Abstract

High quality blue emitting quantum dots (QDs) are regarded as promising nanomaterials for lasers, photovoltaic cells and displays. However, few reports realize high photoluminescence quantum yield (PL QY), narrow emission band width and pure blue emitting (450∼460 nm) simultaneously. Herein we propose a facile one-step synthesis of thick shell blue emitting CdZnS/ZnS QDs. ZnS shell was overcoated on the prepared cores by directly introducing zinc oleate/S TBP solution (zinc oleate powder and S dissolved in TBP) into mixture without any purification steps and the thickness of ZnS shell was controlled by adjusting the adding amount of zinc oleate/S TBP solution. The optimal QDs with ten monolayers of ZnS shell exhibit pure blue light (∼455 nm) with narrow line width (full width half maximum, FWHM 17.2 nm) and high photoluminescent quantum yield (QY) (92%). Due to the thick ZnS shell, nonradiative recombination of the QD solids is suppressed efficiently.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly luminescent red emitting CdZnSe/ZnSe quantum dots synthesis and application for quantum dot light emitting diodes

Qin Zhang, Chao Nie, Chun Chang, Chenyang Guo, Xiao Jin, Yuancheng Qin, Feng Li, and Qinghua Li
Opt. Mater. Express 7(11) 3875-3884 (2017)

Efficient light-emitting diodes based on reverse type-I quantum dots

Xiao Jin, Jinke Bai, Xiaobing Gu, Chun Chang, Huaibin Shen, Qin Zhang, Feng Li, Zhongping Chen, and Qinghua Li
Opt. Mater. Express 7(12) 4395-4407 (2017)

High efficient light-emitting diodes with improved the balance of electron and hole transfer via optimizing quantum dot structure

Jinke Bai, Chun Chang, Jiahu Wei, Chengtong Dong, Huashan Peng, Xiao Jin, Qin Zhang, Feng Li, and Qinghua Li
Opt. Mater. Express 9(7) 3089-3097 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
    [Crossref]
  2. L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
    [Crossref]
  3. D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” Materials 3(4), 2260–2345 (2010).
    [Crossref]
  4. P. Reiss, M. Protiere, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
    [Crossref]
  5. S. Jun and E. Jang, “Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence,” Chem. Commun. 36, 4616–4618 (2005).
    [Crossref]
  6. E. Jang, S. Jun, and L. Pu, “High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence,” Chem. Commun. 24, 2964–2965 (2003).
    [Crossref]
  7. X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B 108(40), 15552–15559 (2004).
    [Crossref]
  8. X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc. 125(44), 13559–13563 (2003).
    [Crossref]
  9. S. Azizi, H. Rezagholipour Dizaji, and M. H. Ehsani, “Structural and optical properties of Cd1-xZnxS (x = 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes,” Optik 127(18), 7104–7114 (2016).
    [Crossref]
  10. M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
    [Crossref]
  11. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
    [Crossref]
  12. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
    [Crossref]
  13. C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
    [Crossref]
  14. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
    [Crossref]
  15. R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
    [Crossref]
  16. T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
    [Crossref]
  17. Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
    [Crossref]
  18. K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
    [Crossref]
  19. O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
    [Crossref]
  20. W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater. 20(16), 5307–5313 (2008).
    [Crossref]
  21. H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
    [Crossref]
  22. D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
    [Crossref]
  23. X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
    [Crossref]
  24. F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, and Y. K. Gun’ko, “Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots,” ACS Nano 11(9), 9207–9214 (2017).
    [Crossref]
  25. D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
    [Crossref]
  26. B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
    [Crossref]
  27. Y. Zhang, L. Huang, and X. Liu, “Unraveling Epitaxial Habits in the NaLnF4 System for Color Multiplexing at the Single-Particle Level,” Angew. Chem., Int. Ed. 55(19), 5718–5722 (2016).
    [Crossref]
  28. X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
    [Crossref]
  29. Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
    [Crossref]
  30. C. R. Kagan, C. B. Murray, and M. G. Bawendi, “Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids,” Phys. Rev. B 54(12), 8633–8643 (1996).
    [Crossref]
  31. W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
    [Crossref]

2018 (4)

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
[Crossref]

2017 (2)

F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, and Y. K. Gun’ko, “Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots,” ACS Nano 11(9), 9207–9214 (2017).
[Crossref]

