Abstract

Terahertz time-domain spectroscopy measurements were performed on 0.7 mol% Mg-doped stoichiometric lithium niobate crystal with ordinary and extraordinary polarization in the 4-460 K temperature range. The absorption coefficient and refractive index spectra were recorded in the terahertz frequency range from 0.5 to 1.8 THz. The data extracted from the measurements are given in simple and concise form in order to provide easily usable practical information for those who would like to use this material in the terahertz range. Through a practical example it was also pointed out, that the effect of the temperature must not be neglected during the design and adjustment of terahertz sources if the goal is to maximize the optical-to-THz conversion efficiency.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range

Xiaojun Wu, Chun Zhou, Wenqian Ronny Huang, Frederike Ahr, and Franz X. Kärtner
Opt. Express 23(23) 29729-29737 (2015)

Temperature-dependent visible to near-infrared optical properties of 8 mol% Mg-doped lithium tantalate

Konstantinos Moutzouris, George Hloupis, Ilias Stavrakas, Dimos Triantis, and Ming-Hsien Chou
Opt. Mater. Express 1(3) 458-465 (2011)

Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5 mol. % MgO-doped LiNbO3 in the terahertz range

Jens Kiessling, Karsten Buse, and Ingo Breunig
J. Opt. Soc. Am. B 30(4) 950-952 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
    [Crossref]
  2. T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
    [Crossref]
  3. S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
    [Crossref]
  4. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
    [Crossref]
  5. L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
    [Crossref]
  6. W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
    [Crossref]
  7. E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
    [Crossref]
  8. L. Palfalvi, J. A. Fülöp, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17(3), 031301 (2014).
    [Crossref]
  9. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser,” Opt. Lett. 39(23), 6632–6635 (2014).
    [Crossref]
  10. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
    [Crossref]
  11. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [Crossref]
  12. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification: erratum,” Opt. Express 19(23), 22950 (2011).
    [Crossref]
  13. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refrection of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]
  14. W. D. Johnston and I. P. Kaminov, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188(3), 1209–1211 (1969).
    [Crossref]
  15. P. Górski, R. Ledzion, K. Bondarczuk, and W. Kucharczyk, “Temperature dependence of linear electrooptic coefficients r113 and r333 in lithium niobate,” Opto-Electron. Rev. 16(1), 46–48 (2008).
    [Crossref]
  16. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
    [Crossref]
  17. X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
    [Crossref]
  18. M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1203–1209 (2015).
    [Crossref]
  19. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
    [Crossref]
  20. P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett. 44(4), 1023–1026 (2019).
    [Crossref]
  21. M. Schall, H. Helmand, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
    [Crossref]
  22. K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
    [Crossref]
  23. M. D. Fontana and P. Bourson, “Microstructure and defects probed by raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
    [Crossref]
  24. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
    [Crossref]
  25. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [Crossref]

2019 (1)

2015 (6)

X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
[Crossref]

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1203–1209 (2015).
[Crossref]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

M. D. Fontana and P. Bourson, “Microstructure and defects probed by raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
[Crossref]

2014 (3)

2013 (2)

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
[Crossref]

2012 (1)

2011 (4)

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification: erratum,” Opt. Express 19(23), 22950 (2011).
[Crossref]

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref]

2010 (1)

2008 (2)

P. Górski, R. Ledzion, K. Bondarczuk, and W. Kucharczyk, “Temperature dependence of linear electrooptic coefficients r113 and r333 in lithium niobate,” Opto-Electron. Rev. 16(1), 46–48 (2008).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

2005 (2)

P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refrection of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2001 (1)

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

1999 (1)

M. Schall, H. Helmand, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

1969 (1)

W. D. Johnston and I. P. Kaminov, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188(3), 1209–1211 (1969).
[Crossref]

Agranat, M. B.

Ahr, F.

Almási, G.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Ashitkov, S. I.

Balogh, E.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Bondarczuk, K.

