Abstract

A wide-angle, wideband, and polarization-insensitive metamaterial (MM) absorber was studied based on the theoretical concept of uniaxial perfect matching layer (UPML) in the terahertz range. The MM absorber was designed as a multi-layered anisotropic array structure consisting of a conductive VIA, a bi-layered slot-FSS, and a split-ring resonator (SRR) separated by porous silica spacers. Each component is optimized to approach the required macroscopic uniaxial property for satisfying the reflection-less boundary condition. The SRRs and VIAs were found to play an important role in maintaining large absorption when the angle of oblique incidence increases under transverse electric (TE) and transverse magnetic (TM) polarization, respectively. The absorption achieves 90% in the frequency regime of 0.9 to 10.5 THz, corresponding to a bandwidth of 168% to the central frequency, and retains such high performance up to 60° oblique incidence for both TE and TM waves.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-angle perfect metamaterial absorbers based on cave-rings and the complementary patterns

Xiutao Huang, Conghui Lu, Cancan Rong, and Minghai Liu
Opt. Mater. Express 8(9) 2520-2531 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Kim, “THz Metamaterials Perfect Absorber for sensing and communication application,” in Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS) OSA Technical Digest (online) (Optical Society of America, 2017), paper SeTh1E.5.
  2. F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
    [Crossref]
  3. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref]
  4. S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Bolometric THz-to-IR converter for terahertz imaging,” Appl. Phys. Lett. 99(2), 023501 (2011).
    [Crossref]
  5. M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent frequency-selective THz stereomaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
    [Crossref]
  6. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [Crossref]
  7. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
    [Crossref]
  8. A. N. Papadimopoulos, N. V. Kantartzis, N. L. Tsitsas, and C. A. Valagiannopoulos, “Wide-angle absorption of visible light from simple bilayers,” Appl. Opt. 56(35), 9779–9786 (2017).
    [Crossref]
  9. H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref]
  10. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [Crossref]
  11. X. Chen and W. Fan, “Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber,” Appl. Opt. 54(9), 2376–2382 (2015).
    [Crossref]
  12. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [Crossref]
  13. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  14. M. Li, S. Q. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Trans. Antenn. Wirel. Propaga. Lett. 11, 748–751 (2012).
    [Crossref]
  15. C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
    [Crossref]
  16. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58(5), 1551–1558 (2010).
    [Crossref]
  17. B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Terahertz metamaterial absorber with an embedded resistive layer,” Opt. Mater. Express 3(8), 1020–1025 (2013).
    [Crossref]
  18. K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene Disks,” Plasmonics 12(2), 393–398 (2017).
    [Crossref]
  19. O. Hemmatyar, B. Rahmani, A. Bagheri, and A. Khavasi, “Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings,” IEEE J. Quantum Electron. 53(5), 1–10 (2017).
    [Crossref]
  20. O. Hemmatyary, M. A. Abbassiy, B. Rahmani, M. Memarian, and K. Mehrany, “Wide-band/angle blazed dual Mode metallic groove gratings,” arXiv:1910.03091 (2019)
  21. C. A. Valagiannopoulos and S. A. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62(10), 5089–5098 (2014).
    [Crossref]
  22. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43(12), 1460–1463 (1995).
    [Crossref]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The FDTD method, 5th ed. (Artech House, 2007)
  24. O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag. 57(10), 3119–3125 (2009).
    [Crossref]
  25. S. Ogawa, D. Fujisawa, H. Hata, and M. Kimata, “Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterial incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications,” Photonics 3(1), 9 (2016).
    [Crossref]
  26. D. Lim, D. Lee, and S. Lim, “Angle-and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
    [Crossref]
  27. W. Withavachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
    [Crossref]
  28. A. Ourir, B. Gallas, L. Becerra, J. Rosny, and P. R. Dahoo, “Electromagnetically induced transparency in symmetric planar metamaterial at THz wavelengths,” Photonics 2(1), 308–316 (2015).
    [Crossref]
  29. N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
    [Crossref]
  30. F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano scale metal films for terahertz applications,” Opt. Eng. 51(6), 063801 (2012).
    [Crossref]
  31. N. Hu, F. Wu, L. Bian, H. Liu, and P. Liu, “Dual broadband absorber based on graphene metamaterial in the terahertz range,” Opt. Mater. Express 8(12), 3899–3909 (2018).
    [Crossref]
  32. L. Qi and C. Liu, “Broadband multilayer graphene metamaterial absorbers,” Opt. Mater. Express 9(3), 1298–1309 (2019).
    [Crossref]
  33. S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)
  34. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter 10(22), 4785–4809 (1998).
    [Crossref]
  35. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  36. I.-H. Lee, E.-S. Yu, S.-H. Lee, and S.-D. Lee, “Full-coloration based on metallic nanostructures through phase discontinuity in Fabry-Perot resonators,” Opt. Express 27(23), 33098–33110 (2019).
    [Crossref]
  37. F. Ruffino and M. G. Grimaldi, “Nanostructuration of thin metal films by pulsed laser irradiations: A review,” Nanomaterials 9(8), 1133 (2019).
    [Crossref]
  38. K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000).
    [Crossref]
  39. M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
    [Crossref]
  40. J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
    [Crossref]
  41. L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q.-H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 5900807 (2019).
    [Crossref]
  42. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 4600607 (2019).
    [Crossref]

