultraviolet emission is suppressed at high temperature due to a thermal ionization quenching. We believe that the insight of the present trap performance is transferable to other ultraviolet persistent phosphors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  2. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
    [Crossref]
  3. Z. W. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
    [Crossref]
  4. Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
    [Crossref]
  5. Y. J. Liang, F. Liu, Y. F. Chen, X. L. Wang, K. N. Sun, and Z. W. Pan, “Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence,” J. Mater. Chem. C 5(26), 6488–6492 (2017).
    [Crossref]
  6. Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
    [Crossref]
  7. J. Xu and S. Tanabe, “Persistent luminescence instead of phosphorescence: history, mechanism, and perspective,” J. Lumin. 205, 581–620 (2019).
    [Crossref]
  8. Y. J. Liang, F. Liu, Y. F. Chen, K. N. Sun, and Z. W. Pan, “Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor,” Dalton Trans. 45(4), 1322–1326 (2016).
    [Crossref]
  9. W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
    [Crossref]
  10. Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
    [Crossref]
  11. P. X. Xiong and M. Y. Peng, “Recent advances in ultraviolet persistent phosphors,” Opt. Mater. X 2, 100022 (2019).
    [Crossref]
  12. J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
    [Crossref]
  13. A. Barhoumi, Q. Liu, and D. S. Kohane, “Ultraviolet light-mediated drug delivery: principles, applications, and challenges,” J. Controlled Release 219, 31–42 (2015).
    [Crossref]
  14. X. Ai, J. Mu, and B. Xing, “Recent advances of light-mediated theranostics,” Theranostics 6(13), 2439–2457 (2016).
    [Crossref]
  15. Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
    [Crossref]
  16. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
  17. R. H. P. Awater and P. Dorenbos, “The Bi3+ 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds,” J. Lumin. 184, 221–231 (2017).
    [Crossref]
  18. T. Justel, P. Huppertz, W. Mayr, and D. U. Wiechert, “Temperature-dependent spectra of YPO4:Me (Me = Ce; Pr, Nd, Bi),” J. Lumin. 106(3-4), 225–233 (2004).
    [Crossref]
  19. H. S. Kiliaan and G. Blasse, “A study of the sensitizer in the luminescent systems (Y,Gd)2O2SO4:Bi,Tb and Li6(Y,Gd)(BO3)3:S,Tb (S = Ce3+,Pr3+ or Bi3+),” Mater. Chem. Phys. 18(1-2), 155–170 (1987).
    [Crossref]
  20. A. A. Setlur and A. M. Srivastava, “The nature of Bi3+ luminescence in garnet hosts,” Opt. Mater. 29(4), 410–415 (2006).
    [Crossref]
  21. M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
    [Crossref]
  22. V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
    [Crossref]
  23. A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
    [Crossref]
  24. A. J. J. Bos, “Thermoluminescence as a research tool to investigate luminescence mechanisms,” Materials 10(12), 1357 (2017).
    [Crossref]
  25. K. van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
    [Crossref]
  26. P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys.: Condens. Matter 17(50), 8103–8111 (2005).
    [Crossref]
  27. J. Ueda, A. Meijerink, P. Dorenbos, A. J. J. Bos, and S. Tanabe, “Thermal ionization and thermally activated crossover quenching processes for 5d−4f luminescence in Y3Al5−xGaxO12:Pr3+,” Phys. Rev. B 95(1), 014303 (2017).
    [Crossref]
  28. F. Liu, W. Z. Yan, Y. J. Chuang, Z. P. Zhen, J. Xie, and Z. W. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3(1), 1554 (2013).
    [Crossref]

2019 (3)

J. Xu and S. Tanabe, “Persistent luminescence instead of phosphorescence: history, mechanism, and perspective,” J. Lumin. 205, 581–620 (2019).
[Crossref]

P. X. Xiong and M. Y. Peng, “Recent advances in ultraviolet persistent phosphors,” Opt. Mater. X 2, 100022 (2019).
[Crossref]

J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
[Crossref]

2018 (3)

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
[Crossref]

2017 (5)

Y. J. Liang, F. Liu, Y. F. Chen, X. L. Wang, K. N. Sun, and Z. W. Pan, “Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence,” J. Mater. Chem. C 5(26), 6488–6492 (2017).
[Crossref]

R. H. P. Awater and P. Dorenbos, “The Bi3+ 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds,” J. Lumin. 184, 221–231 (2017).
[Crossref]

