Abstract

We report on terahertz (THz) detectors with a high performance at room temperature using EuBiTe3 crystals as the active material under mechanisms of bolometric and photothermoelectric effects (PTE). Our detectors have a simple structure and can achieve high sensitivity, even without a coupling antenna and optimization of the thermal environment. Under bias conditions, our results suggest that the bolometric responsivities of the EuBiTe3 photodetector at 1.84, 2.52, and 3.11 THz are 0.35, 0.88 and 1.32 A/W in air, and the noise-equivalent power (NEP) are 43.6, 16.4, 10.9 nW/Hz1/2, respectively. Under unbiased condition, our device exhibits excellent PTE response for THz detection. As a self-powered photodetector, it exhibits NEPs as low as 4.3 nW/Hz1/2 in air and 300 pW/Hz1/2 in vacuum under the illumination of 2.52 THz, respectively. In addition, in order to optimize detector performance, it is worthy for considering manufacturing two-dimensional(2D) structural devices for the layered structure of EuBiTe3 crystal. Our devices provide an exciting way toward developing efficient and high-performance room temperature THz photodetectors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts

Yingxin Wang, Xiangquan Deng, Guowei Zhang, Jinquan Wei, Jia-Lin Zhu, Zhiqiang Chen, Ziran Zhao, and Jia-Lin Sun
Opt. Express 23(10) 13348-13357 (2015)

Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams

Yifan Li, Yating Zhang, Yu Yu, Zhiliang Chen, Qingyan Li, Tengteng Li, Jie Li, Hongliang Zhao, Quan Sheng, Feng Yan, Zhen Ge, Yuxin Ren, Yongsheng Chen, and Jianquan Yao
Photon. Res. 8(3) 368-374 (2020)

Antenna-assisted subwavelength metal–InGaAs–metal structure for sensitive and direct photodetection of millimeter and terahertz waves

Jinchao Tong, Yue Qu, Fei Suo, Wei Zhou, Zhiming Huang, and Dao Hua Zhang
Photon. Res. 7(1) 89-97 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
    [Crossref]
  2. V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
    [Crossref]
  3. H. B. Liu, H. Zhong, N. Karpowicz, Y. Q. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
    [Crossref]
  4. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Terahertz for Military and Security Applications 5070, 44–52 (2003).
    [Crossref]
  5. Y. Niu, Y. Li, D. P. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wirel Netw 21(8), 2657–2676 (2015).
    [Crossref]
  6. M. Amirmazlaghani, F. J. I. T. o, D. Raissi, and M. Reliability, “Feasibility of Room-Temperature GHz-THz Direct Detection in Graphene Through Hot-Carrier Effect,” IEEE Trans. Device Mater. Reliab. 18(3), 429–437 (2018).
    [Crossref]
  7. A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
    [Crossref]
  8. A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
    [Crossref]
  9. B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
    [Crossref]
  10. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
    [Crossref]
  11. A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance terahertz bolometers,” Nat. Nanotechnol. 11(4), 335–338 (2016).
    [Crossref]
  12. M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
    [Crossref]
  13. X. Deng, Y. Wang, Z. Zhao, Z. Chen, and J.-L. Sun, “Terahertz-induced photothermoelectric response in graphene-metal contact structures,” J. Phys. D: Appl. Phys. 49(42), 425101 (2016).
    [Crossref]
  14. W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
    [Crossref]
  15. L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
    [Crossref]
  16. J. Yao, J. Shao, Y. Wang, Z. Zhao, and G. Yang, “Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments,” Nanoscale 7(29), 12535–12541 (2015).
    [Crossref]
  17. L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
    [Crossref]
  18. Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
    [Crossref]
  19. D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
    [Crossref]
  20. Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
    [Crossref]
  21. Y. Y. Niu, D. Wu, L. Shen, and B. A. Wang, “A layered antiferromagnetic semiconductor EuMTe3 (M = Bi, Sb),” Phys. Status Solidi RRL 9(12), 735–739 (2015).
    [Crossref]
  22. Y. Niu, B. Wang, J. Chen, and D. Wu, “Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3 flake material at room temperature,” J. Mater. Chem. C 6(4), 713–716 (2018).
    [Crossref]
  23. Y. Wang, X. Deng, G. Zhang, J. Wei, J.-L. Zhu, Z. Chen, Z. Zhao, and J.-L. Sun, “Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts,” Opt. Express 23(10), 13348–13357 (2015).
    [Crossref]
  24. Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
    [Crossref]
  25. G. E. Fernandes, J. H. Kim, A. K. Sood, and J. Xu, “Giant Temperature Coefficient of Resistance in Carbon Nanotube/Phase-Change Polymer Nanocomposites,” Adv. Funct. Mater. 23, 4678–4683 (2013).
    [Crossref]
  26. N. Fieldhouse, S. M. Pursel, M. W. Horn, and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Phys. D: Appl. Phys. 42(5), 055408 (2009).
    [Crossref]
  27. M. B. Weissman, “noise and other slow, nonexponential kinetics in condensed matter,” Rev. Mod. Phys. 60(2), 537–571 (1988).
    [Crossref]
  28. Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
    [Crossref]
  29. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  30. V. N. Sokolov, V. A. Kochelap, and K. W. Kim, “Generation-recombination noise in bipolar graphene,” J. Appl. Phys. 110(4), 044327 (2011).
    [Crossref]
  31. X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
    [Crossref]
  32. F. Léonard, E. Song, Q. Li, B. Swartzentruber, J. A. Martinez, and G. T. Wang, “Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires,” Nano Lett. 15(12), 8129–8135 (2015).
    [Crossref]
  33. X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
    [Crossref]
  34. K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
    [Crossref]