2019 (5)

L. Qi and C. Liu, “Broadband multilayer graphene metamaterial absorbers,” Opt. Mater. Express 9(3), 1298–1309 (2019).
[Crossref]

I.-H. Lee, E.-S. Yu, S.-H. Lee, and S.-D. Lee, “Full-coloration based on metallic nanostructures through phase discontinuity in Fabry-Perot resonators,” Opt. Express 27(23), 33098–33110 (2019).
[Crossref]

F. Ruffino and M. G. Grimaldi, “Nanostructuration of thin metal films by pulsed laser irradiations: A review,” Nanomaterials 9(8), 1133 (2019).
[Crossref]

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q.-H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 5900807 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 4600607 (2019).
[Crossref]

2018 (3)

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
[Crossref]

N. Hu, F. Wu, L. Bian, H. Liu, and P. Liu, “Dual broadband absorber based on graphene metamaterial in the terahertz range,” Opt. Mater. Express 8(12), 3899–3909 (2018).
[Crossref]

2017 (3)

A. N. Papadimopoulos, N. V. Kantartzis, N. L. Tsitsas, and C. A. Valagiannopoulos, “Wide-angle absorption of visible light from simple bilayers,” Appl. Opt. 56(35), 9779–9786 (2017).
[Crossref]

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene Disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

O. Hemmatyar, B. Rahmani, A. Bagheri, and A. Khavasi, “Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings,” IEEE J. Quantum Electron. 53(5), 1–10 (2017).
[Crossref]

2016 (2)

S. Ogawa, D. Fujisawa, H. Hata, and M. Kimata, “Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterial incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications,” Photonics 3(1), 9 (2016).
[Crossref]

D. Lim, D. Lee, and S. Lim, “Angle-and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
[Crossref]

2015 (4)

A. Ourir, B. Gallas, L. Becerra, J. Rosny, and P. R. Dahoo, “Electromagnetically induced transparency in symmetric planar metamaterial at THz wavelengths,” Photonics 2(1), 308–316 (2015).
[Crossref]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
[Crossref]

X. Chen and W. Fan, “Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber,” Appl. Opt. 54(9), 2376–2382 (2015).
[Crossref]

2014 (2)

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent frequency-selective THz stereomaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

C. A. Valagiannopoulos and S. A. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62(10), 5089–5098 (2014).
[Crossref]

2013 (2)

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
[Crossref]

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Terahertz metamaterial absorber with an embedded resistive layer,” Opt. Mater. Express 3(8), 1020–1025 (2013).
[Crossref]

2012 (3)

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano scale metal films for terahertz applications,” Opt. Eng. 51(6), 063801 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

M. Li, S. Q. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Trans. Antenn. Wirel. Propaga. Lett. 11, 748–751 (2012).
[Crossref]

2011 (2)

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref]

S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Bolometric THz-to-IR converter for terahertz imaging,” Appl. Phys. Lett. 99(2), 023501 (2011).
[Crossref]

2010 (2)

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58(5), 1551–1558 (2010).
[Crossref]

2009 (3)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag. 57(10), 3119–3125 (2009).
[Crossref]

W. Withavachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

2008 (3)

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

2000 (1)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter 10(22), 4785–4809 (1998).
[Crossref]

1995 (1)

Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43(12), 1460–1463 (1995).
[Crossref]

Abbassiy, M. A.

