Abstract

Metallic nanowire gratings have been proposed for use as transmitted-type non-absorptive colorfilters and polarizers that take the place of the conventional absorptive ones in liquid crystal displays (LCDs), which can improve the light efficiency by recycling the reflected lights. To achieve a high recycling rate, the designed reflected light should be as high as possible, meaning absorption should be as low as possible. In this work, we find that higher reflection and lower loss can be obtained for the light incident to the grating side than to the substrate side in bi-layered aluminum nanowire gratings (BANGs), by decreasing light localization and waveguiding loss in the substrate. Taking full advantage of the reflection characteristics, we firstly demonstrate that when a BANG-based integrated polarizer and colorfilter is placed with its grating side facing the backlight in LCDs, more than a 30% light enhancement is obtained than the case with the substrate side facing the backlight. This work affords an essential guide for the design of eco-displays by using MNGs.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarizing grating color filters with large acceptance angle and high transmittance

Zhenyue Luo, Guiju Zhang, Ruidong Zhu, Yating Gao, and Shin-Tson Wu
Appl. Opt. 55(1) 70-76 (2016)

Tunable spectral filters based on metallic nanowire gratings

Nanling Sun, Jie Cui, Yi She, Lan Lu, Jun Zheng, and Zhicheng Ye
Opt. Mater. Express 5(4) 912-919 (2015)

Reflective low-sideband plasmonic structural colors

Jun Zheng, Zhi-Cheng Ye, and Zheng-Ming Sheng
Opt. Mater. Express 6(2) 381-387 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
    [Crossref]
  2. W. Q. Lim and Z. Q. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
    [Crossref]
  3. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
    [Crossref]
  4. H. Park, S. Isnaeni, Y. Gong, and Cho, “How effective is plasmonic enhancement of colloidal quantum dots for color-conversion light-emitting devices?” Small 13(48), 1701805 (2017).
    [Crossref]
  5. Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
    [Crossref]
  6. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
    [Crossref]
  7. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
    [Crossref]
  8. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
    [Crossref]
  9. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
    [Crossref]
  10. Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
    [Crossref]
  11. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref]
  12. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref]
  13. T. Xu, Y. Wu, X. Luo, and L. Guo, “Plasmonic nano-resonators for color filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
    [Crossref]
  14. W. J. Gunning and J. Foschaar, “Improvement in the transmission of iodine-polyvinyl alcohol polarizers,” Appl. Opt. 22(20), 3229–3231 (1983).
    [Crossref]
  15. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
    [Crossref]
  16. S. H. Kim, J. Park, and K. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
    [Crossref]
  17. Z. Ge and S. T. Wu, “Nano-wire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
    [Crossref]
  18. J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
    [Crossref]
  19. N. Sun, J. Cui, Y. She, L. Lu, J. Zheng, and Z. Ye, “Tunable spectral filters based on metallic nanowire gratings,” Opt. Mater. Express 5(4), 912–919 (2015).
    [Crossref]
  20. J. Zheng, Z. C. Ye, and Z. M. Zheng, “Reflective low-sideband plasmonic structural color,” Opt. Mater. Express 6(2), 381–387 (2016).
    [Crossref]
  21. https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-diffractmod.html

2017 (1)

H. Park, S. Isnaeni, Y. Gong, and Cho, “How effective is plasmonic enhancement of colloidal quantum dots for color-conversion light-emitting devices?” Small 13(48), 1701805 (2017).
[Crossref]

2016 (5)

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref]

W. Q. Lim and Z. Q. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
[Crossref]

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

J. Zheng, Z. C. Ye, and Z. M. Zheng, “Reflective low-sideband plasmonic structural color,” Opt. Mater. Express 6(2), 381–387 (2016).
[Crossref]

2015 (1)

2014 (1)

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
[Crossref]

2012 (3)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

2010 (2)

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref]

T. Xu, Y. Wu, X. Luo, and L. Guo, “Plasmonic nano-resonators for color filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

2008 (2)

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
[Crossref]

Z. Ge and S. T. Wu, “Nano-wire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
[Crossref]

2007 (1)

2006 (2)

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
[Crossref]

S. H. Kim, J. Park, and K. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

1999 (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

1983 (1)

Atwater, H. A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

Basu, T.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

Besbes, M.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
[Crossref]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

Cai, B.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref]

Canva, M.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
[Crossref]

Capasso, F.