2019 (2)

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
[Crossref]

2018 (6)

Y. Niu, B. Wang, J. Chen, and D. Wu, “Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3 flake material at room temperature,” J. Mater. Chem. C 6(4), 713–716 (2018).
[Crossref]

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

M. Amirmazlaghani, F. J. I. T. o, D. Raissi, and M. Reliability, “Feasibility of Room-Temperature GHz-THz Direct Detection in Graphene Through Hot-Carrier Effect,” IEEE Trans. Device Mater. Reliab. 18(3), 429–437 (2018).
[Crossref]

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

2017 (2)

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
[Crossref]

2016 (2)

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance terahertz bolometers,” Nat. Nanotechnol. 11(4), 335–338 (2016).
[Crossref]

X. Deng, Y. Wang, Z. Zhao, Z. Chen, and J.-L. Sun, “Terahertz-induced photothermoelectric response in graphene-metal contact structures,” J. Phys. D: Appl. Phys. 49(42), 425101 (2016).
[Crossref]

2015 (6)

Y. Niu, Y. Li, D. P. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wirel Netw 21(8), 2657–2676 (2015).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
[Crossref]

J. Yao, J. Shao, Y. Wang, Z. Zhao, and G. Yang, “Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments,” Nanoscale 7(29), 12535–12541 (2015).
[Crossref]

F. Léonard, E. Song, Q. Li, B. Swartzentruber, J. A. Martinez, and G. T. Wang, “Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires,” Nano Lett. 15(12), 8129–8135 (2015).
[Crossref]

Y. Wang, X. Deng, G. Zhang, J. Wei, J.-L. Zhu, Z. Chen, Z. Zhao, and J.-L. Sun, “Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts,” Opt. Express 23(10), 13348–13357 (2015).
[Crossref]

Y. Y. Niu, D. Wu, L. Shen, and B. A. Wang, “A layered antiferromagnetic semiconductor EuMTe3 (M = Bi, Sb),” Phys. Status Solidi RRL 9(12), 735–739 (2015).
[Crossref]

2014 (2)

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

2013 (3)

G. E. Fernandes, J. H. Kim, A. K. Sood, and J. Xu, “Giant Temperature Coefficient of Resistance in Carbon Nanotube/Phase-Change Polymer Nanocomposites,” Adv. Funct. Mater. 23, 4678–4683 (2013).
[Crossref]

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
[Crossref]

2012 (1)

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

2011 (2)

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

V. N. Sokolov, V. A. Kochelap, and K. W. Kim, “Generation-recombination noise in bipolar graphene,” J. Appl. Phys. 110(4), 044327 (2011).
[Crossref]

2010 (1)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

2009 (1)

N. Fieldhouse, S. M. Pursel, M. W. Horn, and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Phys. D: Appl. Phys. 42(5), 055408 (2009).
[Crossref]

2007 (1)

H. B. Liu, H. Zhong, N. Karpowicz, Y. Q. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

2006 (2)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
[Crossref]

2003 (1)

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Terahertz for Military and Security Applications 5070, 44–52 (2003).
[Crossref]

2000 (1)

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
[Crossref]

1988 (1)

M. B. Weissman, “noise and other slow, nonexponential kinetics in condensed matter,” Rev. Mod. Phys. 60(2), 537–571 (1988).
[Crossref]

Amirmazlaghani, M.

