Abstract

Understanding the origin of laser damage-prone precursors in high index materials such as hafnia holds the key to the development of laser damage-resistant multilayer dielectric coated optics for high power and energy laser systems. In this study, we investigate the source of sub-stoichiometry, a potent laser damage precursor, in hafnia films produced by an ion beam sputtering (IBS) deposition method and the effect of such defects on the film performance upon ns ultraviolet (UV) laser (8 ns, 355 nm) exposure. Chemical analysis of data obtained via Rutherford backscattering spectroscopy (RBS) suggests that hafnia films deposited at two different planetary locations from the same deposition run exhibit anisotropic and location-dependent stoichiometries. While the oxygen-to-hafnium ratio is at the stoichiometric value of 2 for the hafnia film at the edge location, the ratio is significantly deviated and is 1.7 for that deposited at the planetary center. The sub-stoichiometric hafnia films display a much lower 1-on-1 damage onset at 1.6 ± 0.2 J/cm2 compared to 2.3 ± 0.2 J/cm2 in a stoichiometric film. The low damage performance films also have an over three times higher damage density at fluences above initiation. Coupled with Monte Carlo simulations, we reveal that sub-stoichiometry is primarily attributed to preferential removal of oxygen during film deposition by the bombardment of energetic reflected argon neutrals. The resulting oxygen deficiencies create the sub-bandgap states which facilitate the strong laser energy coupling and reduce the resistance to laser-induced damage in the hafnia single layer films.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

Laurent Gallais, Jérémie Capoulade, Jean-Yves Natoli, Mireille Commandré, Michel Cathelinaud, Cian Koc, and Michel Lequime
Appl. Opt. 47(13) C107-C113 (2008)

Annealing effect on the laser-induced damage resistance of ZrO2 films in vacuum

Xiulan Ling, Shuhong Li, Ming Zhou, Xiaofeng Liu, Yuanan Zhao, Jianda Shao, and Zhengxiu Fan
Appl. Opt. 48(29) 5459-5463 (2009)

Comparisons between laser damage and optical electric field behaviors for hafnia/silica antireflection coatings

John Bellum, Damon Kletecka, Patrick Rambo, Ian Smith, Jens Schwarz, and Briggs Atherton
Appl. Opt. 50(9) C340-C348 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Biello, “High-Powered Lasers Deliver Fusion Energy Breakthrough,” Sci. Am., 2014.
  2. D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
    [Crossref]
  3. R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
    [Crossref]
  4. M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
    [Crossref]
  5. T. Perevalov, V. S. Aliev, V. Gritsenko, A. Saraev, and V. Kaichev, “Electronic structure of oxygen vacancies in hafnium oxide,” Microelectron. Eng. 109, 21–23 (2013).
    [Crossref]
  6. V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, “Electronic properties of hafnium oxide: A contribution from defects and traps,” Phys. Rep. 613, 1–20 (2016).
    [Crossref]
  7. A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
    [Crossref]
  8. C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
    [Crossref]
  9. S. Papernov, M. Brunsman, J. Oliver, B. Hoffman, A. Kozlov, S. Demos, A. Shvydky, F. Cavalcante, L. Yang, and C. Menoni, “Optical properties of oxygen vacancies in HfO2 thin films studied by absorption and luminescence spectroscopy,” Opt. Express 26(13), 17608–17623 (2018).
    [Crossref]
  10. S. Papernov, A. Tait, W. Bittle, A. Schmid, J. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
    [Crossref]
  11. L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47(13), C107–C113 (2008).
    [Crossref]
  12. J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
    [Crossref]
  13. C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
    [Crossref]
  14. D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).
  15. B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol., A 18(5), 2372–2377 (2000).
    [Crossref]
  16. C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
    [Crossref]
  17. D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
    [Crossref]
  18. M. Chorel, S. Papernov, A. Kozlov, B. Hoffman, J. Oliver, S. Demos, T. Lanternier, É. Lavastre, L. Lamaignère, and N. Roquin, “Influence of absorption-edge properties on subpicosecond intrinsic laser-damage threshold at 1053 nm in hafnia and silica monolayers,” Opt. Express 27(12), 16922–16934 (2019).
    [Crossref]
  19. A. S. Foster, F. L. Gejo, A. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
    [Crossref]
  20. D. M. Ramo, J. Gavartin, A. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
    [Crossref]
  21. T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
    [Crossref]
  22. J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc SPIE 7132, 71320J (2008).
    [Crossref]
  23. S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc SPIE 8530, 85301H (2012).
    [Crossref]
  24. J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20(15), 16596–16610 (2012).
    [Crossref]
  25. P. M. Martin, Handbook of deposition technologies for films and coatings: science, applications and technology (William Andrew, 2009).
  26. R. Feder, C. Bundesmann, H. Neumann, and B. Rauschenbach, “Ion beam sputtering of Ag – Angular and energetic distributions of sputtered and scattered particles,” Nucl. Instrum. Methods Phys. Res., Sect. B 316, 198–204 (2013).
    [Crossref]
  27. R. Feder, F. Frost, H. Neumann, C. Bundesmann, and B. Rauschenbach, “Systematic investigations of low energy Ar ion beam sputtering of Si and Ag,” Nucl. Instrum. Methods Phys. Res., Sect. B 317, 137–142 (2013).
    [Crossref]
  28. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Matter (Pergamon Press, 1985).
  29. L. C. Pitchford, J. Wang, D. Piscitelli, and J.-P. Boeuf, “Ion and neutral energy distributions to the MgO surface and sputtering rates in plasma display panel cells,” IEEE Trans. Plasma Sci. 34(2), 351–359 (2006).
    [Crossref]
  30. L. Haggmark and J. Biersack, “Sputtering yield calculations for neutral beam particle energies,” J. Nucl. Mater. 103, 345–349 (1981).
    [Crossref]
  31. M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117(3), 163–172 (1984).
    [Crossref]
  32. Z. Shen, T. Ding, X. Ye, X. Wang, B. Ma, X. Cheng, H. Liu, Y. Ji, and Z. Wang, “Influence of cleaning process on the laser-induced damage threshold of substrates,” Appl. Opt. 50(9), C433–C440 (2011).
    [Crossref]
  33. D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.
  34. D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
    [Crossref]
  35. M. Panish and L. Reif, “Thermodynamics of the Vaporization of Hf and HfO2: Dissociation Energy of HfO,” J. Chem. Phys. 38(1), 253–256 (1963).
    [Crossref]
  36. L. R. Doolittle, “Algorithms for the rapid simulation of Rutherford backscattering spectra,” Nucl. Instrum. Methods Phys. Res., Sect. B 9(3), 344–351 (1985).
    [Crossref]
  37. J. Biersack and W. Eckstein, “Sputtering studies with the Monte Carlo Program TRIM.SP,” Appl. Phys. A 34(2), 73–94 (1984).
    [Crossref]
  38. A. Ektessabi, “Ion-beam-assisted sputter deposition of thin oxide films,” Surf. Coat. Technol. 68-69, 208–216 (1994).
    [Crossref]
  39. J. M. Harper, M. Heiblum, and H. R. Kaufman, “Apparatus and method for neutralizing ion beams,” (Google Patents, 1983).
  40. O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
    [Crossref]
  41. M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, and L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354(1-2), 19–23 (1999).
    [Crossref]
  42. P. Scherrer, Nachr. Ges. Wiss. Göttingen2, 96–100 (1918).
  43. S. Petigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces,” Surf. Sci. 410(2-3), 250–257 (1998).
    [Crossref]
  44. P. D. Rack, M. D. Potter, A. Woodard, and S. Kurinec, “Negative ion resputtering in Ta2Zn3O8 thin films,” J. Vac. Sci. Technol., A 17(5), 2805–2810 (1999).
    [Crossref]
  45. D. Hoffman, “Intrinsic resputtering—theory and experiment,” J. Vac. Sci. Technol., A 8(5), 3707–3712 (1990).
    [Crossref]
  46. G. Van Veen, F. Sanders, J. Dieleman, A. van Veen, D. Oostra, and A. de Vries, “Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar+-Ion Bombardment,” Phys. Rev. Lett. 57(6), 739–742 (1986).
    [Crossref]
  47. A. O’Hara, G. Bersuker, and A. A. Demkov, “Assessing hafnium on hafnia as an oxygen getter,” J. Appl. Phys. 115(18), 183703 (2014).
    [Crossref]
  48. W. Lau, I. Bello, L. Huang, X. Feng, M. Vos, and I. Mitchell, “Argon incorporation in Si(100) by ion bombardment at 15–100 eV,” J. Appl. Phys. 74(12), 7101–7106 (1993).
    [Crossref]
  49. M. Carroll and E. Stolper, “Argon solubility and diffusion in silica glass: Implications for the solution behavior of molecular gases,” Geochim. Cosmochim. Acta 55(1), 211–225 (1991).
    [Crossref]