Chamtouri, M.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
[Crossref]

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

Cho,

H. Park, S. Isnaeni, Y. Gong, and Cho, “How effective is plasmonic enhancement of colloidal quantum dots for color-conversion light-emitting devices?” Small 13(48), 1701805 (2017).
[Crossref]

Cubukcu, E.

Cui, J.

Dai, N. L.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
[Crossref]

David, C.

Dhawan, A.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
[Crossref]

Dietrich, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Ekinci, Y.

Foschaar, J.

Franta, D.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Gao, Z. Q.

W. Q. Lim and Z. Q. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
[Crossref]

Ge, Z.

Z. Ge and S. T. Wu, “Nano-wire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
[Crossref]

Ghalila, H.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
[Crossref]

Gong, Y.

H. Park, S. Isnaeni, Y. Gong, and Cho, “How effective is plasmonic enhancement of colloidal quantum dots for color-conversion light-emitting devices?” Small 13(48), 1701805 (2017).
[Crossref]

Gruev, V.

Gu, M.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref]

Gunning, W. J.

Guo, L.

T. Xu, Y. Wu, X. Luo, and L. Guo, “Plasmonic nano-resonators for color filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

Halas, N. J.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

Huang, D.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

Isnaeni, S.

H. Park, S. Isnaeni, Y. Gong, and Cho, “How effective is plasmonic enhancement of colloidal quantum dots for color-conversion light-emitting devices?” Small 13(48), 1701805 (2017).
[Crossref]

Kim, S. H.

S. H. Kim, J. Park, and K. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Kley, E.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Kroker, S.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Lee, K.

S. H. Kim, J. Park, and K. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Li, Y. H.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
[Crossref]

Lim, W. Q.

W. Q. Lim and Z. Q. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
[Crossref]

Link, S.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

Long, H.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
[Crossref]

Lu, L.

Lu, P. X.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
[Crossref]

Luo, X.

T. Xu, Y. Wu, X. Luo, and L. Guo, “Plasmonic nano-resonators for color filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

Manjavacas, A.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

Moreau, J.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
[Crossref]

Nordlander, P.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

Ohlídal, I.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Olson, J.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

Park, H.

H. Park, S. Isnaeni, Y. Gong, and Cho, “How effective is plasmonic enhancement of colloidal quantum dots for color-conversion light-emitting devices?” Small 13(48), 1701805 (2017).
[Crossref]

Park, J.

S. H. Kim, J. Park, and K. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Perkins, R.

Pfeiffer, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]

Puffky, O.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

Schlather, A. E.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

She, Y.

Siefke, T.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Sigg, H.

Smythe, E. J.

Solak, H. H.

Sun, N.

Szeghalmi, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Tünnermann, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Vo-Dinh, T.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
[Crossref]

Wang, L.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref]

Wang, X.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref]

Wu, S. T.

Z. Ge and S. T. Wu, “Nano-wire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
[Crossref]

Wu, Y.

T. Xu, Y. Wu, X. Luo, and L. Guo, “Plasmonic nano-resonators for color filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

Xu, T.

T. Xu, Y. Wu, X. Luo, and L. Guo, “Plasmonic nano-resonators for color filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

Yang, G.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
[Crossref]

Yang, Z. Y.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
[Crossref]

Ye, Z.

Ye, Z. C.

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

York, T.

Yue, Z.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref]

Zhao, M.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
[Crossref]

Zheng, B.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

Zheng, J.

Zheng, Z. M.

