Abstract

A novel robust tri-cladding stepped fiber structure has been proposed for the dispersion tuning, and a systematic simulation has been given for the fibers with different sizes of claddings and cores. The results show that double zero-dispersion wavelength (ZDW) points can be obtained, and the first ZDW is shorter at 3.3 µm and the second ZDW at 9.9 µm. Based on the simulation of the structural optimization, we have prepared a well-structured tri-cladding fiber with a minimum loss of 1.55 dB/m at 6.77 µm by a novel continuous two-stage extrusion method. Moreover, a flattened supercontinuum extending from 1.3 to 12.9 µm pumping at anomalous dispersion wavelength of 5 µm between the two ZDWs can be achieved, which fits well with the simulated results. After all, the optimized fiber consisting of As2Se3, Ge10As22Se68, As2S3 exhibits excellent properties that demonstrate the potential for a simple way to prepare high quality fiber with a tri-cladding structure.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber

Kai Jiao, Jinmei Yao, Zheming Zhao, Xiange Wang, Nian Si, Xunsi Wang, Peng Chen, Zugang Xue, Youmei Tian, Bin Zhang, Peiqing Zhang, Shixun Dai, Qiuhua Nie, and Rongping Wang
Opt. Express 27(3) 2036-2043 (2019)

Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber

Bo Wu, Zheming Zhao, Xunsi Wang, Youmei Tian, Nan Mi, Peng Chen, Zugang Xue, Zijun Liu, Peiqing Zhang, Xiang Shen, Qiuhua Nie, Shixun Dai, and Rongping Wang
Opt. Mater. Express 8(5) 1341-1348 (2018)

Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures

Ya’nan Sun, Shixun Dai, Peiqing Zhang, Xunsi Wang, Yinsheng Xu, Zijun Liu, Feifei Chen, Yuehao Wu, Yuji Zhang, Rongping Wang, and Guangming Tao
Opt. Express 23(18) 23472-23483 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Xing, D. Grassani, S. Kharitonov, L. Brilland, C. Caillaud, J. Troles, and C. S. Brès, “Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers,” Optica 4(6), 643–648 (2017).
    [Crossref]
  2. T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, and L. Zhang, “Narrow bandwidth passively mode locked picosecond erbium doped fiber laser using a 45° tilted fiber grating device,” Opt. Express 25(14), 16708–16714 (2017).
    [Crossref]
  3. H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
    [Crossref]
  4. M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
    [Crossref]
  5. R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
    [Crossref]
  6. A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  7. C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
    [Crossref]
  8. R. E. Slusher, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [Crossref]
  9. V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
    [Crossref]
  10. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new ir broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
    [Crossref]
  11. P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
    [Crossref]
  12. A. Kumar, R. K. Sinha, and T. S. Saini, “Broadband Mid-Infrared Supercontinuum Spectra Spanning 2–15 µm using As2Se3 Chalcogenide Glass Triangular-Core Graded-Index Photonic Crystal Fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
    [Crossref]
  13. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
    [Crossref]
  14. T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-ir supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
    [Crossref]
  15. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
    [Crossref]
  16. P. A. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelength,” Opt. Express 13(19), 7535–7540 (2005).
    [Crossref]
  17. K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
    [Crossref]
  18. Y. Xu, G. Yang, W. Wang, H. Zeng, X. Zhang, and G. Chen, “Formation and Properties of the Novel GeSe2–In2Se3–CsI Chalcohalide Glasses,” J. Am. Ceram. Soc. 91(3), 902–905 (2008).
    [Crossref]
  19. H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 µm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
    [Crossref]
  20. M. Jensen, M. M. Smedskjaer, W. Wang, G. Chen, and Y. Yue, “Aging in chalcohalide glasses: origin and consequences,” J. Non-Cryst. Solids 358(1), 129–132 (2012).
    [Crossref]
  21. J. Qiu, A. Yang, M. Zhang, L. Lei, B. Zhang, D. Tang, and Z. Yang, “Ga2S3-Sb2S3-CsI chalcohalide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
    [Crossref]
  22. Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
    [Crossref]
  23. T. S. Saini, N. P. T. Hoa, T. H. Tuan, X. Luo, T. Suzuki, and Y. Ohishi, “Tapered tellurite step-index optical fiber for coherent near-to-mid-IR supercontinuum generation: experiment and modeling,” Appl. Opt. 58(2), 415–421 (2019).
    [Crossref]
  24. Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
    [Crossref]
  25. G. Tao, S. Shabahang, E. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
    [Crossref]
  26. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
    [Crossref]
  27. B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
    [Crossref]
  28. W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
    [Crossref]
  29. F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear singlemode fibers with a tailored dispersion profile,” Opt. Express 19(1), 66–80 (2011).
    [Crossref]
  30. X. Zhang and X. Tian, “Analysis of waveguide dispersion characteristics of wi- and wii-type triple-clad single-mode fibers,” Opt. Laser Technol. 35(4), 237–244 (2003).
    [Crossref]
  31. X. Zhang and X. Tian, “The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers,” Opt. Laser Technol. 37(2), 167–172 (2005).
    [Crossref]
  32. Y. Prajapati, J. B. Maurya, V. Singh, and J. P. Saini, “Modal analysis and dispersion curves of an elliptical W-type single mode fiber,” Opt. Spectrosc. 118(5), 821–828 (2015).
    [Crossref]
  33. M. Hautakorpi and M. Kaivola, “Modal analysis of M-type-dielectric-profile optical fibers in the weakly guiding approximation,” J. Opt. Soc. Am. A 22(6), 1163–1169 (2005).
    [Crossref]
  34. F. D. Nunes, C. A. D. S. Melo, and H. F. D. S. Filho, “Theoretical study of coaxial fibers,” Appl. Opt. 35(3), 388–399 (1996).
    [Crossref]
  35. A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A: Pure Appl. Opt. 10(11), 115306 (2008).
    [Crossref]
  36. A. Gaur, G. Kumar, and V. Rastogi, “Dual-core few mode EDFA for amplification of 20 modes,” Opt. Quantum Electron. 50(2), 66–72 (2018).
    [Crossref]
  37. T. S. Sainia, N. P. T. Hoa, L. Xing, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Chalcogenide W-type co-axial optical fiber for broadband highly coherent mid-IR supercontinuum generation,” J. Appl. Phys. 124(21), 213101 (2018).
    [Crossref]
  38. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. L. Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
    [Crossref]
  39. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
    [Crossref]
  40. E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
    [Crossref]
  41. H. Saghaei, M. E. Heidari, and M. K. M. Farshi, “Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers,” Appl. Opt. 54(8), 2072–2079 (2015).
    [Crossref]
  42. F. Brechet, J. Marcou, and D. Pagnoux, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
    [Crossref]
  43. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [Crossref]
  44. G. P. Agrawal, Fiber-Optic Communication Systems, 4 Edition (2011).
  45. S. M. A. Razzak and Y. Namihira, “Tailoring Dispersion and Confinement Losses of Photonic Crystal Fibers Using Hybrid Cladding,” J. Lightwave Technol. 26(13), 1909–1914 (2008).
    [Crossref]
  46. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [Crossref]
  47. N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
    [Crossref]
  48. C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
    [Crossref]
  49. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
    [Crossref]
  50. K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
    [Crossref]
  51. Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
    [Crossref]
  52. J. Dudley, G. Genty, and S. Coen, “Supercontunuum generation is photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  53. M. Khamis, R. Sebilla, and K. Ennser, “Design of W-type index chalcogenide fiber for highly coheren Mid-IR supercontinuum generation,” J. Lightwave Technol. 36(23), 5388–5394 (2018).
    [Crossref]

2019 (5)

2018 (4)

M. Khamis, R. Sebilla, and K. Ennser, “Design of W-type index chalcogenide fiber for highly coheren Mid-IR supercontinuum generation,” J. Lightwave Technol. 36(23), 5388–5394 (2018).
[Crossref]