O. Hemmatyary, M. A. Abbassiy, B. Rahmani, M. Memarian, and K. Mehrany, “Wide-band/angle blazed dual Mode metallic groove gratings,” arXiv:1910.03091 (2019)

Abbott, D.

W. Withavachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

Abdollahramezani, S.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)

Adibi, A.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)

Aho, T.

C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
[Crossref]

Alu, A.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)

Alves, F.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Terahertz metamaterial absorber with an embedded resistive layer,” Opt. Mater. Express 3(8), 1020–1025 (2013).
[Crossref]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano scale metal films for terahertz applications,” Opt. Eng. 51(6), 063801 (2012).
[Crossref]

Arik, K.

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene Disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

Averitt, R. D.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Bagheri, A.

O. Hemmatyar, B. Rahmani, A. Bagheri, and A. Khavasi, “Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings,” IEEE J. Quantum Electron. 53(5), 1–10 (2017).
[Crossref]

Bai, Y. Y.

M. Li, S. Q. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Trans. Antenn. Wirel. Propaga. Lett. 11, 748–751 (2012).
[Crossref]

Becerra, L.

A. Ourir, B. Gallas, L. Becerra, J. Rosny, and P. R. Dahoo, “Electromagnetically induced transparency in symmetric planar metamaterial at THz wavelengths,” Photonics 2(1), 308–316 (2015).
[Crossref]

Bian, L.

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

Cai, G.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 4600607 (2019).
[Crossref]

Cai, J.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Chen, X.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q.-H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 5900807 (2019).
[Crossref]

X. Chen and W. Fan, “Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber,” Appl. Opt. 54(9), 2376–2382 (2015).
[Crossref]

Costa, F.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58(5), 1551–1558 (2010).
[Crossref]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag. 57(10), 3119–3125 (2009).
[Crossref]

Cumming, D. R. S.

Dahoo, P. R.

A. Ourir, B. Gallas, L. Becerra, J. Rosny, and P. R. Dahoo, “Electromagnetically induced transparency in symmetric planar metamaterial at THz wavelengths,” Photonics 2(1), 308–316 (2015).
[Crossref]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Fan, W.

Fedorinin, V. N.

S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Bolometric THz-to-IR converter for terahertz imaging,” Appl. Phys. Lett. 99(2), 023501 (2011).
[Crossref]

Fujisawa, D.

S. Ogawa, D. Fujisawa, H. Hata, and M. Kimata, “Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterial incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications,” Photonics 3(1), 9 (2016).
[Crossref]

Gallas, B.

A. Ourir, B. Gallas, L. Becerra, J. Rosny, and P. R. Dahoo, “Electromagnetically induced transparency in symmetric planar metamaterial at THz wavelengths,” Photonics 2(1), 308–316 (2015).
[Crossref]

Gelfand, A. V.

S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Bolometric THz-to-IR converter for terahertz imaging,” Appl. Phys. Lett. 99(2), 023501 (2011).
[Crossref]

Grant, J.

Grbovic, D.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Terahertz metamaterial absorber with an embedded resistive layer,” Opt. Mater. Express 3(8), 1020–1025 (2013).
[Crossref]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano scale metal films for terahertz applications,” Opt. Eng. 51(6), 063801 (2012).
[Crossref]

Grimaldi, M. G.

F. Ruffino and M. G. Grimaldi, “Nanostructuration of thin metal films by pulsed laser irradiations: A review,” Nanomaterials 9(8), 1133 (2019).
[Crossref]

Grischkowsky, D.

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
[Crossref]

Guina, M.