2019 (2)

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

M. Chorel, S. Papernov, A. Kozlov, B. Hoffman, J. Oliver, S. Demos, T. Lanternier, É. Lavastre, L. Lamaignère, and N. Roquin, “Influence of absorption-edge properties on subpicosecond intrinsic laser-damage threshold at 1053 nm in hafnia and silica monolayers,” Opt. Express 27(12), 16922–16934 (2019).
[Crossref]

2018 (2)

S. Papernov, M. Brunsman, J. Oliver, B. Hoffman, A. Kozlov, S. Demos, A. Shvydky, F. Cavalcante, L. Yang, and C. Menoni, “Optical properties of oxygen vacancies in HfO2 thin films studied by absorption and luminescence spectroscopy,” Opt. Express 26(13), 17608–17623 (2018).
[Crossref]

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

2016 (1)

V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, “Electronic properties of hafnium oxide: A contribution from defects and traps,” Phys. Rep. 613, 1–20 (2016).
[Crossref]

2014 (2)

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

A. O’Hara, G. Bersuker, and A. A. Demkov, “Assessing hafnium on hafnia as an oxygen getter,” J. Appl. Phys. 115(18), 183703 (2014).
[Crossref]

2013 (3)

T. Perevalov, V. S. Aliev, V. Gritsenko, A. Saraev, and V. Kaichev, “Electronic structure of oxygen vacancies in hafnium oxide,” Microelectron. Eng. 109, 21–23 (2013).
[Crossref]

R. Feder, C. Bundesmann, H. Neumann, and B. Rauschenbach, “Ion beam sputtering of Ag – Angular and energetic distributions of sputtered and scattered particles,” Nucl. Instrum. Methods Phys. Res., Sect. B 316, 198–204 (2013).
[Crossref]

R. Feder, F. Frost, H. Neumann, C. Bundesmann, and B. Rauschenbach, “Systematic investigations of low energy Ar ion beam sputtering of Si and Ag,” Nucl. Instrum. Methods Phys. Res., Sect. B 317, 137–142 (2013).
[Crossref]

2012 (2)

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc SPIE 8530, 85301H (2012).
[Crossref]

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20(15), 16596–16610 (2012).
[Crossref]

2011 (4)

T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
[Crossref]

Z. Shen, T. Ding, X. Ye, X. Wang, B. Ma, X. Cheng, H. Liu, Y. Ji, and Z. Wang, “Influence of cleaning process on the laser-induced damage threshold of substrates,” Appl. Opt. 50(9), C433–C440 (2011).
[Crossref]

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

S. Papernov, A. Tait, W. Bittle, A. Schmid, J. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

2010 (1)

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

2009 (3)

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
[Crossref]

2008 (3)

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc SPIE 7132, 71320J (2008).
[Crossref]

L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47(13), C107–C113 (2008).
[Crossref]

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

2007 (2)

D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
[Crossref]

D. M. Ramo, J. Gavartin, A. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

2006 (1)