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

A. J. J. Bos, “Thermoluminescence as a research tool to investigate luminescence mechanisms,” Materials 10(12), 1357 (2017).
[Crossref]

J. Ueda, A. Meijerink, P. Dorenbos, A. J. J. Bos, and S. Tanabe, “Thermal ionization and thermally activated crossover quenching processes for 5d−4f luminescence in Y3Al5−xGaxO12:Pr3+,” Phys. Rev. B 95(1), 014303 (2017).
[Crossref]

2016 (3)

X. Ai, J. Mu, and B. Xing, “Recent advances of light-mediated theranostics,” Theranostics 6(13), 2439–2457 (2016).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, K. N. Sun, and Z. W. Pan, “Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor,” Dalton Trans. 45(4), 1322–1326 (2016).
[Crossref]

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

2015 (1)

A. Barhoumi, Q. Liu, and D. S. Kohane, “Ultraviolet light-mediated drug delivery: principles, applications, and challenges,” J. Controlled Release 219, 31–42 (2015).
[Crossref]

2014 (1)

A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
[Crossref]

2013 (2)

F. Liu, W. Z. Yan, Y. J. Chuang, Z. P. Zhen, J. Xie, and Z. W. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3(1), 1554 (2013).
[Crossref]

K. van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

2012 (1)

Z. W. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

2010 (2)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
[Crossref]

2006 (1)

A. A. Setlur and A. M. Srivastava, “The nature of Bi3+ luminescence in garnet hosts,” Opt. Mater. 29(4), 410–415 (2006).
[Crossref]

2005 (2)

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys.: Condens. Matter 17(50), 8103–8111 (2005).
[Crossref]

2004 (1)

T. Justel, P. Huppertz, W. Mayr, and D. U. Wiechert, “Temperature-dependent spectra of YPO4:Me (Me = Ce; Pr, Nd, Bi),” J. Lumin. 106(3-4), 225–233 (2004).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1987 (1)

H. S. Kiliaan and G. Blasse, “A study of the sensitizer in the luminescent systems (Y,Gd)2O2SO4:Bi,Tb and Li6(Y,Gd)(BO3)3:S,Tb (S = Ce3+,Pr3+ or Bi3+),” Mater. Chem. Phys. 18(1-2), 155–170 (1987).
[Crossref]

Ai, X.

X. Ai, J. Mu, and B. Xing, “Recent advances of light-mediated theranostics,” Theranostics 6(13), 2439–2457 (2016).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Awater, R. H. P.

R. H. P. Awater and P. Dorenbos, “The Bi3+ 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds,” J. Lumin. 184, 221–231 (2017).
[Crossref]

Babin, V.

V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
[Crossref]

Barhoumi, A.

A. Barhoumi, Q. Liu, and D. S. Kohane, “Ultraviolet light-mediated drug delivery: principles, applications, and challenges,” J. Controlled Release 219, 31–42 (2015).
[Crossref]

Bi, J. Q.

Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
[Crossref]

Blasse, G.

H. S. Kiliaan and G. Blasse, “A study of the sensitizer in the luminescent systems (Y,Gd)2O2SO4:Bi,Tb and Li6(Y,Gd)(BO3)3:S,Tb (S = Ce3+,Pr3+ or Bi3+),” Mater. Chem. Phys. 18(1-2), 155–170 (1987).
[Crossref]

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).

Bos, A. J. J.

A. J. J. Bos, “Thermoluminescence as a research tool to investigate luminescence mechanisms,” Materials 10(12), 1357 (2017).
[Crossref]

J. Ueda, A. Meijerink, P. Dorenbos, A. J. J. Bos, and S. Tanabe, “Thermal ionization and thermally activated crossover quenching processes for 5d−4f luminescence in Y3Al5−xGaxO12:Pr3+,” Phys. Rev. B 95(1), 014303 (2017).
[Crossref]

K. van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Chen, Y. F.

Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, X. L. Wang, K. N. Sun, and Z. W. Pan, “Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence,” J. Mater. Chem. C 5(26), 6488–6492 (2017).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, K. N. Sun, and Z. W. Pan, “Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor,” Dalton Trans. 45(4), 1322–1326 (2016).
[Crossref]

Chuang, Y. J.

F. Liu, W. Z. Yan, Y. J. Chuang, Z. P. Zhen, J. Xie, and Z. W. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3(1), 1554 (2013).
[Crossref]

Dong, X.

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

Dorenbos, P.