C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The FDTD method, 5th ed. (Artech House, 2007)

Hata, H.

S. Ogawa, D. Fujisawa, H. Hata, and M. Kimata, “Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterial incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications,” Photonics 3(1), 9 (2016).
[Crossref]

He, S.

Hemmatyar, O.

O. Hemmatyar, B. Rahmani, A. Bagheri, and A. Khavasi, “Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings,” IEEE J. Quantum Electron. 53(5), 1–10 (2017).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)

Hemmatyary, O.

O. Hemmatyary, M. A. Abbassiy, B. Rahmani, M. Memarian, and K. Mehrany, “Wide-band/angle blazed dual Mode metallic groove gratings,” arXiv:1910.03091 (2019)

Hokmabadi, M. P.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent frequency-selective THz stereomaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter 10(22), 4785–4809 (1998).
[Crossref]

Hu, F.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Hu, N.

Jin, Y.

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Kantartzis, N. V.

Karamitros, A.

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano scale metal films for terahertz applications,” Opt. Eng. 51(6), 063801 (2012).
[Crossref]

Karunasiri, G.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Terahertz metamaterial absorber with an embedded resistive layer,” Opt. Mater. Express 3(8), 1020–1025 (2013).
[Crossref]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano scale metal films for terahertz applications,” Opt. Eng. 51(6), 063801 (2012).
[Crossref]

Kearney, B.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Terahertz metamaterial absorber with an embedded resistive layer,” Opt. Mater. Express 3(8), 1020–1025 (2013).
[Crossref]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano scale metal films for terahertz applications,” Opt. Eng. 51(6), 063801 (2012).
[Crossref]

Khalid, A.

Khavasi, A.

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene Disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

O. Hemmatyar, B. Rahmani, A. Bagheri, and A. Khavasi, “Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings,” IEEE J. Quantum Electron. 53(5), 1–10 (2017).
[Crossref]

Kiarashinejad, Y.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)

Kim, S. M.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent frequency-selective THz stereomaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

S. M. Kim, “THz Metamaterials Perfect Absorber for sensing and communication application,” in Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS) OSA Technical Digest (online) (Optical Society of America, 2017), paper SeTh1E.5.

Kimata, M.

S. Ogawa, D. Fujisawa, H. Hata, and M. Kimata, “Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterial incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications,” Photonics 3(1), 9 (2016).
[Crossref]

Kingsland, D. M.

Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43(12), 1460–1463 (1995).
[Crossref]

Krasnok, A.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)

Kung, P.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent frequency-selective THz stereomaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

Kuznetsov, S. A.

S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Bolometric THz-to-IR converter for terahertz imaging,” Appl. Phys. Lett. 99(2), 023501 (2011).
[Crossref]

Laman, N.

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
[Crossref]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

Lazorskiy, P. A.

S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Bolometric THz-to-IR converter for terahertz imaging,” Appl. Phys. Lett. 99(2), 023501 (2011).
[Crossref]

Lee, D.

D. Lim, D. Lee, and S. Lim, “Angle-and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
[Crossref]

Lee, I.-H.

Lee, J. F.

Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43(12), 1460–1463 (1995).
[Crossref]

Lee, R.

Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43(12), 1460–1463 (1995).
[Crossref]

Lee, S.-D.

Lee, S.-H.

Li, M.

M. Li, S. Q. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Trans. Antenn. Wirel. Propaga. Lett. 11, 748–751 (2012).
[Crossref]

Li, X.

J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
[Crossref]

Li, Z.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Lim, D.

D. Lim, D. Lee, and S. Lim, “Angle-and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
[Crossref]

Lim, S.

D. Lim, D. Lee, and S. Lim, “Angle-and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
[Crossref]

Liu, C.

Liu, H.

Liu, P.

Liu, Q.-H.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q.-H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 5900807 (2019).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

Liu, Y.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 4600607 (2019).
[Crossref]

Luo, J.

J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
[Crossref]

Luo, X.

J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
[Crossref]

Luukkonen, O.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag. 57(10), 3119–3125 (2009).
[Crossref]

Ma, Y.