L. C. Pitchford, J. Wang, D. Piscitelli, and J.-P. Boeuf, “Ion and neutral energy distributions to the MgO surface and sputtering rates in plasma display panel cells,” IEEE Trans. Plasma Sci. 34(2), 351–359 (2006).
[Crossref]

2002 (1)

A. S. Foster, F. L. Gejo, A. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

2000 (2)

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol., A 18(5), 2372–2377 (2000).
[Crossref]

M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
[Crossref]

1999 (2)

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, and L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354(1-2), 19–23 (1999).
[Crossref]

P. D. Rack, M. D. Potter, A. Woodard, and S. Kurinec, “Negative ion resputtering in Ta2Zn3O8 thin films,” J. Vac. Sci. Technol., A 17(5), 2805–2810 (1999).
[Crossref]

1998 (1)

S. Petigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces,” Surf. Sci. 410(2-3), 250–257 (1998).
[Crossref]

1994 (1)

A. Ektessabi, “Ion-beam-assisted sputter deposition of thin oxide films,” Surf. Coat. Technol. 68-69, 208–216 (1994).
[Crossref]

1993 (1)

W. Lau, I. Bello, L. Huang, X. Feng, M. Vos, and I. Mitchell, “Argon incorporation in Si(100) by ion bombardment at 15–100 eV,” J. Appl. Phys. 74(12), 7101–7106 (1993).
[Crossref]

1991 (1)

M. Carroll and E. Stolper, “Argon solubility and diffusion in silica glass: Implications for the solution behavior of molecular gases,” Geochim. Cosmochim. Acta 55(1), 211–225 (1991).
[Crossref]

1990 (1)

D. Hoffman, “Intrinsic resputtering—theory and experiment,” J. Vac. Sci. Technol., A 8(5), 3707–3712 (1990).
[Crossref]

1986 (1)

G. Van Veen, F. Sanders, J. Dieleman, A. van Veen, D. Oostra, and A. de Vries, “Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar+-Ion Bombardment,” Phys. Rev. Lett. 57(6), 739–742 (1986).
[Crossref]

1985 (1)

L. R. Doolittle, “Algorithms for the rapid simulation of Rutherford backscattering spectra,” Nucl. Instrum. Methods Phys. Res., Sect. B 9(3), 344–351 (1985).
[Crossref]

1984 (2)

J. Biersack and W. Eckstein, “Sputtering studies with the Monte Carlo Program TRIM.SP,” Appl. Phys. A 34(2), 73–94 (1984).
[Crossref]

M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117(3), 163–172 (1984).
[Crossref]

1981 (1)

L. Haggmark and J. Biersack, “Sputtering yield calculations for neutral beam particle energies,” J. Nucl. Mater. 103, 345–349 (1981).
[Crossref]

1963 (1)

M. Panish and L. Reif, “Thermodynamics of the Vaporization of Hf and HfO2: Dissociation Energy of HfO,” J. Chem. Phys. 38(1), 253–256 (1963).
[Crossref]

Ali, S. J.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

Aliev, V. S.

T. Perevalov, V. S. Aliev, V. Gritsenko, A. Saraev, and V. Kaichev, “Electronic structure of oxygen vacancies in hafnium oxide,” Microelectron. Eng. 109, 21–23 (2013).
[Crossref]

Alvisi, M.

M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
[Crossref]

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, and L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354(1-2), 19–23 (1999).
[Crossref]

Andre, B.

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol., A 18(5), 2372–2377 (2000).
[Crossref]

Bello, I.

W. Lau, I. Bello, L. Huang, X. Feng, M. Vos, and I. Mitchell, “Argon incorporation in Si(100) by ion bombardment at 15–100 eV,” J. Appl. Phys. 74(12), 7101–7106 (1993).
[Crossref]

Bersuker, G.

A. O’Hara, G. Bersuker, and A. A. Demkov, “Assessing hafnium on hafnia as an oxygen getter,” J. Appl. Phys. 115(18), 183703 (2014).
[Crossref]

D. M. Ramo, J. Gavartin, A. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

Bhowmik, G.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Biello, D.

D. Biello, “High-Powered Lasers Deliver Fusion Energy Breakthrough,” Sci. Am., 2014.

Biener, J.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Biersack, J.

J. Biersack and W. Eckstein, “Sputtering studies with the Monte Carlo Program TRIM.SP,” Appl. Phys. A 34(2), 73–94 (1984).
[Crossref]

L. Haggmark and J. Biersack, “Sputtering yield calculations for neutral beam particle energies,” J. Nucl. Mater. 103, 345–349 (1981).
[Crossref]

Biersack, J. P.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Matter (Pergamon Press, 1985).

Biskupek, J.

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

Bittle, W.

S. Papernov, A. Tait, W. Bittle, A. Schmid, J. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Boeuf, J.-P.

L. C. Pitchford, J. Wang, D. Piscitelli, and J.-P. Boeuf, “Ion and neutral energy distributions to the MgO surface and sputtering rates in plasma display panel cells,” IEEE Trans. Plasma Sci. 34(2), 351–359 (2006).
[Crossref]

Bourgeois, S.

S. Petigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces,” Surf. Sci. 410(2-3), 250–257 (1998).
[Crossref]

Bradley, D. K.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Braun, D. G.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Brunsman, M.

Bundesmann, C.

R. Feder, C. Bundesmann, H. Neumann, and B. Rauschenbach, “Ion beam sputtering of Ag – Angular and energetic distributions of sputtered and scattered particles,” Nucl. Instrum. Methods Phys. Res., Sect. B 316, 198–204 (2013).
[Crossref]

R. Feder, F. Frost, H. Neumann, C. Bundesmann, and B. Rauschenbach, “Systematic investigations of low energy Ar ion beam sputtering of Si and Ag,” Nucl. Instrum. Methods Phys. Res., Sect. B 317, 137–142 (2013).
[Crossref]

Cai, X.

D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
[Crossref]

Capoulade, J.

Carroll, M.