R. H. P. Awater and P. Dorenbos, “The Bi3+ 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds,” J. Lumin. 184, 221–231 (2017).
[Crossref]

J. Ueda, A. Meijerink, P. Dorenbos, A. J. J. Bos, and S. Tanabe, “Thermal ionization and thermally activated crossover quenching processes for 5d−4f luminescence in Y3Al5−xGaxO12:Pr3+,” Phys. Rev. B 95(1), 014303 (2017).
[Crossref]

P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys.: Condens. Matter 17(50), 8103–8111 (2005).
[Crossref]

Du, J.

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

Du, Z.

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

Dusek, M.

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

Fu, X.

J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
[Crossref]

Fukuda, T.

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

Gecevicius, M.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

Gorbenko, V.

V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
[Crossref]

Grabmaier, B. C.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).

Gu, Z.

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

Guo, S.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Guo, Z.

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

He, X.

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

Hu, L.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Huppertz, P.

T. Justel, P. Huppertz, W. Mayr, and D. U. Wiechert, “Temperature-dependent spectra of YPO4:Me (Me = Ce; Pr, Nd, Bi),” J. Lumin. 106(3-4), 225–233 (2004).
[Crossref]

Justel, T.

T. Justel, P. Huppertz, W. Mayr, and D. U. Wiechert, “Temperature-dependent spectra of YPO4:Me (Me = Ce; Pr, Nd, Bi),” J. Lumin. 106(3-4), 225–233 (2004).
[Crossref]

Kiliaan, H. S.

H. S. Kiliaan and G. Blasse, “A study of the sensitizer in the luminescent systems (Y,Gd)2O2SO4:Bi,Tb and Li6(Y,Gd)(BO3)3:S,Tb (S = Ce3+,Pr3+ or Bi3+),” Mater. Chem. Phys. 18(1-2), 155–170 (1987).
[Crossref]

Kohane, D. S.

A. Barhoumi, Q. Liu, and D. S. Kohane, “Ultraviolet light-mediated drug delivery: principles, applications, and challenges,” J. Controlled Release 219, 31–42 (2015).
[Crossref]

Krasnikov, A.

V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
[Crossref]

Kumar, V.

A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
[Crossref]

Kuroiwa, Y.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Li, H.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Li, Y.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

Li, Z.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Liang, Y. J.

Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, X. L. Wang, K. N. Sun, and Z. W. Pan, “Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence,” J. Mater. Chem. C 5(26), 6488–6492 (2017).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, K. N. Sun, and Z. W. Pan, “Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor,” Dalton Trans. 45(4), 1322–1326 (2016).
[Crossref]

Liu, F.

Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, X. L. Wang, K. N. Sun, and Z. W. Pan, “Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence,” J. Mater. Chem. C 5(26), 6488–6492 (2017).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, K. N. Sun, and Z. W. Pan, “Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor,” Dalton Trans. 45(4), 1322–1326 (2016).
[Crossref]

F. Liu, W. Z. Yan, Y. J. Chuang, Z. P. Zhen, J. Xie, and Z. W. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3(1), 1554 (2013).
[Crossref]

Z. W. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

Liu, Q.

A. Barhoumi, Q. Liu, and D. S. Kohane, “Ultraviolet light-mediated drug delivery: principles, applications, and challenges,” J. Controlled Release 219, 31–42 (2015).
[Crossref]

Lu, Y.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Lu, Y. Y.

Z. W. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

Ma, J.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Makhov, A.

V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Mayr, W.

T. Justel, P. Huppertz, W. Mayr, and D. U. Wiechert, “Temperature-dependent spectra of YPO4:Me (Me = Ce; Pr, Nd, Bi),” J. Lumin. 106(3-4), 225–233 (2004).
[Crossref]

McClune, B.

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

Meijerink, A.

J. Ueda, A. Meijerink, P. Dorenbos, A. J. J. Bos, and S. Tanabe, “Thermal ionization and thermally activated crossover quenching processes for 5d−4f luminescence in Y3Al5−xGaxO12:Pr3+,” Phys. Rev. B 95(1), 014303 (2017).
[Crossref]

Mihokova, E.

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

Moriyoshi, C.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Mu, J.

X. Ai, J. Mu, and B. Xing, “Recent advances of light-mediated theranostics,” Theranostics 6(13), 2439–2457 (2016).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Nikl, M.

V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
[Crossref]

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

Noto, L. L.

A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
[Crossref]

Novoselov, A.

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

Ntwaeaborwa, O. M.

A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
[Crossref]

Pan, Z. W.

Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, X. L. Wang, K. N. Sun, and Z. W. Pan, “Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence,” J. Mater. Chem. C 5(26), 6488–6492 (2017).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, K. N. Sun, and Z. W. Pan, “Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor,” Dalton Trans. 45(4), 1322–1326 (2016).
[Crossref]

F. Liu, W. Z. Yan, Y. J. Chuang, Z. P. Zhen, J. Xie, and Z. W. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3(1), 1554 (2013).
[Crossref]

Z. W. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

Peng, M. Y.

P. X. Xiong and M. Y. Peng, “Recent advances in ultraviolet persistent phosphors,” Opt. Mater. X 2, 100022 (2019).
[Crossref]

Poelman, D.

K. van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Polak, K.

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

Qiu, J.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

Seed Ahmed, H. A. A.

A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
[Crossref]

Setlur, A. A.

A. A. Setlur and A. M. Srivastava, “The nature of Bi3+ luminescence in garnet hosts,” Opt. Mater. 29(4), 410–415 (2006).
[Crossref]

Shi, J.

J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
[Crossref]

Smet, P. F.

K. van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Som, S.

A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
[Crossref]

Srivastava, A. M.

A. A. Setlur and A. M. Srivastava, “The nature of Bi3+ luminescence in garnet hosts,” Opt. Mater. 29(4), 410–415 (2006).
[Crossref]

Sun, H.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Sun, K. N.

Y. J. Liang, F. Liu, Y. F. Chen, X. L. Wang, K. N. Sun, and Z. W. Pan, “Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence,” J. Mater. Chem. C 5(26), 6488–6492 (2017).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, K. N. Sun, and Z. W. Pan, “Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor,” Dalton Trans. 45(4), 1322–1326 (2016).
[Crossref]

Sun, X.

J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
[Crossref]

Sun, Z.

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

Swart, H. C.

A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

J. Xu and S. Tanabe, “Persistent luminescence instead of phosphorescence: history, mechanism, and perspective,” J. Lumin. 205, 581–620 (2019).
[Crossref]

J. Ueda, A. Meijerink, P. Dorenbos, A. J. J. Bos, and S. Tanabe, “Thermal ionization and thermally activated crossover quenching processes for 5d−4f luminescence in Y3Al5−xGaxO12:Pr3+,” Phys. Rev. B 95(1), 014303 (2017).
[Crossref]

Ueda, J.

J. Ueda, A. Meijerink, P. Dorenbos, A. J. J. Bos, and S. Tanabe, “Thermal ionization and thermally activated crossover quenching processes for 5d−4f luminescence in Y3Al5−xGaxO12:Pr3+,” Phys. Rev. B 95(1), 014303 (2017).
[Crossref]

van den Eeckhout, K.

K. van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Wang, J.

J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
[Crossref]

Wang, W.

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

Wang, X.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Wang, X. J.

Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
[Crossref]

Wang, X. L.

Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, X. L. Wang, K. N. Sun, and Z. W. Pan, “Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence,” J. Mater. Chem. C 5(26), 6488–6492 (2017).
[Crossref]

Wang, Y.

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

Wang, Z.

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

Wei, Y.

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

Wiechert, D. U.

T. Justel, P. Huppertz, W. Mayr, and D. U. Wiechert, “Temperature-dependent spectra of YPO4:Me (Me = Ce; Pr, Nd, Bi),” J. Lumin. 106(3-4), 225–233 (2004).
[Crossref]

Xie, J.

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

F. Liu, W. Z. Yan, Y. J. Chuang, Z. P. Zhen, J. Xie, and Z. W. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3(1), 1554 (2013).
[Crossref]

Xing, B.

X. Ai, J. Mu, and B. Xing, “Recent advances of light-mediated theranostics,” Theranostics 6(13), 2439–2457 (2016).
[Crossref]

Xiong, P. X.

P. X. Xiong and M. Y. Peng, “Recent advances in ultraviolet persistent phosphors,” Opt. Mater. X 2, 100022 (2019).
[Crossref]

Xu, J.

J. Xu and S. Tanabe, “Persistent luminescence instead of phosphorescence: history, mechanism, and perspective,” J. Lumin. 205, 581–620 (2019).
[Crossref]

Yan, W. Z.

F. Liu, W. Z. Yan, Y. J. Chuang, Z. P. Zhen, J. Xie, and Z. W. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3(1), 1554 (2013).
[Crossref]

Yang, Y.

J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
[Crossref]

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Yong, Z.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Yoshikawa, A.