M. Amirmazlaghani, F. J. I. T. o, D. Raissi, and M. Reliability, “Feasibility of Room-Temperature GHz-THz Direct Detection in Graphene Through Hot-Carrier Effect,” IEEE Trans. Device Mater. Reliab. 18(3), 429–437 (2018).
[Crossref]

Atwater, H. A.

K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
[Crossref]

Avouris, P.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Barbara, P.

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance terahertz bolometers,” Nat. Nanotechnol. 11(4), 335–338 (2016).
[Crossref]

Bharadwaja, S. S. N.

N. Fieldhouse, S. M. Pursel, M. W. Horn, and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Phys. D: Appl. Phys. 42(5), 055408 (2009).
[Crossref]

Boyd, A. K.

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance terahertz bolometers,” Nat. Nanotechnol. 11(4), 335–338 (2016).
[Crossref]

Cai, X.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Cao, Y.

Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
[Crossref]

Chen, J.

Y. Niu, B. Wang, J. Chen, and D. Wu, “Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3 flake material at room temperature,” J. Mater. Chem. C 6(4), 713–716 (2018).
[Crossref]

Chen, M.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

Chen, X.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Chen, Y. Q.

H. B. Liu, H. Zhong, N. Karpowicz, Y. Q. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Chen, Z.

X. Deng, Y. Wang, Z. Zhao, Z. Chen, and J.-L. Sun, “Terahertz-induced photothermoelectric response in graphene-metal contact structures,” J. Phys. D: Appl. Phys. 49(42), 425101 (2016).
[Crossref]

Y. Wang, X. Deng, G. Zhang, J. Wei, J.-L. Zhu, Z. Chen, Z. Zhao, and J.-L. Sun, “Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts,” Opt. Express 23(10), 13348–13357 (2015).
[Crossref]

Chu, W.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Cluff, J. A.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Terahertz for Military and Security Applications 5070, 44–52 (2003).
[Crossref]

Cole, B. E.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Terahertz for Military and Security Applications 5070, 44–52 (2003).
[Crossref]

Coquillat, D.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Daniels, K. M.

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance terahertz bolometers,” Nat. Nanotechnol. 11(4), 335–338 (2016).
[Crossref]

Deng, X.

X. Deng, Y. Wang, Z. Zhao, Z. Chen, and J.-L. Sun, “Terahertz-induced photothermoelectric response in graphene-metal contact structures,” J. Phys. D: Appl. Phys. 49(42), 425101 (2016).
[Crossref]

Y. Wang, X. Deng, G. Zhang, J. Wei, J.-L. Zhu, Z. Chen, Z. Zhao, and J.-L. Sun, “Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts,” Opt. Express 23(10), 13348–13357 (2015).
[Crossref]

Dong, T.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Dong, Z.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Drew, H. D.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

El Fatimy, A.

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance terahertz bolometers,” Nat. Nanotechnol. 11(4), 335–338 (2016).
[Crossref]

Erickson, K. J.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

Eroms, J.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Feng, Z. H.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Fernandes, G. E.

G. E. Fernandes, J. H. Kim, A. K. Sood, and J. Xu, “Giant Temperature Coefficient of Resistance in Carbon Nanotube/Phase-Change Polymer Nanocomposites,” Adv. Funct. Mater. 23, 4678–4683 (2013).
[Crossref]

Ferrari, A. C.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Fieldhouse, N.

N. Fieldhouse, S. M. Pursel, M. W. Horn, and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Phys. D: Appl. Phys. 42(5), 055408 (2009).
[Crossref]

Fitzgerald, A. J.

V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
[Crossref]

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Terahertz for Military and Security Applications 5070, 44–52 (2003).
[Crossref]

Fleischman, D.

K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
[Crossref]

Fuhrer, M. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Fujimura, N.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

Gao, H.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Gao, W.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

Gaskill, D. K.