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

2016 (7)

L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
[Crossref]

S. Azizi, H. Rezagholipour Dizaji, and M. H. Ehsani, “Structural and optical properties of Cd1-xZnxS (x = 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes,” Optik 127(18), 7104–7114 (2016).
[Crossref]

C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
[Crossref]

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

Y. Zhang, L. Huang, and X. Liu, “Unraveling Epitaxial Habits in the NaLnF4 System for Color Multiplexing at the Single-Particle Level,” Angew. Chem., Int. Ed. 55(19), 5718–5722 (2016).
[Crossref]

X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
[Crossref]

2015 (2)

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

2013 (1)

K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
[Crossref]

2011 (1)

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

2010 (2)

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” Materials 3(4), 2260–2345 (2010).
[Crossref]

2009 (1)

P. Reiss, M. Protiere, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref]

2008 (2)

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater. 20(16), 5307–5313 (2008).
[Crossref]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

2005 (2)

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref]

S. Jun and E. Jang, “Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence,” Chem. Commun. 36, 4616–4618 (2005).
[Crossref]

2004 (1)

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B 108(40), 15552–15559 (2004).
[Crossref]

2003 (2)

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc. 125(44), 13559–13563 (2003).
[Crossref]

E. Jang, S. Jun, and L. Pu, “High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence,” Chem. Commun. 24, 2964–2965 (2003).
[Crossref]

1997 (2)

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

1996 (2)

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

C. R. Kagan, C. B. Murray, and M. G. Bawendi, “Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids,” Phys. Rev. B 54(12), 8633–8643 (1996).
[Crossref]

Algar, W. R.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Alivisatos, A. P.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

Azizi, S.

S. Azizi, H. Rezagholipour Dizaji, and M. H. Ehsani, “Structural and optical properties of Cd1-xZnxS (x = 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes,” Optik 127(18), 7104–7114 (2016).
[Crossref]

Bae, W. K.

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater. 20(16), 5307–5313 (2008).
[Crossref]

Basche, T.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref]

Bawendi, M. G.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

C. R. Kagan, C. B. Murray, and M. G. Bawendi, “Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids,” Phys. Rev. B 54(12), 8633–8643 (1996).
[Crossref]

Bera, D.

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” Materials 3(4), 2260–2345 (2010).
[Crossref]

Bussian, D. A.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

Cao, W.

W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
[Crossref]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Casson, J. L.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

Chae, S.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Char, K.

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater. 20(16), 5307–5313 (2008).
[Crossref]

Chen, D.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Chen, F.

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

Chen, L.

W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
[Crossref]

Chen, Q.

W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
[Crossref]

Chen, R.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Chen, Y.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

Choi, Y.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Dabbousi, B. O.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Delehanty, J. B.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Demir, H. V.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Diaz, S. A.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Dou, S.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Du, Y.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Du, Z.

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Ehsani, M. H.

S. Azizi, H. Rezagholipour Dizaji, and M. H. Ehsani, “Structural and optical properties of Cd1-xZnxS (x = 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes,” Optik 127(18), 7104–7114 (2016).
[Crossref]

Feng, Y.

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc. 125(44), 13559–13563 (2003).
[Crossref]

Gao, M.

L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
[Crossref]

Gao, Y.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Goldys, E. M.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Gu, Z.

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

Gun’ko, Y. K.

F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, and Y. K. Gun’ko, “Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots,” ACS Nano 11(9), 9207–9214 (2017).
[Crossref]

Guo, L.

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

Guo, Z.

X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
[Crossref]

Guyot-Sionnest, P.

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

Ha, T. H.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Han, H.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Han, M.

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B 108(40), 15552–15559 (2004).
[Crossref]

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc. 125(44), 13559–13563 (2003).
[Crossref]

Han, T.

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

He, T.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Heine, J. R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Hildebrandt, N.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Hines, M. A.

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

Hollingsworth, J. A.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

Holloway, P. H.

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” Materials 3(4), 2260–2345 (2010).
[Crossref]

Htoon, H.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

Huang, L.

Y. Zhang, L. Huang, and X. Liu, “Unraveling Epitaxial Habits in the NaLnF4 System for Color Multiplexing at the Single-Particle Level,” Angew. Chem., Int. Ed. 55(19), 5718–5722 (2016).
[Crossref]

Huang, W.