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

Yousif, A.

A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
[Crossref]

Zazubovich, S.

V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
[Crossref]

Zhang, H.

J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
[Crossref]

Zhang, J.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

Zhang, L.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Zhang, X.

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

Zhang, Z.

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

Zhao, Q.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Zhao, Y.

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

Zhen, Z. P.

F. Liu, W. Z. Yan, Y. J. Chuang, Z. P. Zhen, J. Xie, and Z. W. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3(1), 1554 (2013).
[Crossref]

Zheng, L.

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Zheng, S.

J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
[Crossref]

Zhu, S.

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

Zorenko, Y.

V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
[Crossref]

Zou, Z.

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

Adv. Mater. (1)

Z. Du, X. Zhang, Z. Guo, J. Xie, X. Dong, S. Zhu, J. Du, Z. Gu, and Y. Zhao, “X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization,” Adv. Mater. 30(43), 1804046 (2018).
[Crossref]

Adv. Opt. Mater. (1)

J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang, and H. Zhang, “Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor,” Adv. Opt. Mater. 7(19), 1900526 (2019).
[Crossref]

Chem. Soc. Rev. (1)

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

Dalton Trans. (1)

Y. J. Liang, F. Liu, Y. F. Chen, K. N. Sun, and Z. W. Pan, “Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor,” Dalton Trans. 45(4), 1322–1326 (2016).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

A. Yousif, V. Kumar, H. A. A. Seed Ahmed, S. Som, L. L. Noto, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Ga3+ doping on the photoluminescence properties of Y3Al5-x:-GaxO12::Bi3+ phosphor,” ECS J. Solid State Sci. Technol. 3(11), R222–R227 (2014).
[Crossref]

J. Controlled Release (1)

A. Barhoumi, Q. Liu, and D. S. Kohane, “Ultraviolet light-mediated drug delivery: principles, applications, and challenges,” J. Controlled Release 219, 31–42 (2015).
[Crossref]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

J. Lumin. (3)

R. H. P. Awater and P. Dorenbos, “The Bi3+ 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds,” J. Lumin. 184, 221–231 (2017).
[Crossref]

T. Justel, P. Huppertz, W. Mayr, and D. U. Wiechert, “Temperature-dependent spectra of YPO4:Me (Me = Ce; Pr, Nd, Bi),” J. Lumin. 106(3-4), 225–233 (2004).
[Crossref]

J. Xu and S. Tanabe, “Persistent luminescence instead of phosphorescence: history, mechanism, and perspective,” J. Lumin. 205, 581–620 (2019).
[Crossref]

J. Mater. Chem. C (3)

Y. J. Liang, F. Liu, Y. F. Chen, X. L. Wang, K. N. Sun, and Z. W. Pan, “Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence,” J. Mater. Chem. C 5(26), 6488–6492 (2017).
[Crossref]

Y. F. Chen, F. Liu, Y. J. Liang, X. L. Wang, J. Q. Bi, X. J. Wang, and Z. W. Pan, “A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes,” J. Mater. Chem. C 6(30), 8003–8010 (2018).
[Crossref]

W. Wang, Z. Sun, X. He, Y. Wei, Z. Zou, J. Zhang, Z. Wang, Z. Zhang, and Y. Wang, “How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+,Eu3+ phosphor,” J. Mater. Chem. C 5(17), 4310–4318 (2017).
[Crossref]

J. Phys.: Condens. Matter (2)

P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys.: Condens. Matter 17(50), 8103–8111 (2005).
[Crossref]

M. Nikl, A. Novoselov, E. Mihokova, K. Polak, M. Dusek, B. McClune, A. Yoshikawa, and T. Fukuda, “Photoluminescence of Bi3+ in Y3Ga5O12 single-crystal host,” J. Phys.: Condens. Matter 17(21), 3367–3375 (2005).
[Crossref]

Light Sci. Appl. (1)

Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng, and H. Sun, “X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions,” Light Sci. Appl. 7(1), 88 (2018).
[Crossref]

Mater. Chem. Phys. (1)

H. S. Kiliaan and G. Blasse, “A study of the sensitizer in the luminescent systems (Y,Gd)2O2SO4:Bi,Tb and Li6(Y,Gd)(BO3)3:S,Tb (S = Ce3+,Pr3+ or Bi3+),” Mater. Chem. Phys. 18(1-2), 155–170 (1987).
[Crossref]