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance terahertz bolometers,” Nat. Nanotechnol. 11(4), 335–338 (2016).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Gaugue, A.

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
[Crossref]

Hauge, R. H.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

He, X.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

He, Z. Z.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Helm, M.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Horn, M. W.

N. Fieldhouse, S. M. Pursel, M. W. Horn, and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Phys. D: Appl. Phys. 42(5), 055408 (2009).
[Crossref]

Hu, J.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
[Crossref]

Hu, Q.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Hu, W.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Hu, X.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
[Crossref]

Jadidi, M. M.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Jenkins, G. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Jiang, Q.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

Jin, D. P.

Y. Niu, Y. Li, D. P. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wirel Netw 21(8), 2657–2676 (2015).
[Crossref]

Jin, Y.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

Kamann, J.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Karpowicz, N.

H. B. Liu, H. Zhong, N. Karpowicz, Y. Q. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Kawano, Y.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

Kemp, M. C.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Terahertz for Military and Security Applications 5070, 44–52 (2003).
[Crossref]

Kim, J. H.

G. E. Fernandes, J. H. Kim, A. K. Sood, and J. Xu, “Giant Temperature Coefficient of Resistance in Carbon Nanotube/Phase-Change Polymer Nanocomposites,” Adv. Funct. Mater. 23, 4678–4683 (2013).
[Crossref]

Kim, K. W.

V. N. Sokolov, V. A. Kochelap, and K. W. Kim, “Generation-recombination noise in bipolar graphene,” J. Appl. Phys. 110(4), 044327 (2011).
[Crossref]

Kim, S.

K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
[Crossref]

Knap, W.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Kochelap, V. A.

V. N. Sokolov, V. A. Kochelap, and K. W. Kim, “Generation-recombination noise in bipolar graphene,” J. Appl. Phys. 110(4), 044327 (2011).
[Crossref]

Kreisler, A. J.

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
[Crossref]

Léonard, F.

F. Léonard, E. Song, Q. Li, B. Swartzentruber, J. A. Martinez, and G. T. Wang, “Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires,” Nano Lett. 15(12), 8129–8135 (2015).
[Crossref]

Li, J.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Li, Q.

F. Léonard, E. Song, Q. Li, B. Swartzentruber, J. A. Martinez, and G. T. Wang, “Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires,” Nano Lett. 15(12), 8129–8135 (2015).
[Crossref]

Li, S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Li, X.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
[Crossref]

Li, Y.

Y. Niu, Y. Li, D. P. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wirel Netw 21(8), 2657–2676 (2015).
[Crossref]

Liang, G.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
[Crossref]

Liu, C.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Liu, H. B.

H. B. Liu, H. Zhong, N. Karpowicz, Y. Q. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Liu, Q.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Liu, Q. B.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Liu, T.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
[Crossref]

Liu, Y.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Lloyd, J. M.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

Lo, T.

V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
[Crossref]

Lombardo, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Lu, W.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Ma, W.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Ma, Y.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

MacPherson, E.

V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
[Crossref]

Martinez, J. A.

F. Léonard, E. Song, Q. Li, B. Swartzentruber, J. A. Martinez, and G. T. Wang, “Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires,” Nano Lett. 15(12), 8129–8135 (2015).
[Crossref]

Mauser, K. W.

K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
[Crossref]

Meng, B.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
[Crossref]

Miao, W.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Mitrovic, S.

K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
[Crossref]

Mittendorff, M.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Mueller, T.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Murphy, T. E.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Myers-Ward, R. L.

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance terahertz bolometers,” Nat. Nanotechnol. 11(4), 335–338 (2016).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Niu, J.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Niu, J. S.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Niu, Y.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Y. Niu, B. Wang, J. Chen, and D. Wu, “Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3 flake material at room temperature,” J. Mater. Chem. C 6(4), 713–716 (2018).
[Crossref]

Y. Niu, Y. Li, D. P. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wirel Netw 21(8), 2657–2676 (2015).
[Crossref]

Niu, Y. Y.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Y. Y. Niu, D. Wu, L. Shen, and B. A. Wang, “A layered antiferromagnetic semiconductor EuMTe3 (M = Bi, Sb),” Phys. Status Solidi RRL 9(12), 735–739 (2015).
[Crossref]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

o, F. J. I. T.