Manara, G.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58(5), 1551–1558 (2010).
[Crossref]

Mehrany, K.

O. Hemmatyary, M. A. Abbassiy, B. Rahmani, M. Memarian, and K. Mehrany, “Wide-band/angle blazed dual Mode metallic groove gratings,” arXiv:1910.03091 (2019)

Memarian, M.

O. Hemmatyary, M. A. Abbassiy, B. Rahmani, M. Memarian, and K. Mehrany, “Wide-band/angle blazed dual Mode metallic groove gratings,” arXiv:1910.03091 (2019)

Monorchio, A.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58(5), 1551–1558 (2010).
[Crossref]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag. 57(10), 3119–3125 (2009).
[Crossref]

Niemi, T.

C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
[Crossref]

Ogawa, S.

S. Ogawa, D. Fujisawa, H. Hata, and M. Kimata, “Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterial incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications,” Photonics 3(1), 9 (2016).
[Crossref]

Ou, Y.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Ourir, A.

A. Ourir, B. Gallas, L. Becerra, J. Rosny, and P. R. Dahoo, “Electromagnetically induced transparency in symmetric planar metamaterial at THz wavelengths,” Photonics 2(1), 308–316 (2015).
[Crossref]

Paddila, W. J.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

Pan, X.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Papadimopoulos, A. N.

Paulish, A. G.

S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Bolometric THz-to-IR converter for terahertz imaging,” Appl. Phys. Lett. 99(2), 023501 (2011).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter 10(22), 4785–4809 (1998).
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Pu, M.

J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
[Crossref]

Qi, L.

Quan, B.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Rahmani, B.

O. Hemmatyar, B. Rahmani, A. Bagheri, and A. Khavasi, “Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings,” IEEE J. Quantum Electron. 53(5), 1–10 (2017).
[Crossref]

O. Hemmatyary, M. A. Abbassiy, B. Rahmani, M. Memarian, and K. Mehrany, “Wide-band/angle blazed dual Mode metallic groove gratings,” arXiv:1910.03091 (2019)

Ramezani, S. A.

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene Disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter 10(22), 4785–4809 (1998).
[Crossref]

Rosny, J.

A. Ourir, B. Gallas, L. Becerra, J. Rosny, and P. R. Dahoo, “Electromagnetically induced transparency in symmetric planar metamaterial at THz wavelengths,” Photonics 2(1), 308–316 (2015).
[Crossref]

Rozanov, K. N.

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000).
[Crossref]

Ruffino, F.

F. Ruffino and M. G. Grimaldi, “Nanostructuration of thin metal films by pulsed laser irradiations: A review,” Nanomaterials 9(8), 1133 (2019).
[Crossref]

Sacks, Z. S.

Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43(12), 1460–1463 (1995).
[Crossref]

Saha, S.

Shen, F.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q.-H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 5900807 (2019).
[Crossref]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
[Crossref]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag. 57(10), 3119–3125 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Song, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 4600607 (2019).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter 10(22), 4785–4809 (1998).
[Crossref]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The FDTD method, 5th ed. (Artech House, 2007)

Taghinejad, H.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
[Crossref]

C. A. Valagiannopoulos and S. A. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62(10), 5089–5098 (2014).
[Crossref]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag. 57(10), 3119–3125 (2009).
[Crossref]

Tsitsas, N. L.

Tukiainen, A.

C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
[Crossref]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Valagiannopoulos, C. A.

A. N. Papadimopoulos, N. V. Kantartzis, N. L. Tsitsas, and C. A. Valagiannopoulos, “Wide-angle absorption of visible light from simple bilayers,” Appl. Opt. 56(35), 9779–9786 (2017).
[Crossref]

C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
[Crossref]

C. A. Valagiannopoulos and S. A. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62(10), 5089–5098 (2014).
[Crossref]

Wang, B. Z.

M. Li, S. Q. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Trans. Antenn. Wirel. Propaga. Lett. 11, 748–751 (2012).
[Crossref]

Wang, L.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Wang, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 4600607 (2019).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

Wei, M.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 4600607 (2019).
[Crossref]

Wilbert, D. S.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent frequency-selective THz stereomaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

Withavachumnankul, W.

W. Withavachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

Wu, F.

Wu, Z.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Xiao, S. Q.

M. Li, S. Q. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Trans. Antenn. Wirel. Propaga. Lett. 11, 748–751 (2012).
[Crossref]

Xu, X.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Ye, L.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q.-H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 5900807 (2019).
[Crossref]

Ye, Y. Q.

Yu, E.-S.

Yu, H.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Yuan, J.

J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
[Crossref]

Zandehshahvar, M.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)

Zeng, F.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q.-H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 5900807 (2019).
[Crossref]

Zhan, X.

Zhang, F.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Zhang, M.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
[Crossref]

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Zhao, Z.

J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
[Crossref]

Zhou, Y.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 4600607 (2019).
[Crossref]

Zhuo, J.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q.-H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 5900807 (2019).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Bolometric THz-to-IR converter for terahertz imaging,” Appl. Phys. Lett. 99(2), 023501 (2011).
[Crossref]

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

O. Hemmatyar, B. Rahmani, A. Bagheri, and A. Khavasi, “Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings,” IEEE J. Quantum Electron. 53(5), 1–10 (2017).
[Crossref]

IEEE Photonics J. (4)

W. Withavachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. 10(6), 5901011 (2018).
[Crossref]

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q.-H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 5900807 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 4600607 (2019).
[Crossref]

IEEE Trans. Antenn. Wirel. Propaga. Lett. (1)

M. Li, S. Q. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Trans. Antenn. Wirel. Propaga. Lett. 11, 748–751 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (5)

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58(5), 1551–1558 (2010).
[Crossref]

C. A. Valagiannopoulos and S. A. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62(10), 5089–5098 (2014).
[Crossref]

Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43(12), 1460–1463 (1995).
[Crossref]

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000).
[Crossref]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag. 57(10), 3119–3125 (2009).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46(19), 195103 (2013).
[Crossref]

J. Phys.: Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter 10(22), 4785–4809 (1998).
[Crossref]

Nanomaterials (1)

F. Ruffino and M. G. Grimaldi, “Nanostructuration of thin metal films by pulsed laser irradiations: A review,” Nanomaterials 9(8), 1133 (2019).
[Crossref]

Nanophotonics (1)

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Opt. Eng. (1)

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano scale metal films for terahertz applications,” Opt. Eng. 51(6), 063801 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (3)

Photonics (2)

S. Ogawa, D. Fujisawa, H. Hata, and M. Kimata, “Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterial incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications,” Photonics 3(1), 9 (2016).
[Crossref]

A. Ourir, B. Gallas, L. Becerra, J. Rosny, and P. R. Dahoo, “Electromagnetically induced transparency in symmetric planar metamaterial at THz wavelengths,” Photonics 2(1), 308–316 (2015).
[Crossref]

Phys. Rev. Appl. (2)

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent frequency-selective THz stereomaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Phys. Rev. B (3)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

C. A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and C. R. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91(11), 115305 (2015).
[Crossref]

Plasmonics (1)

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene Disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

Sci. Rep. (1)

D. Lim, D. Lee, and S. Lim, “Angle-and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
[Crossref]

Other (4)

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335v1 (2020)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The FDTD method, 5th ed. (Artech House, 2007)

O. Hemmatyary, M. A. Abbassiy, B. Rahmani, M. Memarian, and K. Mehrany, “Wide-band/angle blazed dual Mode metallic groove gratings,” arXiv:1910.03091 (2019)