P. Górski, R. Ledzion, K. Bondarczuk, and W. Kucharczyk, “Temperature dependence of linear electrooptic coefficients r113 and r333 in lithium niobate,” Opto-Electron. Rev. 16(1), 46–48 (2008).
[Crossref]

Bourson, P.

M. D. Fontana and P. Bourson, “Microstructure and defects probed by raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
[Crossref]

Corradi, G.

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Dekorsy, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Dombi, P.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Dravecz, G.

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Fallahi, A.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
[Crossref]

Farkas, G.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Fiebig, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Field, R. W.

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref]

Fischer, B. M.

Fleischer, S.

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref]

Fontana, M. D.

M. D. Fontana and P. Bourson, “Microstructure and defects probed by raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
[Crossref]

Fortov, V. E.

Fülöp, J. A.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Górski, P.

P. Górski, R. Ledzion, K. Bondarczuk, and W. Kucharczyk, “Temperature dependence of linear electrooptic coefficients r113 and r333 in lithium niobate,” Opto-Electron. Rev. 16(1), 46–48 (2008).
[Crossref]

Hajdara, I.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1203–1209 (2015).
[Crossref]

Hajdara, Z. S. I.

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Han, P. Y.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Hauri, C. P.

Hebling, J.

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett. 44(4), 1023–1026 (2019).
[Crossref]

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1203–1209 (2015).
[Crossref]

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

L. Palfalvi, J. A. Fülöp, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17(3), 031301 (2014).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification: erratum,” Opt. Express 19(23), 22950 (2011).
[Crossref]

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refrection of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Helmand, H.

M. Schall, H. Helmand, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

Hong, K.-H.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Huang, W. R.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
[Crossref]

Huber, R.

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Jepsen, P. U.

Johnston, W. D.

W. D. Johnston and I. P. Kaminov, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188(3), 1209–1211 (1969).
[Crossref]

Kaminov, I. P.

W. D. Johnston and I. P. Kaminov, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188(3), 1209–1211 (1969).
[Crossref]

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Karsch, S.

Kärtner, F. X.

X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
[Crossref]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
[Crossref]

Keathley, P. D.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

Keiding, S. R.

M. Schall, H. Helmand, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

Kersting, R.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Klatt, G.

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Klingebiel, S.

Kono, S.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Kovacs, K.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Kovács, L.

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Krausz, F.

Krizsán, G.

Kucharczyk, W.

P. Górski, R. Ledzion, K. Bondarczuk, and W. Kucharczyk, “Temperature dependence of linear electrooptic coefficients r113 and r333 in lithium niobate,” Opto-Electron. Rev. 16(1), 46–48 (2008).
[Crossref]

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refrection of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Ledzion, R.

P. Górski, R. Ledzion, K. Bondarczuk, and W. Kucharczyk, “Temperature dependence of linear electrooptic coefficients r113 and r333 in lithium niobate,” Opto-Electron. Rev. 16(1), 46–48 (2008).
[Crossref]

Leitenstorfer, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Lengyel, K.

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Lombosi, C.

Mährlein, S.

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Miller, R. J. D.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Moriena, G.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Nanni, E. A.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

Nelson, K. A.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref]

Nugraha, P. S.

Ollmann, Z.

Ovchinnikov, A. V.

Pachkin, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Palfalvi, L.

L. Palfalvi, J. A. Fülöp, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17(3), 031301 (2014).
[Crossref]

Pálfalvi, L.

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett. 44(4), 1023–1026 (2019).
[Crossref]

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1203–1209 (2015).
[Crossref]

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification: erratum,” Opt. Express 19(23), 22950 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refrection of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Péter, A.

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refrection of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Polgár, K.

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refrection of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Ravi, K.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Schall, M.

M. Schall, H. Helmand, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

Sell, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Skrobol, C.

Szaller, Z.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1203–1209 (2015).
[Crossref]

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Tani, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Tosa, V.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Toth, G.

L. Palfalvi, J. A. Fülöp, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17(3), 031301 (2014).
[Crossref]

Tóth, G.

Unferdorben, M.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1203–1209 (2015).
[Crossref]

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Usami, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Varju, K.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Vicario, C.