M. Amirmazlaghani, F. J. I. T. o, D. Raissi, and M. Reliability, “Feasibility of Room-Temperature GHz-THz Direct Detection in Graphene Through Hot-Carrier Effect,” IEEE Trans. Device Mater. Reliab. 18(3), 429–437 (2018).
[Crossref]

Pala, R.

K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
[Crossref]

Pellegrini, V.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Pinder, S.

V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
[Crossref]

Polini, M.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Politano, A.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
[Crossref]

Provenzano, E.

V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
[Crossref]

Pursel, S. M.

N. Fieldhouse, S. M. Pursel, M. W. Horn, and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Phys. D: Appl. Phys. 42(5), 055408 (2009).
[Crossref]

Purushotham, A.

V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
[Crossref]

Raissi, D.

M. Amirmazlaghani, F. J. I. T. o, D. Raissi, and M. Reliability, “Feasibility of Room-Temperature GHz-THz Direct Detection in Graphene Through Hot-Carrier Effect,” IEEE Trans. Device Mater. Reliab. 18(3), 429–437 (2018).
[Crossref]

Reliability, M.

M. Amirmazlaghani, F. J. I. T. o, D. Raissi, and M. Reliability, “Feasibility of Room-Temperature GHz-THz Direct Detection in Graphene Through Hot-Carrier Effect,” IEEE Trans. Device Mater. Reliab. 18(3), 429–437 (2018).
[Crossref]

Ren, Y.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Rogalski, A.

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

Schneider, H.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Schwab, K. C.

K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
[Crossref]

Shao, J.

J. Yao, J. Shao, Y. Wang, Z. Zhao, and G. Yang, “Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments,” Nanoscale 7(29), 12535–12541 (2015).
[Crossref]

Shen, L.

Y. Y. Niu, D. Wu, L. Shen, and B. A. Wang, “A layered antiferromagnetic semiconductor EuMTe3 (M = Bi, Sb),” Phys. Status Solidi RRL 9(12), 735–739 (2015).
[Crossref]

Shi, S. C.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Sizov, F.

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

Sokolov, V. N.

V. N. Sokolov, V. A. Kochelap, and K. W. Kim, “Generation-recombination noise in bipolar graphene,” J. Appl. Phys. 110(4), 044327 (2011).
[Crossref]

Song, E.

F. Léonard, E. Song, Q. Li, B. Swartzentruber, J. A. Martinez, and G. T. Wang, “Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires,” Nano Lett. 15(12), 8129–8135 (2015).
[Crossref]

Sood, A. K.

G. E. Fernandes, J. H. Kim, A. K. Sood, and J. Xu, “Giant Temperature Coefficient of Resistance in Carbon Nanotube/Phase-Change Polymer Nanocomposites,” Adv. Funct. Mater. 23, 4678–4683 (2013).
[Crossref]

Su, L.

Y. Niu, Y. Li, D. P. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wirel Netw 21(8), 2657–2676 (2015).
[Crossref]

Su, Y. Q.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Suess, R. J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Sun, J.-L.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

X. Deng, Y. Wang, Z. Zhao, Z. Chen, and J.-L. Sun, “Terahertz-induced photothermoelectric response in graphene-metal contact structures,” J. Phys. D: Appl. Phys. 49(42), 425101 (2016).
[Crossref]

Y. Wang, X. Deng, G. Zhang, J. Wei, J.-L. Zhu, Z. Chen, Z. Zhao, and J.-L. Sun, “Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts,” Opt. Express 23(10), 13348–13357 (2015).
[Crossref]

Sushkov, A. B.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Swartzentruber, B.

F. Léonard, E. Song, Q. Li, B. Swartzentruber, J. A. Martinez, and G. T. Wang, “Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires,” Nano Lett. 15(12), 8129–8135 (2015).
[Crossref]

Taday, P. F.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Terahertz for Military and Security Applications 5070, 44–52 (2003).
[Crossref]

Talin, A. A.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

Tang, W.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Tredicucci, A.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Tribe, W. R.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Terahertz for Military and Security Applications 5070, 44–52 (2003).
[Crossref]

Vasilakos, A. V.