M. Carroll and E. Stolper, “Argon solubility and diffusion in silica glass: Implications for the solution behavior of molecular gases,” Geochim. Cosmochim. Acta 55(1), 211–225 (1991).
[Crossref]

Cathelinaud, M.

Cavalcante, F.

Celliers, P. M.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

Chen, T.-J.

T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
[Crossref]

Cheng, X.

Cho, D.-Y.

D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
[Crossref]

Chorel, M.

Ciapponi, A.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

Collins, G. W.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Commandré, M.

Cook, M. J.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Crist, R. P.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Davalos, G. E.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Davis, S. R.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Dawson, J. W.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

de Vries, A.

G. Van Veen, F. Sanders, J. Dieleman, A. van Veen, D. Oostra, and A. de Vries, “Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar+-Ion Bombardment,” Phys. Rev. Lett. 57(6), 739–742 (1986).
[Crossref]

Demkov, A. A.

A. O’Hara, G. Bersuker, and A. A. Demkov, “Assessing hafnium on hafnia as an oxygen getter,” J. Appl. Phys. 115(18), 183703 (2014).
[Crossref]

Demos, S.

Di Giulio, M.

M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
[Crossref]

Dieleman, J.

G. Van Veen, F. Sanders, J. Dieleman, A. van Veen, D. Oostra, and A. de Vries, “Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar+-Ion Bombardment,” Phys. Rev. Lett. 57(6), 739–742 (1986).
[Crossref]

Ding, T.

Domenichini, B.

S. Petigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces,” Surf. Sci. 410(2-3), 250–257 (1998).
[Crossref]

Doolittle, L. R.

L. R. Doolittle, “Algorithms for the rapid simulation of Rutherford backscattering spectra,” Nucl. Instrum. Methods Phys. Res., Sect. B 9(3), 344–351 (1985).
[Crossref]

Drachenberg, D. R.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Duffy, T. S.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

Eckstein, W.

J. Biersack and W. Eckstein, “Sputtering studies with the Monte Carlo Program TRIM.SP,” Appl. Phys. A 34(2), 73–94 (1984).
[Crossref]

Eggert, J. H.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Ektessabi, A.

A. Ektessabi, “Ion-beam-assisted sputter deposition of thin oxide films,” Surf. Coat. Technol. 68-69, 208–216 (1994).
[Crossref]

Emmert, L. A.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Fan, H.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Fan, P.

D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
[Crossref]

Fan, Z.

D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
[Crossref]

Feder, R.

R. Feder, C. Bundesmann, H. Neumann, and B. Rauschenbach, “Ion beam sputtering of Ag – Angular and energetic distributions of sputtered and scattered particles,” Nucl. Instrum. Methods Phys. Res., Sect. B 316, 198–204 (2013).
[Crossref]

R. Feder, F. Frost, H. Neumann, C. Bundesmann, and B. Rauschenbach, “Systematic investigations of low energy Ar ion beam sputtering of Si and Ag,” Nucl. Instrum. Methods Phys. Res., Sect. B 317, 137–142 (2013).
[Crossref]

Fejer, M.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Feng, X.

W. Lau, I. Bello, L. Huang, X. Feng, M. Vos, and I. Mitchell, “Argon incorporation in Si(100) by ion bombardment at 15–100 eV,” J. Appl. Phys. 74(12), 7101–7106 (1993).
[Crossref]

Fernandez-Pañella, A.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

Foster, A. S.

A. S. Foster, F. L. Gejo, A. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

Fratanduono, D. E.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

Frost, F.

R. Feder, F. Frost, H. Neumann, C. Bundesmann, and B. Rauschenbach, “Systematic investigations of low energy Ar ion beam sputtering of Si and Ag,” Nucl. Instrum. Methods Phys. Res., Sect. B 317, 137–142 (2013).
[Crossref]

Gallais, L.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47(13), C107–C113 (2008).
[Crossref]

Gavartin, J.

D. M. Ramo, J. Gavartin, A. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

Gejo, F. L.

A. S. Foster, F. L. Gejo, A. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

Gritsenko, V.

T. Perevalov, V. S. Aliev, V. Gritsenko, A. Saraev, and V. Kaichev, “Electronic structure of oxygen vacancies in hafnium oxide,” Microelectron. Eng. 109, 21–23 (2013).
[Crossref]

Gritsenko, V. A.

V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, “Electronic properties of hafnium oxide: A contribution from defects and traps,” Phys. Rep. 613, 1–20 (2016).
[Crossref]

Guss, G.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Haggmark, L.

L. Haggmark and J. Biersack, “Sputtering yield calculations for neutral beam particle energies,” J. Nucl. Mater. 103, 345–349 (1981).
[Crossref]

Hammons, J.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Hamza, A. V.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Hand, R. D.

Harper, J. M.

J. M. Harper, M. Heiblum, and H. R. Kaufman, “Apparatus and method for neutralizing ion beams,” (Google Patents, 1983).

Harthcock, C.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Heiblum, M.

J. M. Harper, M. Heiblum, and H. R. Kaufman, “Apparatus and method for neutralizing ion beams,” (Google Patents, 1983).

Held, M.

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

Hicks, D. G.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Hoffman, B.

Hoffman, D.

D. Hoffman, “Intrinsic resputtering—theory and experiment,” J. Vac. Sci. Technol., A 8(5), 3707–3712 (1990).
[Crossref]

Hsiao, K. J.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Huang, L.

W. Lau, I. Bello, L. Huang, X. Feng, M. Vos, and I. Mitchell, “Argon incorporation in Si(100) by ion bombardment at 15–100 eV,” J. Appl. Phys. 74(12), 7101–7106 (1993).
[Crossref]

Huang, M.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Islamov, D. R.

V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, “Electronic properties of hafnium oxide: A contribution from defects and traps,” Phys. Rep. 613, 1–20 (2016).
[Crossref]

Jang, H.

D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
[Crossref]

Jensen, J.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Ji, Y.

Kaichev, V.

T. Perevalov, V. S. Aliev, V. Gritsenko, A. Saraev, and V. Kaichev, “Electronic structure of oxygen vacancies in hafnium oxide,” Microelectron. Eng. 109, 21–23 (2013).
[Crossref]

Kaiser, N.