A. Gaur, G. Kumar, and V. Rastogi, “Dual-core few mode EDFA for amplification of 20 modes,” Opt. Quantum Electron. 50(2), 66–72 (2018).
[Crossref]

T. S. Sainia, N. P. T. Hoa, L. Xing, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Chalcogenide W-type co-axial optical fiber for broadband highly coherent mid-IR supercontinuum generation,” J. Appl. Phys. 124(21), 213101 (2018).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

2017 (8)

J. Qiu, A. Yang, M. Zhang, L. Lei, B. Zhang, D. Tang, and Z. Yang, “Ga2S3-Sb2S3-CsI chalcohalide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-ir supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

S. Xing, D. Grassani, S. Kharitonov, L. Brilland, C. Caillaud, J. Troles, and C. S. Brès, “Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers,” Optica 4(6), 643–648 (2017).
[Crossref]

T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, and L. Zhang, “Narrow bandwidth passively mode locked picosecond erbium doped fiber laser using a 45° tilted fiber grating device,” Opt. Express 25(14), 16708–16714 (2017).
[Crossref]

H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

2016 (2)

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

2015 (5)

2014 (1)

2013 (3)

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref]

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

2012 (4)

M. Jensen, M. M. Smedskjaer, W. Wang, G. Chen, and Y. Yue, “Aging in chalcohalide glasses: origin and consequences,” J. Non-Cryst. Solids 358(1), 129–132 (2012).
[Crossref]

G. Tao, S. Shabahang, E. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
[Crossref]

2011 (2)

2010 (3)

2008 (3)

Y. Xu, G. Yang, W. Wang, H. Zeng, X. Zhang, and G. Chen, “Formation and Properties of the Novel GeSe2–In2Se3–CsI Chalcohalide Glasses,” J. Am. Ceram. Soc. 91(3), 902–905 (2008).
[Crossref]

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A: Pure Appl. Opt. 10(11), 115306 (2008).
[Crossref]

S. M. A. Razzak and Y. Namihira, “Tailoring Dispersion and Confinement Losses of Photonic Crystal Fibers Using Hybrid Cladding,” J. Lightwave Technol. 26(13), 1909–1914 (2008).
[Crossref]

2007 (1)

2006 (1)

J. Dudley, G. Genty, and S. Coen, “Supercontunuum generation is photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (3)

2004 (2)

R. E. Slusher, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

2003 (1)

X. Zhang and X. Tian, “Analysis of waveguide dispersion characteristics of wi- and wii-type triple-clad single-mode fibers,” Opt. Laser Technol. 35(4), 237–244 (2003).
[Crossref]

2002 (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

2000 (2)

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[Crossref]

F. Brechet, J. Marcou, and D. Pagnoux, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

1996 (1)

Aalto, A.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Abouraddy, A. F.

Aggarwal, I. D.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 4 Edition (2011).

Amiot, C.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Amraoui, M. E.

Banaei, E.

Bang, O.

Benson, T. M.

H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Brechet, F.

F. Brechet, J. Marcou, and D. Pagnoux, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Brès, C. S.

Brilland, L.

Caillaud, C.

Chang, E. W.

Chen, D.

Chen, F.

Chen, G.

M. Jensen, M. M. Smedskjaer, W. Wang, G. Chen, and Y. Yue, “Aging in chalcohalide glasses: origin and consequences,” J. Non-Cryst. Solids 358(1), 129–132 (2012).
[Crossref]

Y. Xu, G. Yang, W. Wang, H. Zeng, X. Zhang, and G. Chen, “Formation and Properties of the Novel GeSe2–In2Se3–CsI Chalcohalide Glasses,” J. Am. Ceram. Soc. 91(3), 902–905 (2008).
[Crossref]

Chen, P.

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Cheng, C.

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Cheng, T.

Cheong, S.-W.

Churbanov, M. F.

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontunuum generation is photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dai, S.

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref]

Davies, B. L.