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

Huang, X.

L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
[Crossref]

Im, W. B.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Jang, E.

S. Jun and E. Jang, “Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence,” Chem. Commun. 36, 4616–4618 (2005).
[Crossref]

E. Jang, S. Jun, and L. Pu, “High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence,” Chem. Commun. 24, 2964–2965 (2003).
[Crossref]

Jensen, K. F.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Jiang, Y.

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

Jin, D.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Jing, L.

L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
[Crossref]

Jun, S.

S. Jun and E. Jang, “Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence,” Chem. Commun. 36, 4616–4618 (2005).
[Crossref]

E. Jang, S. Jun, and L. Pu, “High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence,” Chem. Commun. 24, 2964–2965 (2003).
[Crossref]

Kadavanich, A. V.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

Kagan, C. R.

C. R. Kagan, C. B. Murray, and M. G. Bawendi, “Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids,” Phys. Rev. B 54(12), 8633–8643 (1996).
[Crossref]

Kershaw, S. V.

L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
[Crossref]

Kim, H. J.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Kim, S.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Klimov, V. I.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

Knoll, W.

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B 108(40), 15552–15559 (2004).
[Crossref]

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc. 125(44), 13559–13563 (2003).
[Crossref]

Ko, H.

K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
[Crossref]

Kolb, U.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref]

Kuang, Y.

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

Kuznetsova, V. A.

F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, and Y. K. Gun’ko, “Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots,” ACS Nano 11(9), 9207–9214 (2017).
[Crossref]

Kwon, O. S.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Lan, X.

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

Le, T.-H.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Leck, K. S.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Lee, C.

K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
[Crossref]

Lee, J. H.

K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
[Crossref]

K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
[Crossref]

Lee, K. H.

K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
[Crossref]

Lee, S.

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater. 20(16), 5307–5313 (2008).
[Crossref]

Li, J.

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref]

Li, L.

P. Reiss, M. Protiere, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref]

Li, L. S.

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Li, N.

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

Li, S.

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

Li, X.

X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
[Crossref]

Li, Y.

L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
[Crossref]

L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
[Crossref]

Li, Z.

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

Lin, Q.

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Liu, D.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Liu, S.

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B 108(40), 15552–15559 (2004).
[Crossref]

Liu, X.

Y. Zhang, L. Huang, and X. Liu, “Unraveling Epitaxial Habits in the NaLnF4 System for Color Multiplexing at the Single-Particle Level,” Angew. Chem., Int. Ed. 55(19), 5718–5722 (2016).
[Crossref]

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

Lu, Y.

X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
[Crossref]

Ma, C.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Ma, Y.

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

Mattoussi, H.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Medintz, I. L.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Mews, A.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref]

Mikulec, F. V.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Murray, C. B.

C. R. Kagan, C. B. Murray, and M. G. Bawendi, “Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids,” Phys. Rev. B 54(12), 8633–8643 (1996).
[Crossref]

Nalla, V.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Nam, M. K.

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater. 20(16), 5307–5313 (2008).
[Crossref]

Noh, S.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Ober, R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Oh, E.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Orlova, A. O.

F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, and Y. K. Gun’ko, “Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots,” ACS Nano 11(9), 9207–9214 (2017).
[Crossref]

Park, C. S.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Peng, X.

C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
[Crossref]

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

Piper, J. A.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Pons, T.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Protiere, M.

P. Reiss, M. Protiere, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref]

Pu, C.

C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
[Crossref]

Pu, L.

E. Jang, S. Jun, and L. Pu, “High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence,” Chem. Commun. 24, 2964–2965 (2003).
[Crossref]

Purcell-Milton, F.

F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, and Y. K. Gun’ko, “Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots,” ACS Nano 11(9), 9207–9214 (2017).
[Crossref]

Qi, H.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Qian, L.

W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
[Crossref]

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” Materials 3(4), 2260–2345 (2010).
[Crossref]

Qin, X.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Reiss, P.

P. Reiss, M. Protiere, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref]

Ren, W.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Rezagholipour Dizaji, H.