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

Kaiser, U.

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

Kaufman, H. R.

J. M. Harper, M. Heiblum, and H. R. Kaufman, “Apparatus and method for neutralizing ion beams,” (Google Patents, 1983).

Kholi, S.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Kim, J.-Y.

D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
[Crossref]

Koc, C.

Kozlov, A.

Kraus, R. G.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

Krous, E.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Krous, E. M.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Kuo, C.-L.

T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
[Crossref]

Kupinski, P.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20(15), 16596–16610 (2012).
[Crossref]

S. Papernov, A. Tait, W. Bittle, A. Schmid, J. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Kurinec, S.

P. D. Rack, M. D. Potter, A. Woodard, and S. Kurinec, “Negative ion resputtering in Ta2Zn3O8 thin films,” J. Vac. Sci. Technol., A 17(5), 2805–2810 (1999).
[Crossref]

Lamaignère, L.

Lambropoulos, J. C.

Langston, P.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Lanternier, T.

Larotonda, M.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Lasaponara, L.

M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117(3), 163–172 (1984).
[Crossref]

Lau, W.

W. Lau, I. Bello, L. Huang, X. Feng, M. Vos, and I. Mitchell, “Argon incorporation in Si(100) by ion bombardment at 15–100 eV,” J. Appl. Phys. 74(12), 7101–7106 (1993).
[Crossref]

Lavastre, É.

Lee, J.-M.

D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
[Crossref]

Lequime, M.

Lesniewska, E.

S. Petigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces,” Surf. Sci. 410(2-3), 250–257 (1998).
[Crossref]

Li, D.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Li, Z.

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

Liang, G.

D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
[Crossref]

Littmark, U.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Matter (Pergamon Press, 1985).

Liu, H.

Liu, J.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Lovewell, J.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Ma, B.

Markosyan, A.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Marrone, S.

M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
[Crossref]

Martelli, S.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, and L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354(1-2), 19–23 (1999).
[Crossref]

Martin, A.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Martin, P. M.

P. M. Martin, Handbook of deposition technologies for films and coatings: science, applications and technology (William Andrew, 2009).

McCurdy, P.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Menoni, C.

Menoni, C. S.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Menor, M.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Messerly, M. J.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Misiano, C.

M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117(3), 163–172 (1984).
[Crossref]

Mitchell, I.

W. Lau, I. Bello, L. Huang, X. Feng, M. Vos, and I. Mitchell, “Argon incorporation in Si(100) by ion bombardment at 15–100 eV,” J. Appl. Phys. 74(12), 7101–7106 (1993).
[Crossref]

Monticelli, M. V.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Mostéfa-Sba, H.

S. Petigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces,” Surf. Sci. 410(2-3), 250–257 (1998).
[Crossref]

Murray, T.

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc SPIE 8530, 85301H (2012).
[Crossref]

Natoli, J.-Y.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47(13), C107–C113 (2008).
[Crossref]

Negres, R. A.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Neumann, H.

R. Feder, F. Frost, H. Neumann, C. Bundesmann, and B. Rauschenbach, “Systematic investigations of low energy Ar ion beam sputtering of Si and Ag,” Nucl. Instrum. Methods Phys. Res., Sect. B 317, 137–142 (2013).
[Crossref]

R. Feder, C. Bundesmann, H. Neumann, and B. Rauschenbach, “Ion beam sputtering of Ag – Angular and energetic distributions of sputtered and scattered particles,” Nucl. Instrum. Methods Phys. Res., Sect. B 316, 198–204 (2013).
[Crossref]

Nguyen, D. N.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Ni, J.

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

Nieminen, R. M.

A. S. Foster, F. L. Gejo, A. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

O’Hara, A.

A. O’Hara, G. Bersuker, and A. A. Demkov, “Assessing hafnium on hafnia as an oxygen getter,” J. Appl. Phys. 115(18), 183703 (2014).
[Crossref]

Oh, S.-J.

D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
[Crossref]

Oliver, J.

Oliver, J. B.

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc SPIE 8530, 85301H (2012).
[Crossref]

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20(15), 16596–16610 (2012).
[Crossref]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc SPIE 7132, 71320J (2008).
[Crossref]

Oostra, D.

G. Van Veen, F. Sanders, J. Dieleman, A. van Veen, D. Oostra, and A. de Vries, “Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar+-Ion Bombardment,” Phys. Rev. Lett. 57(6), 739–742 (1986).
[Crossref]

Palmier, S.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

Panish, M.

M. Panish and L. Reif, “Thermodynamics of the Vaporization of Hf and HfO2: Dissociation Energy of HfO,” J. Chem. Phys. 38(1), 253–256 (1963).
[Crossref]

Papernov, S.

M. Chorel, S. Papernov, A. Kozlov, B. Hoffman, J. Oliver, S. Demos, T. Lanternier, É. Lavastre, L. Lamaignère, and N. Roquin, “Influence of absorption-edge properties on subpicosecond intrinsic laser-damage threshold at 1053 nm in hafnia and silica monolayers,” Opt. Express 27(12), 16922–16934 (2019).
[Crossref]

S. Papernov, M. Brunsman, J. Oliver, B. Hoffman, A. Kozlov, S. Demos, A. Shvydky, F. Cavalcante, L. Yang, and C. Menoni, “Optical properties of oxygen vacancies in HfO2 thin films studied by absorption and luminescence spectroscopy,” Opt. Express 26(13), 17608–17623 (2018).
[Crossref]

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc SPIE 8530, 85301H (2012).
[Crossref]

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20(15), 16596–16610 (2012).
[Crossref]

S. Papernov, A. Tait, W. Bittle, A. Schmid, J. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc SPIE 7132, 71320J (2008).
[Crossref]

Park, J.-H.

D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
[Crossref]

Patel, D.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Perevalov, T.