Y. Niu, Y. Li, D. P. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wirel Netw 21(8), 2657–2676 (2015).
[Crossref]

Vicarelli, L.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Viti, L.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
[Crossref]

Vitiello, M. S.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Wallace, V. P.

V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
[Crossref]

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Wang, B.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Y. Niu, B. Wang, J. Chen, and D. Wu, “Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3 flake material at room temperature,” J. Mater. Chem. C 6(4), 713–716 (2018).
[Crossref]

Wang, B. A.

Y. Y. Niu, D. Wu, L. Shen, and B. A. Wang, “A layered antiferromagnetic semiconductor EuMTe3 (M = Bi, Sb),” Phys. Status Solidi RRL 9(12), 735–739 (2015).
[Crossref]

Wang, G. T.

F. Léonard, E. Song, Q. Li, B. Swartzentruber, J. A. Martinez, and G. T. Wang, “Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires,” Nano Lett. 15(12), 8129–8135 (2015).
[Crossref]

Wang, L.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Wang, N.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Wang, N. L.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Wang, P.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Wang, Q. J.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
[Crossref]

Wang, S.-W.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Wang, X.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Wang, Y.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
[Crossref]

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

X. Deng, Y. Wang, Z. Zhao, Z. Chen, and J.-L. Sun, “Terahertz-induced photothermoelectric response in graphene-metal contact structures,” J. Phys. D: Appl. Phys. 49(42), 425101 (2016).
[Crossref]

J. Yao, J. Shao, Y. Wang, Z. Zhao, and G. Yang, “Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments,” Nanoscale 7(29), 12535–12541 (2015).
[Crossref]

Y. Wang, X. Deng, G. Zhang, J. Wei, J.-L. Zhu, Z. Chen, Z. Zhao, and J.-L. Sun, “Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts,” Opt. Express 23(10), 13348–13357 (2015).
[Crossref]

Wang, Y. X.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Wang, Z.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Wei, J.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Y. Wang, X. Deng, G. Zhang, J. Wei, J.-L. Zhu, Z. Chen, Z. Zhao, and J.-L. Sun, “Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts,” Opt. Express 23(10), 13348–13357 (2015).
[Crossref]

Weiss, D.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Weissman, M. B.

M. B. Weissman, “noise and other slow, nonexponential kinetics in condensed matter,” Rev. Mod. Phys. 60(2), 537–571 (1988).
[Crossref]

Wen, J.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
[Crossref]

Winnerl, S.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Wu, D.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Y. Niu, B. Wang, J. Chen, and D. Wu, “Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3 flake material at room temperature,” J. Mater. Chem. C 6(4), 713–716 (2018).
[Crossref]

Y. Y. Niu, D. Wu, L. Shen, and B. A. Wang, “A layered antiferromagnetic semiconductor EuMTe3 (M = Bi, Sb),” Phys. Status Solidi RRL 9(12), 735–739 (2015).
[Crossref]

Wu, W.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

Xia, F.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Xie, Y.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Xu, J.

G. E. Fernandes, J. H. Kim, A. K. Sood, and J. Xu, “Giant Temperature Coefficient of Resistance in Carbon Nanotube/Phase-Change Polymer Nanocomposites,” Adv. Funct. Mater. 23, 4678–4683 (2013).
[Crossref]

Yan, J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Yang, G.

J. Yao, J. Shao, Y. Wang, Z. Zhao, and G. Yang, “Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments,” Nanoscale 7(29), 12535–12541 (2015).
[Crossref]

Yang, N.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Yao, J.

J. Yao, J. Shao, Y. Wang, Z. Zhao, and G. Yang, “Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments,” Nanoscale 7(29), 12535–12541 (2015).
[Crossref]

Yin, J.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Yu, A.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Yu, C.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Zhang, B. Y.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
[Crossref]

Zhang, G.

Zhang, Q.

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

Zhang, S.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Zhang, W.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Zhang, X. C.

H. B. Liu, H. Zhong, N. Karpowicz, Y. Q. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Zhang, Y.

Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
[Crossref]

Zhao, Y.

Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
[Crossref]

Zhao, Z.

Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
[Crossref]

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

X. Deng, Y. Wang, Z. Zhao, Z. Chen, and J.-L. Sun, “Terahertz-induced photothermoelectric response in graphene-metal contact structures,” J. Phys. D: Appl. Phys. 49(42), 425101 (2016).
[Crossref]

J. Yao, J. Shao, Y. Wang, Z. Zhao, and G. Yang, “Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments,” Nanoscale 7(29), 12535–12541 (2015).
[Crossref]

Y. Wang, X. Deng, G. Zhang, J. Wei, J.-L. Zhu, Z. Chen, Z. Zhao, and J.-L. Sun, “Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts,” Opt. Express 23(10), 13348–13357 (2015).
[Crossref]

Zhao, Z. R.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Zheng, P.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Zhong, H.

H. B. Liu, H. Zhong, N. Karpowicz, Y. Q. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Zhou, H.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Zhou, H. B.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Zhou, J.

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Zhou, K. M.

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

Zhu, H.

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

Zhu, J.-L.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

Y. Wang, X. Deng, G. Zhang, J. Wei, J.-L. Zhu, Z. Chen, Z. Zhao, and J.-L. Sun, “Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts,” Opt. Express 23(10), 13348–13357 (2015).
[Crossref]

Zhu, L.

Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
[Crossref]

2D Mater. (1)

Y. Y. Niu, D. Wu, Y. Q. Su, H. Zhu, B. Wang, Y. X. Wang, Z. R. Zhao, P. Zheng, J. S. Niu, H. B. Zhou, J. Wei, and N. L. Wang, “Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies,” 2D Mater. 5(1), 011008 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films,” ACS Appl. Mater. Interfaces 10(42), 36304–36311 (2018).
[Crossref]

ACS Photonics (1)

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal,” ACS Photonics 6(4), 895–903 (2019).
[Crossref]

Adv. Funct. Mater. (2)

G. E. Fernandes, J. H. Kim, A. K. Sood, and J. Xu, “Giant Temperature Coefficient of Resistance in Carbon Nanotube/Phase-Change Polymer Nanocomposites,” Adv. Funct. Mater. 23, 4678–4683 (2013).
[Crossref]

L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Adv. Mater. (1)

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black Phosphorus Terahertz Photodetectors,” Adv. Mater. 27(37), 5567–5572 (2015).
[Crossref]

Appl. Phys. Lett. (1)

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Carbon (1)

Y. Cao, Y. Zhao, Y. Wang, Y. Zhang, J. Wen, Z. Zhao, and L. Zhu, “Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides,” Carbon 144, 193–201 (2019).
[Crossref]

IEEE Trans. Device Mater. Reliab. (1)

M. Amirmazlaghani, F. J. I. T. o, D. Raissi, and M. Reliability, “Feasibility of Room-Temperature GHz-THz Direct Detection in Graphene Through Hot-Carrier Effect,” IEEE Trans. Device Mater. Reliab. 18(3), 429–437 (2018).
[Crossref]

J. Appl. Phys. (1)

V. N. Sokolov, V. A. Kochelap, and K. W. Kim, “Generation-recombination noise in bipolar graphene,” J. Appl. Phys. 110(4), 044327 (2011).
[Crossref]

J. Low Temp. Phys. (1)

W. Miao, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, S. C. Shi, C. Yu, Z. Z. He, Q. B. Liu, and Z. H. Feng, “A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout,” J. Low Temp. Phys. 193(3-4), 387–392 (2018).
[Crossref]

J. Mater. Chem. C (1)

Y. Niu, B. Wang, J. Chen, and D. Wu, “Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3 flake material at room temperature,” J. Mater. Chem. C 6(4), 713–716 (2018).
[Crossref]

J. Phys. D: Appl. Phys. (3)

N. Fieldhouse, S. M. Pursel, M. W. Horn, and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Phys. D: Appl. Phys. 42(5), 055408 (2009).
[Crossref]

X. Deng, Y. Wang, Z. Zhao, Z. Chen, and J.-L. Sun, “Terahertz-induced photothermoelectric response in graphene-metal contact structures,” J. Phys. D: Appl. Phys. 49(42), 425101 (2016).
[Crossref]

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Nano Lett. (2)

F. Léonard, E. Song, Q. Li, B. Swartzentruber, J. A. Martinez, and G. T. Wang, “Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires,” Nano Lett. 15(12), 8129–8135 (2015).
[Crossref]

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, and R. H. Hauge, “Carbon Nanotube Terahertz Detector,” Nano Lett. 14(7), 3953–3958 (2014).
[Crossref]