S. Azizi, H. Rezagholipour Dizaji, and M. H. Ehsani, “Structural and optical properties of Cd1-xZnxS (x = 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes,” Optik 127(18), 7104–7114 (2016).
[Crossref]

Rodriguez-Viejo, J.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Rogach, A. L.

L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
[Crossref]

Rutherford, M.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Ryan, A.

F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, and Y. K. Gun’ko, “Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots,” ACS Nano 11(9), 9207–9214 (2017).
[Crossref]

Schlamp, M. C.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

Shen, H.

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Shewmon, N. T.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Song, W. S.

K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
[Crossref]

Spillmann, C. M.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Stewart, M. H.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Sun, H.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Susumu, K.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

Ta, V. D.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Tseng, T.-K.

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” Materials 3(4), 2260–2345 (2010).
[Crossref]

Vela, J.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

Visheratina, A. K.

F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, and Y. K. Gun’ko, “Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots,” ACS Nano 11(9), 9207–9214 (2017).
[Crossref]

Wang, B.

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

Wang, H.

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

Wang, L.

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Wang, O.

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Wang, Y.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Wen, S.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Werder, D. J.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

Xiang, C.

W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
[Crossref]

Xie, R.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref]

Xu, B.

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

Xu, Q.

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Xu, X.

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

Xue, J.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Yan, X.

W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
[Crossref]

Yang, C.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Yang, H.

K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
[Crossref]

Yang, Y.

W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
[Crossref]

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

Yoon, H.

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Zhai, T.

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

Zhang, F.

X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
[Crossref]

Zhang, X.

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, L. Huang, and X. Liu, “Unraveling Epitaxial Habits in the NaLnF4 System for Color Multiplexing at the Single-Particle Level,” Angew. Chem., Int. Ed. 55(19), 5718–5722 (2016).
[Crossref]

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

Zhang, Z.

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B 108(40), 15552–15559 (2004).
[Crossref]

Zhao, D.

X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
[Crossref]

Zhao, F.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Zhao, T.

X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
[Crossref]

Zhao, Y.

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

Zhong, H.

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

Zhong, X.

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B 108(40), 15552–15559 (2004).
[Crossref]

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc. 125(44), 13559–13563 (2003).
[Crossref]

Zhou, L.

X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
[Crossref]

ACS Nano (2)

K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, “Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices,” ACS Nano 7(8), 7295–7302 (2013).
[Crossref]

F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, and Y. K. Gun’ko, “Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots,” ACS Nano 11(9), 9207–9214 (2017).
[Crossref]

Adv. Mater. (1)

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref]

Adv. Mater. Technol. (1)

T.-H. Le, Y. Choi, H. Han, S. Noh, C. S. Park, S. Kim, S. Chae, H. J. Kim, W. B. Im, T. H. Ha, O. S. Kwon, and H. Yoon, “Highly Luminescent Quantum Dots in Remote-Type Liquid-Phase Color Converters for White Light-Emitting Diodes,” Adv. Mater. Technol. 3(11), 1800235 (2018).
[Crossref]

Angew. Chem., Int. Ed. (2)

Y. Zhang, L. Huang, and X. Liu, “Unraveling Epitaxial Habits in the NaLnF4 System for Color Multiplexing at the Single-Particle Level,” Angew. Chem., Int. Ed. 55(19), 5718–5722 (2016).
[Crossref]

X. Li, Z. Guo, T. Zhao, Y. Lu, L. Zhou, D. Zhao, and F. Zhang, “Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence,” Angew. Chem., Int. Ed. 55(7), 2464–2469 (2016).
[Crossref]

Chem. Commun. (2)

S. Jun and E. Jang, “Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence,” Chem. Commun. 36, 4616–4618 (2005).
[Crossref]

E. Jang, S. Jun, and L. Pu, “High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence,” Chem. Commun. 24, 2964–2965 (2003).
[Crossref]

Chem. Mater. (3)

Z. Li, F. Chen, L. Wang, H. Shen, L. Guo, Y. Kuang, H. Wang, N. Li, and L. S. Li, “Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET,” Chem. Mater. 30(11), 3668–3676 (2018).
[Crossref]

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater. 20(16), 5307–5313 (2008).
[Crossref]

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Chem. Rev. (2)

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, and I. L. Medintz, “Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications,” Chem. Rev. 117(2), 536–711 (2017).
[Crossref]