Deng, D.

Dong, R.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Duan, Z.

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontunuum generation is photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dussardier, B.

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A: Pure Appl. Opt. 10(11), 115306 (2008).
[Crossref]

Eggleton, B. J.

El-Amraoui, M.

Ennser, K.

Falk, P. A.

Farshi, M. K. M.

Fatome, J.

Feng, X.

Filho, H. F. D. S.

Fortier, C.

Frosz, M. H.

Fu, L. B.

Furniss, D.

H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

Gadret, G.

Gai, X.

Gao, W.

Gaur, A.

A. Gaur, G. Kumar, and V. Rastogi, “Dual-core few mode EDFA for amplification of 20 modes,” Opt. Quantum Electron. 50(2), 66–72 (2018).
[Crossref]

Genty, G.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

J. Dudley, G. Genty, and S. Coen, “Supercontunuum generation is photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Grassani, D.

Hansch, T. W.

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hautakorpi, M.

Heidari, M. E.

Hirakoa, Y.

M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
[Crossref]

Hoa, N. P. T.

T. S. Saini, N. P. T. Hoa, T. H. Tuan, X. Luo, T. Suzuki, and Y. Ohishi, “Tapered tellurite step-index optical fiber for coherent near-to-mid-IR supercontinuum generation: experiment and modeling,” Appl. Opt. 58(2), 415–421 (2019).
[Crossref]

T. S. Sainia, N. P. T. Hoa, L. Xing, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Chalcogenide W-type co-axial optical fiber for broadband highly coherent mid-IR supercontinuum generation,” J. Appl. Phys. 124(21), 213101 (2018).
[Crossref]

Hossain, M. A.

M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
[Crossref]

Hu, J.

Hwang, H. Y.

Islam, M. A.

M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
[Crossref]

Jensen, M.

M. Jensen, M. M. Smedskjaer, W. Wang, G. Chen, and Y. Yue, “Aging in chalcohalide glasses: origin and consequences,” J. Non-Cryst. Solids 358(1), 129–132 (2012).
[Crossref]

Jiang, C.

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Jiang, L.

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

Jiao, K.

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

Jules, J. C.

Kaijage, S. F.

M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
[Crossref]

Kaivola, M.

Kakkar, C.

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A: Pure Appl. Opt. 10(11), 115306 (2008).
[Crossref]

Katsufuji, T.

Kaufman, J. J.

Kawashima, H.

Khamis, M.

Kharitonov, S.

Kibler, B.

Kirillin, M.

Koshiba, M.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Kubat, I.

Kumar, A.

Kumar, G.

A. Gaur, G. Kumar, and V. Rastogi, “Dual-core few mode EDFA for amplification of 20 modes,” Opt. Quantum Electron. 50(2), 66–72 (2018).
[Crossref]

Lamont, M. R. E.

Lei, L.

J. Qiu, A. Yang, M. Zhang, L. Lei, B. Zhang, D. Tang, and Z. Yang, “Ga2S3-Sb2S3-CsI chalcohalide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Lenz, G.

Lewis, K. L.

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

Li, H.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Li, Q.

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

Liao, F.

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Liao, M.

Lin, H.

Lines, M. E.

Liu, J.

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
[Crossref]

Liu, S.

Liu, Y.

Liu, Z.

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, and L. Zhang, “Narrow bandwidth passively mode locked picosecond erbium doped fiber laser using a 45° tilted fiber grating device,” Opt. Express 25(14), 16708–16714 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref]

Loh, W. H.

Luo, J.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Luo, X.

Mägi, E. C.

Marcou, J.

F. Brechet, J. Marcou, and D. Pagnoux, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Mason, P. D.

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

Mattsson, L.

Maurya, J. B.

Y. Prajapati, J. B. Maurya, V. Singh, and J. P. Saini, “Modal analysis and dispersion curves of an elliptical W-type single mode fiber,” Opt. Spectrosc. 118(5), 821–828 (2015).
[Crossref]

McBrearty, E. J.