Materials (2)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

A. J. J. Bos, “Thermoluminescence as a research tool to investigate luminescence mechanisms,” Materials 10(12), 1357 (2017).
[Crossref]

Nat. Mater. (1)

Z. W. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

Opt. Mater. (1)

A. A. Setlur and A. M. Srivastava, “The nature of Bi3+ luminescence in garnet hosts,” Opt. Mater. 29(4), 410–415 (2006).
[Crossref]

Opt. Mater. X (1)

P. X. Xiong and M. Y. Peng, “Recent advances in ultraviolet persistent phosphors,” Opt. Mater. X 2, 100022 (2019).
[Crossref]

Phys. Rev. B (2)

K. van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

J. Ueda, A. Meijerink, P. Dorenbos, A. J. J. Bos, and S. Tanabe, “Thermal ionization and thermally activated crossover quenching processes for 5d−4f luminescence in Y3Al5−xGaxO12:Pr3+,” Phys. Rev. B 95(1), 014303 (2017).
[Crossref]

Radiat. Meas. (1)

V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, S. Zazubovich, and Y. Zorenko, “Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films,” Radiat. Meas. 45(3-6), 331–335 (2010).
[Crossref]

Sci. Rep. (1)

F. Liu, W. Z. Yan, Y. J. Chuang, Z. P. Zhen, J. Xie, and Z. W. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3(1), 1554 (2013).
[Crossref]

Theranostics (1)

X. Ai, J. Mu, and B. Xing, “Recent advances of light-mediated theranostics,” Theranostics 6(13), 2439–2457 (2016).
[Crossref]

Other (1)

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Persistent luminescence of YGG:Bi and YAG:Bi at room temperature after illumination with a 254 nm UV lamp. (a) Persistent luminescence emission spectrum of YGG:Bi recorded at 30 minutes after stoppage of the illumination. Inset shows persistent luminescence decay curve of the YGG:Bi obtained by monitoring at 316 nm. (b) Persistent luminescence emission spectrum of YAG:Bi recorded with a delay time of 30 minutes. Inset shows persistent luminescence decay curve of the YAG:Bi monitored at 303 nm.
Fig. 2.
Fig. 2. Thermoluminescence (TL) and photoluminescence (PL) thermal quenching of YGG:Bi and YAG:Bi. (a) TL curves monitored UV emissions of YGG:Bi (316 nm) and YAG:Bi (303 nm). The low-temperature and high-temperature bands correspond to the shallow trap (ST) and deep trap (DT), respectively. The TL intensity of YGG:Bi nearly disappears at the high temperature side (> 210 °C). Before each measurement, the phosphor was illuminated by a 254 nm ultraviolet lamp at room temperature for 10 minutes. (b) Temperature dependence of steady-state PL emission intensity for each phosphor under 254 nm excitation. The PL emission of YGG:Bi is nearly completely quenched at the high temperature side.
Fig. 3.
Fig. 3. Schematic illustrations of TL and thermal ionization quenching at high temperature for YGG:Bi and YAG:Bi. (a) While the deep traps in YGG:Bi are being released at high temperature, the 3P1 emitting level has been quenched by thermal ionization. (b) The energy difference between the 3P1 emitting level and the bottom of conduction band is large in YAG:Bi, so that the luminescence thermal quenching is not remarkable at the present high temperature. For clarity, only the emitting state 3P1 and ground state 1S0 of the Bi3+ ion are presented. CB, ST and DT represent the conduction band, shallow traps and deep traps, respectively. Straight-line arrows and curved-line arrows stand for the optical transitions and thermal excitations, respectively. Cross marks indicate that the present high temperature inactivates the transition or excitation.
Fig. 4.
Fig. 4. Photostimulated thermoluminescence (PSTL) of YGG:Bi. (a) Temperature profile for the experiment. (b) Experimental outline. (top) A charging step using a 254 nm UV lamp for 60 s at 200 °C, followed by a fast cooling down to room temperature without excitation. The TL measurement starts at 240 s. (bottom) The sample is successively illuminated by a 254 nm UV lamp at 200 °C and by a 630 nm red LED at room temperature. The PSTL measurement starts at 240 s. (c) TL (dashed-line) and PSTL (solid-line) curves obtained according to the approach outlined in (b). (d) Schematic illustration of the PSTL. Upon the 200 °C illumination, the ST is thermally emptied, while the DT is filled. Subsequently, upon the red LED illumination, the electron in the DT is promoted to the conduction band. Consequently, the conduction electron may be captured by the ST, and released during heating.

Metrics