L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, A. L. Rogach, and M. Gao, “Aqueous Based Semiconductor Nanocrystals,” Chem. Rev. 116(18), 10623–10730 (2016).
[Crossref]

J. Am. Chem. Soc. (5)

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc. 125(44), 13559–13563 (2003).
[Crossref]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
[Crossref]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc. 130(15), 5026–5027 (2008).
[Crossref]

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref]

J. Mater. Chem. B (1)

B. Xu, X. Zhang, W. Huang, Y. Yang, Y. Ma, Z. Gu, T. Zhai, and Y. Zhao, “Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application,” J. Mater. Chem. B 4(16), 2776–2784 (2016).
[Crossref]

J. Phys. Chem. (1)

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

J. Phys. Chem. B (2)

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B 108(40), 15552–15559 (2004).
[Crossref]

Mater. Chem. Phys. (1)

X. Liu, Y. Jiang, X. Lan, Y. Zhang, S. Li, J. Li, T. Han, B. Wang, and H. Zhong, “Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth,” Mater. Chem. Phys. 130(3), 909–914 (2011).
[Crossref]

Materials (1)

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” Materials 3(4), 2260–2345 (2010).
[Crossref]

Nano Lett. (1)

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Nanoscale (1)

O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, and L. S. Li, “High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%,” Nanoscale 10(12), 5650–5657 (2018).
[Crossref]

Nat. Commun. (2)

D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, S. Dou, X. Liu, and D. Jin, “Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals,” Nat. Commun. 7(1), 10254 (2016).
[Crossref]

W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, “Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608 (2018).
[Crossref]

Optik (1)

S. Azizi, H. Rezagholipour Dizaji, and M. H. Ehsani, “Structural and optical properties of Cd1-xZnxS (x = 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes,” Optik 127(18), 7104–7114 (2016).
[Crossref]

Phys. Rev. B (1)

C. R. Kagan, C. B. Murray, and M. G. Bawendi, “Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids,” Phys. Rev. B 54(12), 8633–8643 (1996).
[Crossref]

Small (1)

P. Reiss, M. Protiere, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic illustration for the synthesis of CdZnS/ZnS QDs: S-ODE was first injected into the hot solution containing Cd2+ and Zn2+ precursors, oleic acid (OA) and 1-octadecene (1-ODE), followed by injecting (zinc oleate powder and S)-TBP into the reaction solution.
Fig. 2.
Fig. 2. TEM images (a-f) and XRD patterns (h) of corresponding ZnCdS core and ZnCdS@ZnS core/shell QDs with different ZnS shell thickness. Upper right insets in (a) and (d) are the HRTEM images of corresponding QDs, respectively. (Scale bar in inset of Fig. 2(a) and (e) is 5 nm)
Fig. 3.
Fig. 3. Absorption (a) and PL spectra (b) of CdZnS core obtained at different reaction times (Excitation wavelength of the PL spectra is 365 nm).
Fig. 4.
Fig. 4. (a) Evolution of UV – Vis absorption and PL spectra of the CdZnS and CdZnS/ZnS QDs upon shell growth; (b) PL QY and emission wavelength of CdZnS and CdZnS/ZnS QDs with a given number of monolayers (MLs) of the ZnS shell. Inset in (b): photo images of QDs diluent solution upon 365 nm UV lamp irradiation (upper) and room light (lower).
Fig. 5.
Fig. 5. Evolution of (a) PL spectra and (b) PL emission peak wavelengths and emission width of CdZnS/ZnS QDs as a function of reaction time during the shell formation.
Fig. 6.
Fig. 6. (a) PL QY of solid QDs films and (b) Time-resolved PL decay of CdZnS/ZnS QDs with different ZnS layers shell.
Fig. 7.
Fig. 7. PL spectra of diluent solution and solid film for CdZnS/ZnS QDs with different ZnS shell thickness in 365 nm UV lamp irradiation. The amounts of redshift are labelled in the images.

Tables (1)

Tables Icon

Table 1. Fitting Results of the Decay Curves for CdZnS/ZnS QDs with Different ZnS Shell Layersa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

QY = # p h o t o n s e m i t t e d # p h o t o n s a b s o r b e d = L s a m p l e E r e f e r e n c e E s a m p l e
y = A i e x / x t i t i + y 0

Metrics