T. Perevalov, V. S. Aliev, V. Gritsenko, A. Saraev, and V. Kaichev, “Electronic structure of oxygen vacancies in hafnium oxide,” Microelectron. Eng. 109, 21–23 (2013).
[Crossref]

Perevalov, T. V.

V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, “Electronic properties of hafnium oxide: A contribution from defects and traps,” Phys. Rep. 613, 1–20 (2016).
[Crossref]

Perrone, M.

M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
[Crossref]

Petigny, S.

S. Petigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces,” Surf. Sci. 410(2-3), 250–257 (1998).
[Crossref]

Piscitelli, D.

L. C. Pitchford, J. Wang, D. Piscitelli, and J.-P. Boeuf, “Ion and neutral energy distributions to the MgO surface and sputtering rates in plasma display panel cells,” IEEE Trans. Plasma Sci. 34(2), 351–359 (2006).
[Crossref]

Pitchford, L. C.

L. C. Pitchford, J. Wang, D. Piscitelli, and J.-P. Boeuf, “Ion and neutral energy distributions to the MgO surface and sputtering rates in plasma display panel cells,” IEEE Trans. Plasma Sci. 34(2), 351–359 (2006).
[Crossref]

Potter, M. D.

P. D. Rack, M. D. Potter, A. Woodard, and S. Kurinec, “Negative ion resputtering in Ta2Zn3O8 thin films,” J. Vac. Sci. Technol., A 17(5), 2805–2810 (1999).
[Crossref]

Poupinet, L.

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol., A 18(5), 2372–2377 (2000).
[Crossref]

Prisbrey, S. T.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Protopapa, M.

M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
[Crossref]

Qi, J.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Qiang, Y.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Qiu, S. R.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Rack, P. D.

P. D. Rack, M. D. Potter, A. Woodard, and S. Kurinec, “Negative ion resputtering in Ta2Zn3O8 thin films,” J. Vac. Sci. Technol., A 17(5), 2805–2810 (1999).
[Crossref]

Ramo, D. M.

D. M. Ramo, J. Gavartin, A. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

Rauschenbach, B.

R. Feder, F. Frost, H. Neumann, C. Bundesmann, and B. Rauschenbach, “Systematic investigations of low energy Ar ion beam sputtering of Si and Ag,” Nucl. Instrum. Methods Phys. Res., Sect. B 317, 137–142 (2013).
[Crossref]

R. Feder, C. Bundesmann, H. Neumann, and B. Rauschenbach, “Ion beam sputtering of Ag – Angular and energetic distributions of sputtered and scattered particles,” Nucl. Instrum. Methods Phys. Res., Sect. B 316, 198–204 (2013).
[Crossref]

Ravel, G.

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol., A 18(5), 2372–2377 (2000).
[Crossref]

Reif, L.

M. Panish and L. Reif, “Thermodynamics of the Vaporization of Hf and HfO2: Dissociation Energy of HfO,” J. Chem. Phys. 38(1), 253–256 (1963).
[Crossref]

Rigatti, A. L.

Rizzo, A.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, and L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354(1-2), 19–23 (1999).
[Crossref]

Rocca, J. J.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Roquin, N.

Route, R.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Rudd, R. E.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Rudolph, W.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Sanders, F.

G. Van Veen, F. Sanders, J. Dieleman, A. van Veen, D. Oostra, and A. de Vries, “Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar+-Ion Bombardment,” Phys. Rev. Lett. 57(6), 739–742 (1986).
[Crossref]

Saraev, A.

T. Perevalov, V. S. Aliev, V. Gritsenko, A. Saraev, and V. Kaichev, “Electronic structure of oxygen vacancies in hafnium oxide,” Microelectron. Eng. 109, 21–23 (2013).
[Crossref]

Scaglione, S.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, and L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354(1-2), 19–23 (1999).
[Crossref]

Schenkel, N.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Scherrer, P.

P. Scherrer, Nachr. Ges. Wiss. Göttingen2, 96–100 (1918).

Schmid, A.

S. Papernov, A. Tait, W. Bittle, A. Schmid, J. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Schmid, A. W.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20(15), 16596–16610 (2012).
[Crossref]

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc SPIE 8530, 85301H (2012).
[Crossref]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc SPIE 7132, 71320J (2008).
[Crossref]

Shao, J.

D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
[Crossref]

Shen, Z.

Shin, E.

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc SPIE 8530, 85301H (2012).
[Crossref]

Shluger, A.

D. M. Ramo, J. Gavartin, A. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

A. S. Foster, F. L. Gejo, A. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

Shvydky, A.

Smith, C.

Smith, R. F.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

Steinbrunn, A.

S. Petigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces,” Surf. Sci. 410(2-3), 250–257 (1998).
[Crossref]

Stenzel, O.

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

Stolper, E.

M. Carroll and E. Stolper, “Argon solubility and diffusion in silica glass: Implications for the solution behavior of molecular gases,” Geochim. Cosmochim. Acta 55(1), 211–225 (1991).
[Crossref]

Stolz, C. J.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Swift, D. C.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

Tait, A.

S. Papernov, A. Tait, W. Bittle, A. Schmid, J. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Tanaka, A.

D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
[Crossref]

Tao, C.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Tollerud, J.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Tomasel, F.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Tünnermann, A.

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

Valentini, A.

M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
[Crossref]

van Veen, A.

G. Van Veen, F. Sanders, J. Dieleman, A. van Veen, D. Oostra, and A. de Vries, “Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar+-Ion Bombardment,” Phys. Rev. Lett. 57(6), 739–742 (1986).
[Crossref]

Van Veen, G.

G. Van Veen, F. Sanders, J. Dieleman, A. van Veen, D. Oostra, and A. de Vries, “Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar+-Ion Bombardment,” Phys. Rev. Lett. 57(6), 739–742 (1986).
[Crossref]

VanBlarcom, D.

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Varasi, M.

M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117(3), 163–172 (1984).
[Crossref]

Vasanelli, L.

M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
[Crossref]

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, and L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354(1-2), 19–23 (1999).
[Crossref]

Voisin, T.