Nanoscale (1)

J. Yao, J. Shao, Y. Wang, Z. Zhao, and G. Yang, “Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments,” Nanoscale 7(29), 12535–12541 (2015).
[Crossref]

Nat. Commun. (1)

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4(1), 1811 (2013).
[Crossref]

Nat. Mater. (1)

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref]

Nat. Nanotechnol. (3)

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance terahertz bolometers,” Nat. Nanotechnol. 11(4), 335–338 (2016).
[Crossref]

K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, and H. A. Atwater, “Resonant thermoelectric nanophotonics,” Nat. Nanotechnol. 12(8), 770–775 (2017).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref]

Nat. Photonics (1)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Opt. Express (1)

Optical Methods in the Life Sciences (1)

V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, “Terahertz pulsed imaging and spectroscopy of breast tumors,” Optical Methods in the Life Sciences 6386, 183–190 (2006).
[Crossref]

Opto-Electron. Rev. (1)

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

Phys. Status Solidi RRL (1)

Y. Y. Niu, D. Wu, L. Shen, and B. A. Wang, “A layered antiferromagnetic semiconductor EuMTe3 (M = Bi, Sb),” Phys. Status Solidi RRL 9(12), 735–739 (2015).
[Crossref]

Proc. IEEE (1)

H. B. Liu, H. Zhong, N. Karpowicz, Y. Q. Chen, and X. C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Rev. Mod. Phys. (1)

M. B. Weissman, “noise and other slow, nonexponential kinetics in condensed matter,” Rev. Mod. Phys. 60(2), 537–571 (1988).
[Crossref]

Sci. Adv. (1)

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, Z. Zhao, and N. Wang, “Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4(8), eaao3057 (2018).
[Crossref]

Supercond. Sci. Technol. (1)

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
[Crossref]

Terahertz for Military and Security Applications (1)

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Terahertz for Military and Security Applications 5070, 44–52 (2003).
[Crossref]

Wirel Netw (1)

Y. Niu, Y. Li, D. P. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wirel Netw 21(8), 2657–2676 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) XRD pattern of the EuBiTe3 crystal sample. The inset is the optical image of the as-grown EuBiTe3 single crystal. (b) The intrinsic THz absorbance spectrum of the EuBiTe3 crystal. The inset shows the crystal structure of EuBiTe3.
Fig. 2.
Fig. 2. (a) Schematic of the bolometric device. (b) Current−voltage characteristics of our device in air. The insets in Fig. 1. (b) shows the photocurrent in air. (c) The photoresponse curves of bolometric device under illumination at different THz frequencies. The bias voltage is 0.4 V. The THz power levels are presented in the legends. The inset is a single on-off cycle of EuBiTe3 detector under 1.84 THz laser illumination at a bias voltage of 0.4 V in air. The response time of our detectors at 1.84 THz (d), 2.52 THz (e), and 3.11 THz (f).
Fig. 3.
Fig. 3. (a) Photocurrent responsivities at three examined frequencies measured in air. (b) Power dependent photocurrent under 2.52 THz light illumination. (c) Temperature dependence of the resistance of a EuBiTe3 crystal. ${R_0}$ is the resistance at room temperature. (d) The noise current as a function of frequency for EuBiTe3 photodetectors at bias 10 mV.
Fig. 4.
Fig. 4. (a) Voltage across the EuBiTe3 versus the corresponding temperature difference to determine the room-temperature Seebeck coefficient ($S$) of EuBiTe3. The red line is the linear fit to the experimental data. (b) I-V characteristics of PTE device in air.
Fig. 5.
Fig. 5. (a) The photoresponse curves of PTE device under illumination at 2.52 THz in air. (b) The response time of our detector in air. (c) Power dependent photocurrent under 2.52 THz light illumination in air. (d) The photoresponse curves of PTE device under illumination at 2.52 THz in vacuum. (e) The response time of our detector in vacuum. (f) Power dependent photocurrent under 2.52 THz light illumination in vacuum.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R I = I ph P in
α = d R R d T
R I = α η U DC R th R channel
NEP =  i n R I
V ph = T 0 T ( S EBT S Au ) d T S EBT Δ T
R V = V ph P in
NEP =  4 k B T R channel R V