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

Méchin, D.

Melo, C. A. D. S.

Menyuk, C. R.

Messaddeq, Y.

Mi, N.

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

Miller, C. A.

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

Møller, U.

Mou, C.

Namihira, Y.

M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
[Crossref]

S. M. A. Razzak and Y. Namihira, “Tailoring Dispersion and Confinement Losses of Photonic Crystal Fibers Using Hybrid Cladding,” J. Lightwave Technol. 26(13), 1909–1914 (2008).
[Crossref]

Nguyen, H. C.

Nie, Q.

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Nunes, F. D.

Ohishi, Y.

Orchard, D. A.

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

Pagnoux, D.

F. Brechet, J. Marcou, and D. Pagnoux, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Peng, X.

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

Petersen, C. R.

Petrovich, M. N.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Polacchini, C. F.

Poletti, F.

Ponzo, G. M.

Prajapati, Y.

Y. Prajapati, J. B. Maurya, V. Singh, and J. P. Saini, “Modal analysis and dispersion curves of an elliptical W-type single mode fiber,” Opt. Spectrosc. 118(5), 821–828 (2015).
[Crossref]

Qiu, J.

J. Qiu, A. Yang, M. Zhang, L. Lei, B. Zhang, D. Tang, and Z. Yang, “Ga2S3-Sb2S3-CsI chalcohalide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Rastogi, V.

A. Gaur, G. Kumar, and V. Rastogi, “Dual-core few mode EDFA for amplification of 20 modes,” Opt. Quantum Electron. 50(2), 66–72 (2018).
[Crossref]

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A: Pure Appl. Opt. 10(11), 115306 (2008).
[Crossref]

Razzak, S. M. A.

M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
[Crossref]

S. M. A. Razzak and Y. Namihira, “Tailoring Dispersion and Confinement Losses of Photonic Crystal Fibers Using Hybrid Cladding,” J. Lightwave Technol. 26(13), 1909–1914 (2008).
[Crossref]

Renversez, G.

Richardson, D. J.

Ruan, S.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Ryczkowski, P.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Saghaei, H.

Saini, J. P.

Y. Prajapati, J. B. Maurya, V. Singh, and J. P. Saini, “Modal analysis and dispersion curves of an elliptical W-type single mode fiber,” Opt. Spectrosc. 118(5), 821–828 (2015).
[Crossref]

Saini, T. S.

Sainia, T. S.

T. S. Sainia, N. P. T. Hoa, L. Xing, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Chalcogenide W-type co-axial optical fiber for broadband highly coherent mid-IR supercontinuum generation,” J. Appl. Phys. 124(21), 213101 (2018).
[Crossref]

Saitoh, K.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Sakrab, H.

H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Sanghera, J. S.

Savage, S.

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Sebilla, R.

Seddon, A. B.

H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

Sergeeva, E.

Shabahang, S.

Shaw, L. B.

Shen, X.

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Shiryaev, V. S.

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Si, N.

Singh, V.

Y. Prajapati, J. B. Maurya, V. Singh, and J. P. Saini, “Modal analysis and dispersion curves of an elliptical W-type single mode fiber,” Opt. Spectrosc. 118(5), 821–828 (2015).
[Crossref]

Sinha, R. K.

T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-ir supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
[Crossref]

A. Kumar, R. K. Sinha, and T. S. Saini, “Broadband Mid-Infrared Supercontinuum Spectra Spanning 2–15 µm using As2Se3 Chalcogenide Glass Triangular-Core Graded-Index Photonic Crystal Fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
[Crossref]

Skripatchev, I.

Slusher, R. E.

Smedskjaer, M. M.

M. Jensen, M. M. Smedskjaer, W. Wang, G. Chen, and Y. Yue, “Aging in chalcohalide glasses: origin and consequences,” J. Non-Cryst. Solids 358(1), 129–132 (2012).
[Crossref]

Smektala, F.

Sojka, L.

H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Spälter, S.

Su, R.

Sujecki, S.

H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Sun, L.