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

Vos, M.

W. Lau, I. Bello, L. Huang, X. Feng, M. Vos, and I. Mitchell, “Argon incorporation in Si(100) by ion bombardment at 15–100 eV,” J. Appl. Phys. 74(12), 7101–7106 (1993).
[Crossref]

Wagner, F. R.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

Wang, C.

D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
[Crossref]

Wang, J.

L. C. Pitchford, J. Wang, D. Piscitelli, and J.-P. Boeuf, “Ion and neutral energy distributions to the MgO surface and sputtering rates in plasma display panel cells,” IEEE Trans. Plasma Sci. 34(2), 351–359 (2006).
[Crossref]

Wang, X.

Wang, Y.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

Wang, Z.

Wicks, J. K.

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

Wilbrandt, S.

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

Woodard, A.

P. D. Rack, M. D. Potter, A. Woodard, and S. Kurinec, “Negative ion resputtering in Ta2Zn3O8 thin films,” J. Vac. Sci. Technol., A 17(5), 2805–2810 (1999).
[Crossref]

Xu, C.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Yang, L.

Ye, X.

Yi, P.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Yulin, S.

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

Zhang, D.

D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
[Crossref]

Zhang, Z.

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

Zhou, Q.

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

Ziegler, J. F.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Matter (Pergamon Press, 1985).

Appl. Opt. (2)

Appl. Phys. A (1)

J. Biersack and W. Eckstein, “Sputtering studies with the Monte Carlo Program TRIM.SP,” Appl. Phys. A 34(2), 73–94 (1984).
[Crossref]

Appl. Phys. Lett. (2)

C. Harthcock, S. R. Qiu, R. A. Negres, J. Hammons, T. Voisin, G. Guss, A. Martin, C. J. Stolz, M. Menor, G. Bhowmik, and M. Huang, “The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method,” Appl. Phys. Lett. 115(25), 251902 (2019).
[Crossref]

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

Appl. Surf. Sci. (1)

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Geochim. Cosmochim. Acta (1)

M. Carroll and E. Stolper, “Argon solubility and diffusion in silica glass: Implications for the solution behavior of molecular gases,” Geochim. Cosmochim. Acta 55(1), 211–225 (1991).
[Crossref]

IEEE Trans. Plasma Sci. (1)

L. C. Pitchford, J. Wang, D. Piscitelli, and J.-P. Boeuf, “Ion and neutral energy distributions to the MgO surface and sputtering rates in plasma display panel cells,” IEEE Trans. Plasma Sci. 34(2), 351–359 (2006).
[Crossref]

J. Appl. Phys. (4)

S. Papernov, A. Tait, W. Bittle, A. Schmid, J. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
[Crossref]

A. O’Hara, G. Bersuker, and A. A. Demkov, “Assessing hafnium on hafnia as an oxygen getter,” J. Appl. Phys. 115(18), 183703 (2014).
[Crossref]

W. Lau, I. Bello, L. Huang, X. Feng, M. Vos, and I. Mitchell, “Argon incorporation in Si(100) by ion bombardment at 15–100 eV,” J. Appl. Phys. 74(12), 7101–7106 (1993).
[Crossref]

J. Chem. Phys. (1)

M. Panish and L. Reif, “Thermodynamics of the Vaporization of Hf and HfO2: Dissociation Energy of HfO,” J. Chem. Phys. 38(1), 253–256 (1963).
[Crossref]

J. Lumin. (1)

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

J. Nucl. Mater. (1)

L. Haggmark and J. Biersack, “Sputtering yield calculations for neutral beam particle energies,” J. Nucl. Mater. 103, 345–349 (1981).
[Crossref]

J. Vac. Sci. Technol., A (3)

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol., A 18(5), 2372–2377 (2000).
[Crossref]

P. D. Rack, M. D. Potter, A. Woodard, and S. Kurinec, “Negative ion resputtering in Ta2Zn3O8 thin films,” J. Vac. Sci. Technol., A 17(5), 2805–2810 (1999).
[Crossref]

D. Hoffman, “Intrinsic resputtering—theory and experiment,” J. Vac. Sci. Technol., A 8(5), 3707–3712 (1990).
[Crossref]

Microelectron. Eng. (1)

T. Perevalov, V. S. Aliev, V. Gritsenko, A. Saraev, and V. Kaichev, “Electronic structure of oxygen vacancies in hafnium oxide,” Microelectron. Eng. 109, 21–23 (2013).
[Crossref]

Nat. Astron. (1)

R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2(6), 452–458 (2018).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (3)

L. R. Doolittle, “Algorithms for the rapid simulation of Rutherford backscattering spectra,” Nucl. Instrum. Methods Phys. Res., Sect. B 9(3), 344–351 (1985).
[Crossref]

R. Feder, C. Bundesmann, H. Neumann, and B. Rauschenbach, “Ion beam sputtering of Ag – Angular and energetic distributions of sputtered and scattered particles,” Nucl. Instrum. Methods Phys. Res., Sect. B 316, 198–204 (2013).
[Crossref]

R. Feder, F. Frost, H. Neumann, C. Bundesmann, and B. Rauschenbach, “Systematic investigations of low energy Ar ion beam sputtering of Si and Ag,” Nucl. Instrum. Methods Phys. Res., Sect. B 317, 137–142 (2013).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

D. Zhang, P. Fan, C. Wang, X. Cai, G. Liang, J. Shao, and Z. Fan, “Properties of HfO2 thin films prepared by dual-ion-beam reactive sputtering,” Opt. Laser Technol. 41(6), 820–822 (2009).
[Crossref]

Opt. Mater. (1)

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. 1(2), 278–292 (2011).
[Crossref]

Phys. Rep. (1)

V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, “Electronic properties of hafnium oxide: A contribution from defects and traps,” Phys. Rep. 613, 1–20 (2016).
[Crossref]

Phys. Rev. B (3)

D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, “Influence of oxygen vacancies on the electronic structure of HfO2 films,” Phys. Rev. B 76(16), 165411 (2007).
[Crossref]