ACS Nano (2)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref]

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[Crossref]

Adv. Opt. Mater. (1)

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. Ge and S. T. Wu, “Nano-wire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
[Crossref]

Displays (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photonics Technol. Lett. 20(9), 697–699 (2008).
[Crossref]

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

Nano Today (1)

W. Q. Lim and Z. Q. Gao, “Plasmonic nanoparticles in biomedicine,” Nano Today 11(2), 168–188 (2016).
[Crossref]

Nanotechnology (1)

S. H. Kim, J. Park, and K. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Nat. Commun. (1)

T. Xu, Y. Wu, X. Luo, and L. Guo, “Plasmonic nano-resonators for color filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

Nat. Mater. (1)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (2)

Plasmonics (1)

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9(1), 79–92 (2014).
[Crossref]

Sci. Adv. (1)

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref]

Small (1)

H. Park, S. Isnaeni, Y. Gong, and Cho, “How effective is plasmonic enhancement of colloidal quantum dots for color-conversion light-emitting devices?” Small 13(48), 1701805 (2017).
[Crossref]

Other (1)

https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-diffractmod.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The schematics of conventional LCD (left part) and novel LCD with a BANG as an integrated colorfilter and polarizer in the backlight unit (right part). In a BANG based LCD, when the un-polarized white lights emitted from the light guiding plate are incident on the BANG typed colorfilters and polarizers, the TE polarized white lights and the other two colors of TM lights not permitted to transmit by a specific pixel of BANG, are reflected back to the backlights. Via the reflection of metal reflector, the reflected lights by BANGs are sent back to the BANGs, where they are transmitted through corresponding right color pixels of BANGs, thus the originally absorbed lights in the conventional LCDs are recycled in the BANGs based LCDs.
Fig. 2.
Fig. 2. The schematic of the proposed BANG. The reflection (a1) and transmission (a2) of TM- and TE- polarized light in Incident-to-grating and Incident-to-Substrate cases. The dark and light horizontal green arrows represent SPR waves; the dark and light blue vertical arrows represent SP waveguide; the dark and light yellow vertical arrows represent normal waveguide. The white, green, red and pink arrows are the incident, transmitted, reflected and diffracted lights. (b1 - b3) The SEM and AFM images of the fabricated grating with pitch of 300 nm, Al thickness h2=70 nm, and grating height h1=80 nm.
Fig. 3.
Fig. 3. Measured (a1, b1) and simulated (a2, b2) transmitted spectra for TM- (a1, a2) and TE-polarized (b1, b2) light. The unit of color bar is in percentage.
Fig. 4.
Fig. 4. The dispersion curves of the Al-PR-Al (a1, a2) and Al-Air-Al (b1, b2) slits for TM (a1, b1) and TE (a2, b2) polarizations. The blue star and red dot lines represent the real (kxr) and imaginary (kxi) parts of the kx. The dashed black lines show the range of light with wavelength from 400 to 800 nm. The solid black lines represent the dispersion of light in the dielectric, i.e. light cone.
Fig. 5.
Fig. 5. Reflection of TM-polarized light in Incident-to-Substrate (the left column) and Incident-to-Grating (the right column) cases. (a1, b1) are the measured reflection with an incident angle step of 2°. (a2, b2) and (a3, b3) are the simulated reflection and diffraction, respectively. The white dash lines correspond to diffraction limit by grating/Air and grating/Substrate, respectively, which divide the reflection spectra in to three zones. (a4-b5) The amplitude of the magnetic field Hy with incident angle θi=60° and wavelength λ=450 and 600 nm.
Fig. 6.
Fig. 6. Reflection of TE-polarized light in Incident-to-Substrate (the left column) and Incident-to-Grating (the right column) cases. (a1) and (b1) are the measured reflection with an incident angle step of 2°. The white dash lines correspond to diffraction limit by grating/Air and grating/Substrate, respectively, which divide the reflection spectra in to three zones. (a2-b2) and (a3-b3) are the simulated reflection and diffraction, respectively. (a4-b5) The amplitude of the electric field Ey with incident angle θi=60° and wavelength λ=450 and 580 nm.
Fig. 7.
Fig. 7. (a) The display with the BANG inserted in the backlight system with grating surface facing the backlight unit. (b) The measured reflectance by using the BANG as a reflector in a cell phone backlight system.