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Sun, Y.

Suzuki, T.

Szpulak, M.

Tang, D.

J. Qiu, A. Yang, M. Zhang, L. Lei, B. Zhang, D. Tang, and Z. Yang, “Ga2S3-Sb2S3-CsI chalcohalide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Tang, Z.

H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Tao, G.

Tian, X.

X. Zhang and X. Tian, “The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers,” Opt. Laser Technol. 37(2), 167–172 (2005).
[Crossref]

X. Zhang and X. Tian, “Analysis of waveguide dispersion characteristics of wi- and wii-type triple-clad single-mode fibers,” Opt. Laser Technol. 35(4), 237–244 (2003).
[Crossref]

Tian, Y.

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Tiwari, U. K.

T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-ir supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
[Crossref]

Toivonen, J.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Troles, J.

Tuan, T. H.

T. S. Saini, N. P. T. Hoa, T. H. Tuan, X. Luo, T. Suzuki, and Y. Ohishi, “Tapered tellurite step-index optical fiber for coherent near-to-mid-IR supercontinuum generation: experiment and modeling,” Appl. Opt. 58(2), 415–421 (2019).
[Crossref]

T. S. Sainia, N. P. T. Hoa, L. Xing, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Chalcogenide W-type co-axial optical fiber for broadband highly coherent mid-IR supercontinuum generation,” J. Appl. Phys. 124(21), 213101 (2018).
[Crossref]

Wang, R.

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref]

Wang, T.

Wang, W.

M. Jensen, M. M. Smedskjaer, W. Wang, G. Chen, and Y. Yue, “Aging in chalcohalide glasses: origin and consequences,” J. Non-Cryst. Solids 358(1), 129–132 (2012).
[Crossref]

Y. Xu, G. Yang, W. Wang, H. Zeng, X. Zhang, and G. Chen, “Formation and Properties of the Novel GeSe2–In2Se3–CsI Chalcohalide Glasses,” J. Am. Ceram. Soc. 91(3), 902–905 (2008).
[Crossref]

Wang, X.

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref]

Wang, Y.

Wei, H.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Wu, B.

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

Wu, Y.

Xing, L.

T. S. Sainia, N. P. T. Hoa, L. Xing, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Chalcogenide W-type co-axial optical fiber for broadband highly coherent mid-IR supercontinuum generation,” J. Appl. Phys. 124(21), 213101 (2018).
[Crossref]

Xing, S.

Xu, H.

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Xu, Y.

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref]

Y. Xu, G. Yang, W. Wang, H. Zeng, X. Zhang, and G. Chen, “Formation and Properties of the Novel GeSe2–In2Se3–CsI Chalcohalide Glasses,” J. Am. Ceram. Soc. 91(3), 902–905 (2008).
[Crossref]

Xue, Z.

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Yan, P.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Yan, Z.

Yang, A.

J. Qiu, A. Yang, M. Zhang, L. Lei, B. Zhang, D. Tang, and Z. Yang, “Ga2S3-Sb2S3-CsI chalcohalide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 µm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
[Crossref]

Yang, G.

Y. Xu, G. Yang, W. Wang, H. Zeng, X. Zhang, and G. Chen, “Formation and Properties of the Novel GeSe2–In2Se3–CsI Chalcohalide Glasses,” J. Am. Ceram. Soc. 91(3), 902–905 (2008).
[Crossref]

Yang, Z.

J. Qiu, A. Yang, M. Zhang, L. Lei, B. Zhang, D. Tang, and Z. Yang, “Ga2S3-Sb2S3-CsI chalcohalide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Yao, J.

Yeom, D. I.

Yu, Y.

Yue, Y.

M. Jensen, M. M. Smedskjaer, W. Wang, G. Chen, and Y. Yue, “Aging in chalcohalide glasses: origin and consequences,” J. Non-Cryst. Solids 358(1), 129–132 (2012).
[Crossref]

Yun, S. H.

Zeng, H.