A. S. Foster, F. L. Gejo, A. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

D. M. Ramo, J. Gavartin, A. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

Phys. Rev. Lett. (2)

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).
[Crossref]

G. Van Veen, F. Sanders, J. Dieleman, A. van Veen, D. Oostra, and A. de Vries, “Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar+-Ion Bombardment,” Phys. Rev. Lett. 57(6), 739–742 (1986).
[Crossref]

Proc SPIE (3)

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc SPIE 7132, 71320J (2008).
[Crossref]

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc SPIE 8530, 85301H (2012).
[Crossref]

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3 for optical interference coatings,” Proc SPIE 7842, 784202 (2010).
[Crossref]

Surf. Coat. Technol. (1)

A. Ektessabi, “Ion-beam-assisted sputter deposition of thin oxide films,” Surf. Coat. Technol. 68-69, 208–216 (1994).
[Crossref]

Surf. Sci. (1)

S. Petigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces,” Surf. Sci. 410(2-3), 250–257 (1998).
[Crossref]

Thin Solid Films (3)

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, and L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354(1-2), 19–23 (1999).
[Crossref]

M. Alvisi, M. Di Giulio, S. Marrone, M. Perrone, M. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358(1-2), 250–258 (2000).
[Crossref]

M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117(3), 163–172 (1984).
[Crossref]

Other (7)

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Matter (Pergamon Press, 1985).

P. M. Martin, Handbook of deposition technologies for films and coatings: science, applications and technology (William Andrew, 2009).

D. Biello, “High-Powered Lasers Deliver Fusion Energy Breakthrough,” Sci. Am., 2014.

D. Patel, Y. Wang, M. Larotonda, J. Lovewell, J. Jensen, K. J. Hsiao, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, and P. McCurdy, Proc SPIE6403 (2007).

P. Scherrer, Nachr. Ges. Wiss. Göttingen2, 96–100 (1918).

J. M. Harper, M. Heiblum, and H. R. Kaufman, “Apparatus and method for neutralizing ion beams,” (Google Patents, 1983).

D. VanBlarcom, D. R. Drachenberg, M. V. Monticelli, G. E. Davalos, S. R. Davis, N. Schenkel, M. J. Cook, R. P. Crist, M. J. Messerly, and J. W. Dawson, “Novel AMP surface treatment for improving optical fiber strength and laser gain (Conference Presentation),” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, (International Society for Optics and Photonics, 2018), 108051C.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Illustrations of the solar-planetary configuration utilized in the IBS system. (a) The light gray circles represent the sun system and the darker grey circles display the four 200 mm Si wafers used for the analysis of spatial distribution of chemical composition of the hafnia films. R denotes the radial distance from the center of the sun to the center of rotation for the planets. ρ shows the radial distance of a given position on the planet from the planet rotational center. θ and α are the rotational angle of the sun and planet, respectively. The x and y-axis of the sun are denoted by two dotted lines on the sun. (b) Configuration used for the deposition of 2” fused silica substrates for laser damage testing. The black and white circles depict examples of deposition substrates at the edge and center locations on a planet, respectively. The arrows denote the possible rotational direction of the planetary system.
Fig. 2.
Fig. 2. (a) The average radial planetary distribution of O to Hf ratio (square) and entrapped Ar atomic contents (triangle) in the hafnia films. (b) The relationship between the O to Hf ratio and the entrapped Ar content. These parameters are derived from the RBS spectra collected from each film.
Fig. 3.
Fig. 3. TRIM.SP Monte Carlo simulations of the radial distribution of (a) populations and (b) energies of reflected Ar neutrals projected to the solar surface. The black squares correlate to the projection onto the x-axis while the red triangles correspond to the projection onto the y-axis of the sun. (c) A top-down illustration of the configuration of the IBS coating system. (d) The predicted area of the projected reflected Ar neutrals on the solar surface with kinetic energies that are equal or in excess of 370 eV.
Fig. 4.
Fig. 4. (a) A comparison between the simulated energy of reflected Ar neutrals (squares) and the content of entrapped Ar in the hafnia films deposited without planetary rotation (triangles), along the x-axis of the sun. (b) The correlation between the Monte Carlo simulated energies and the content of entrapped Ar. (c) A comparison of the oxygen concentration (blue diamonds) and entrapped Ar content along the x-axis of the sun.
Fig. 5.
Fig. 5. GI-XRD analysis of the hafnia films deposited near the edge of the planet (black samples) and the samples deposited near the center of the planet (white samples).
Fig. 6.
Fig. 6. (a) The 1-on-1 UV ns-laser damage probability and (b) damage density as a function of irradiation fluence for a hafnia film deposited near the edge of the planet (square) and the center (triangle), respectively. Representative high-resolution images of the damage morphology observed from the edge and center films, respectively, after similar laser exposures (as noted in each figure with experimental uncertainty of ∼0.5 J/cm2): (c)-(d) confocal microscopy and (e)-(f) ESEM.
Fig. 7.
Fig. 7. (a) Predicted trace of a point with ρ = 70 mm on the planet (or the center of an edge film) after 10 solar revolutions. The red ellipse represents the area where the reflected Ar neutrals with kinetic energy equal or greater than 370 eV intersect the solar surface. (b) A closeup view of the high energy Ar neutral area displaying the total number of times that the center point of the edge film passes through the high energetic region within the 10 solar revolutions. (c) The predicted trace of a point with ρ = 0 mm on the planet (midpoint of the center film) after 10 solar revolutions. (d) A zoomed-in view showing the trace encounters the high energy Ar region for every solar revolution. (e-f) Cartoons depicting sub-stoichiometric defects induced by Ar reflections in hafnia film produced at the center (e) and the edge (f) of the planet. The solid background represents the ideal hafnia and the black dots indicate the sub-stoichiometric clusters induced by the bombardment of energetic Ar reflections.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x(θ)=Rcos(θ)+ρcos(α)
y(θ)=Rsin(θ)+ρsin(α)