Wolf, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Wong, L. J.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
[Crossref]

Wu, X.

Zapata, L. E.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

Zhang, X.-C.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Zhou, C.

Zhou, Y.

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref]

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Appl. Phys. Rev. (2)

K. Lengyel, A. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, Z. S. I. Hajdara, and K. Polgár, “Growth, defect structure and thz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

M. D. Fontana and P. Bourson, “Microstructure and defects probed by raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

M. Schall, H. Helmand, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

J. Appl. Phys. (2)

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refrection of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1203–1209 (2015).
[Crossref]

Nat. Commun. (1)

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Nat. Photonics (2)

T. Kampfrath, A. Sell, G. Klatt, A. Pachkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opto-Electron. Rev. (1)

P. Górski, R. Ledzion, K. Bondarczuk, and W. Kucharczyk, “Temperature dependence of linear electrooptic coefficients r113 and r333 in lithium niobate,” Opto-Electron. Rev. 16(1), 46–48 (2008).
[Crossref]

Phys. Rev. (1)

W. D. Johnston and I. P. Kaminov, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188(3), 1209–1211 (1969).
[Crossref]

Phys. Rev. A (1)

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Phys. Rev. Accel. Beams (1)

L. Palfalvi, J. A. Fülöp, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17(3), 031301 (2014).
[Crossref]

Phys. Rev. Lett. (1)

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref]

Sci. Rep. (1)

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5(1), 14899 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Frequency dependence of refractive index of the 0.7 mol$\%$ Mg-doped sLN crystal for extraordinary (a) and ordinary polarizations (b) at a few temperature. The symbols are the measured data and the solid lines are the fitting curves according to Eq. (4).
Fig. 2.
Fig. 2. Temperature-dependence of the refractive index for extraordinary (a) and ordinary polarizations (b) at two different frequencies (0.8 and 1.6 THz). The symbols are the measured data and the solid lines are the fitting curves according to Eq. (5).
Fig. 3.
Fig. 3. Frequency dependence of the absorption coefficient of the 0.7 mol$\%$ Mg-doped sLN crystal for extraordinary (a) and ordinary polarizations (b) at a few temperature. The symbols are the measured data and the solid lines are the fitting curves according to Eq. (6).
Fig. 4.
Fig. 4. The symbols show the $K$ parameters obtained from the fitting of the absorption spectra belonging to a given temperature for extraordinary (a) and ordinary polarizations (b). The solid line represents the polynomial fitting of $K(T)$ according to Eq. (7).
Fig. 5.
Fig. 5. Temperature dependence of the $\gamma$ velocity matching angle (a) and the corresponding incident angle on the grating (b) for 0.7 mol$\%$ Mg-doped sLN. Pump wavelength: 1030 nm, grating density: 1500 lines/mm.

Tables (3)

Tables Icon

Table 1. A , B , and C coefficients of the refractive index polynomials (Eq. (4)) for extraordinary and ordinary polarization at different temperatures. The temperature is measured in K, A is dimensionless, the dimensions of B and C are 10 2 T H z 2 and 10 3 T H z 4 , respectively.

Tables Icon

Table 2. A 0 , and B 0 coefficients of the temperature-dependent index of refraction (Eq. (5)) for both polarizations at two different frequencies.

Tables Icon

Table 3. a 0 , and b 0 parameters of the temperature and frequency dependent absorption coefficient (Eq. (8)) for both polarizations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

c n T H z , p h cos ( γ ) = c n p , g r ,
n ( ν ) = arg ( H ( ν ) ) c 2 π ν d + 1 ,
α ( ν ) = 4 π ν κ ( ν ) c = 2 d ln ( 1 | H ( ν ) | 4 n ( ν ) ( n ( ν ) + 1 ) 2 ) ,
n ( ν ) = A + B ν 2 + C ν 4
n ( T ) = A 0 + B 0 T 2
α ( ν , T ) = K ( T ) ν 2
K ( T ) = a 0 + b 0 T 2
α ( ν , T ) = ( a 0 + b 0 T 2 ) ν 2