Y. Xu, G. Yang, W. Wang, H. Zeng, X. Zhang, and G. Chen, “Formation and Properties of the Novel GeSe2–In2Se3–CsI Chalcohalide Glasses,” J. Am. Ceram. Soc. 91(3), 902–905 (2008).
[Crossref]

Zhang, B.

Zhang, G.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Zhang, L.

Zhang, M.

J. Qiu, A. Yang, M. Zhang, L. Lei, B. Zhang, D. Tang, and Z. Yang, “Ga2S3-Sb2S3-CsI chalcohalide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Zhang, P.

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref]

Zhang, X.

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Y. Xu, G. Yang, W. Wang, H. Zeng, X. Zhang, and G. Chen, “Formation and Properties of the Novel GeSe2–In2Se3–CsI Chalcohalide Glasses,” J. Am. Ceram. Soc. 91(3), 902–905 (2008).
[Crossref]

X. Zhang and X. Tian, “The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers,” Opt. Laser Technol. 37(2), 167–172 (2005).
[Crossref]

X. Zhang and X. Tian, “Analysis of waveguide dispersion characteristics of wi- and wii-type triple-clad single-mode fibers,” Opt. Laser Technol. 35(4), 237–244 (2003).
[Crossref]

Zhang, Y.

Zhao, Z.

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

K. Jiao, J. Yao, X. Wang, X. Wang, Z. Zhao, B. Zhang, N. Si, J. Liu, X. Shen, P. Zhang, S. Dai, Q. Nie, and R. Wang, “1.2–15.2  µm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region,” Opt. Lett. 44(22), 5545–5548 (2019).
[Crossref]

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14.4 midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5226 (2016).
[Crossref]

Zhou, K.

Zhu, M.

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Zhu, Q.

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Zimmermann, J.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

J. Am. Ceram. Soc. (3)

Y. Xu, G. Yang, W. Wang, H. Zeng, X. Zhang, and G. Chen, “Formation and Properties of the Novel GeSe2–In2Se3–CsI Chalcohalide Glasses,” J. Am. Ceram. Soc. 91(3), 902–905 (2008).
[Crossref]

J. Qiu, A. Yang, M. Zhang, L. Lei, B. Zhang, D. Tang, and Z. Yang, “Ga2S3-Sb2S3-CsI chalcohalide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Z. Zhao, P. Chen, X. Wang, Z. Xue, Y. Tian, K. Jiao, X. Wang, X. Peng, P. Zhang, X. Shen, S. Dai, Q. Nie, and R. Wang, “A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion,” J. Am. Ceram. Soc. 102(9), 5172–5179 (2019).
[Crossref]

J. Appl. Phys. (2)

T. S. Sainia, N. P. T. Hoa, L. Xing, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Chalcogenide W-type co-axial optical fiber for broadband highly coherent mid-IR supercontinuum generation,” J. Appl. Phys. 124(21), 213101 (2018).
[Crossref]

T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-ir supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
[Crossref]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (3)

N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, and Q. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464(5), 44–50 (2017).
[Crossref]

M. Jensen, M. M. Smedskjaer, W. Wang, G. Chen, and Y. Yue, “Aging in chalcohalide glasses: origin and consequences,” J. Non-Cryst. Solids 358(1), 129–132 (2012).
[Crossref]

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A: Pure Appl. Opt. 10(11), 115306 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1770023–1770028 (2017).
[Crossref]

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Commun. (1)

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2–5µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Opt. Eng. (1)

C. Jiang, X. Wang, M. Zhu, H. Xu, Q. Nie, S. Dai, G. Tao, X. Shen, C. Cheng, Q. Zhu, F. Liao, P. Zhang, P. Zhang, Z. Liu, and X. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Opt. Express (12)

P. A. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelength,” Opt. Express 13(19), 7535–7540 (2005).
[Crossref]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new ir broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear singlemode fibers with a tailored dispersion profile,” Opt. Express 19(1), 66–80 (2011).
[Crossref]