S. M. Kim, “THz Metamaterials Perfect Absorber for sensing and communication application,” in Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS) OSA Technical Digest (online) (Optical Society of America, 2017), paper SeTh1E.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The schematic illustration of an incident plane wave and reflection occurred at an interface between an isotropic free space and a uniaxial-anisotropic medium.
Fig. 2.
Fig. 2. The unit cell of THz MM absorber with the periodicity LP of 68 μm. The total thickness (t2) of MM absorber from the ground plane to the top SRR is 50μm. The thickness t1 is half of t2, and t3 is quarter of t2. The pink part is a SRR with radius R1=31 μm, R2=20 μm, width w2=10 μm, and split-gap Wg=1 μm. The yellow parts in diagram are metallic VIA and slot-FSS patterns, respectively. The diameter of VIA(Dv) is equal to 20 μm. The slot-FSS has the geometric parameters of w1 = 7 μm, L1=62 μm, and L2=48 μm.
Fig. 3.
Fig. 3. UPML condition with ɛa=μc. (a) The metal rod array shows Drude-like dispersion along the z direction. (b) The real part of ɛ a , μ c and μ d . The values of ɛ a and μ c are closed to each other from 3 to 4.5 THz. The green dashed line indicates the permeability μ d in vacuum.
Fig. 4.
Fig. 4. UPML condition with ɛa=ɛb−1. (a) The inverse of related ɛa as a function of frequency, showing a Lorentz profile with an inverse phase difference. (b) The calculated admittance spectra of a bi-layered slot-FSS by full-wave simulation, where the blue (red) curve is the real (imaginary) part of the admittance. The inset shows the equivalent circuit model of the bi-layer slot-FSS. (c) The corresponding effect permittivity of the slot-FSS, showing the required Lorentz profile with inverse phase after the resonance at 0.75 THz. (d) The real part of ɛ a , ɛ b −1 and μ c . The values of ɛ a and ɛb−1 show a good correspondence after 2 THz. The green dashed line indicates the permeability μ d in vacuum.
Fig. 5.
Fig. 5. Theoretically predicted reflectance spectra as a function of incident angles for (a) TE and (b) TM waves, respectively, through substituting effective dispersive ɛ a , ɛ b and μ d , μ c tensor elements into reflection coefficients. (c) and (d) show when the damping loss of each ɛ a , ɛ b and μ c are reduced to one-tenth of (a) and (b), the absorption performance will be degraded at low-frequency regime with large incident angles. The white dash curves and black dash-dot curves indicate the gradient contours for 10% and 50% reflectance, respectively.
Fig. 6.
Fig. 6. Full-wave simulated reflectance spectra of the proposed structure as function of incident angles for (a) TE polarization and (b) TM polarization. Because ɛa and ɛb−1 are identical for most frequencies, the TM performance with large incident angle is better than TE. The white dash curves and black dash-dot curves indicate the gradient contours for 10% and 50% reflectance, respectively.
Fig. 7.
Fig. 7. (a) The surface current distribution of multi-layered structure under normal incidence. For oblique 45° TE polarization, circular surface currents are formed (b) on the middle slot-FSS layer and (c) on double concentric resistive SRR. (d) The E-field distribution on the top SRR layer, which is concentrated on split-gap of SRR. For oblique 45° TM polarization, (e) surface currents and (f) electric field are radially distributed in the surrounding of VIA.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ε ¯ r = [ ε b 0 0 0 ε b 0 0 0 ε a ]
μ ¯ r = [ μ d 0 0 0 μ d 0 0 0 μ c ]
ε 0 β 2 × ( ε ¯ r 1 β 2 ) × H + ω 2 μ ¯ r μ 0 H = 0
r T M = β 1 z β 2 z ε b 1 β 1 z + β 2 z ε b 1
r T E = β 1 z β 2 z μ d 1 β 1 z + β 2 z μ d 1
β 1 y = β 2 y
β 2 z = k 0 2 ε b μ d ( β 1 y ) 2 ε b ε a 1 for TM mode
β 2 z = k 0 2 ε b μ d ( β 1 y ) 2 μ d μ c 1 for TE mode,
ω p = c 0 L P 2 π ln ( L P / r v i a )
ε a = 1 ω p 2 ω ( ω + j γ )
ω m p = 3 w g 2 π 2 r s r r 3 ( 1 r s r r 2 L P 2 )
ε b = 1 ε a = 1 + ω p 2 ( ω 2 ω p 2 ) + j ω γ
ε r = 1 + P ε 0 E 0
ε b = 1 d Y d f L P w 1 V ε 0
| 0 | ln r ( λ ) | d λ | 2 π 2 i μ i d i

Metrics