T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, and L. Zhang, “Narrow bandwidth passively mode locked picosecond erbium doped fiber laser using a 45° tilted fiber grating device,” Opt. Express 25(14), 16708–16714 (2017).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref]

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref]

R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. L. Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

Opt. Fiber Technol. (1)

F. Brechet, J. Marcou, and D. Pagnoux, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Opt. Laser Technol. (3)

X. Zhang and X. Tian, “Analysis of waveguide dispersion characteristics of wi- and wii-type triple-clad single-mode fibers,” Opt. Laser Technol. 35(4), 237–244 (2003).
[Crossref]

X. Zhang and X. Tian, “The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers,” Opt. Laser Technol. 37(2), 167–172 (2005).
[Crossref]

M. A. Hossain, Y. Namihira, S. M. A. Razzak, M. A. Islam, J. Liu, S. F. Kaijage, and Y. Hirakoa, “Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: applications to optical coherence tomography systems,” Opt. Laser Technol. 44(4), 976–980 (2012).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (2)

Z. Xue, Q. Li, P. Chen, Y. Tian, K. Jiao, X. Wang, Z. Zhao, X. Wang, P. Zhang, S. Dai, R. Wang, and Q. Nie, “Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion,” Opt. Mater. 89, 402–407 (2019).
[Crossref]

H. Sakrab, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in pr3+/in selenide-chalcogenide-glass small-core step index fiber (sif),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

A. Gaur, G. Kumar, and V. Rastogi, “Dual-core few mode EDFA for amplification of 20 modes,” Opt. Quantum Electron. 50(2), 66–72 (2018).
[Crossref]

Opt. Spectrosc. (1)

Y. Prajapati, J. B. Maurya, V. Singh, and J. P. Saini, “Modal analysis and dispersion curves of an elliptical W-type single mode fiber,” Opt. Spectrosc. 118(5), 821–828 (2015).
[Crossref]

Optica (1)

Proc. SPIE (1)

E. J. McBrearty, K. L. Lewis, D. A. Orchard, P. D. Mason, C. A. Miller, S. Savage, D. Furniss, and A. B. Seddon, “Chalcogenide glass films for the bonding of GaAs optical parametric oscillator elements,” Proc. SPIE 5273, 430 (2004).
[Crossref]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontunuum generation is photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (1)

G. P. Agrawal, Fiber-Optic Communication Systems, 4 Edition (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Transverse cross section of multi-cladding chalcogenide fiber; (b) Refractive index of As2Se3, Ge10As22Se68, and As2S3.
Fig. 2.
Fig. 2. Variations of chromatic dispersion profiles of tri-cladding fiber by changing (a) d0 (when d1= 25 µm, d2= 50 µm and d3= 500 µm); (b) specific position of the first and second ZDW with the increase of d0; (c) d1 (d) d2.
Fig. 3.
Fig. 3. (a) Effective area with different radius of core; (b) nonlinear parameter of the fundamental mode calculated with d0=4 µm, d1=25 µm, d2=50 µm.
Fig. 4.
Fig. 4. Flowchart of the continuous two-stage extrusion
Fig. 5.
Fig. 5. Measured fiber loss (insert shows the output light spot diagram).
Fig. 6.
Fig. 6. (a) Simulated SC results in a 13-cm long fiber with different pumping wavelength; (b) Measured SC results from a 13-cm long fiber obtained with 150 fs input pulses injected at the different pumping wavelength.

Tables (3)

Tables Icon

Table 1. Refractive coefficient of sulfur and selenium glasses.

Tables Icon

Table 2. Specific position of the two ZDWs comparison under different sizes.

Tables Icon

Table 3. Comparison of the key parameters with those in other similar fibers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = 1 + A 1 λ 2 λ 2 λ 1 2 + A 2 λ 2 λ 2 λ 2 2 + A 3 λ 2 λ 2 λ 3 2
D ( λ ) = λ c [ d 2 Re ( n e f f ) d λ 2 ] + D m ( λ ) [ p s / n m / k m ]
γ = ( 2 π / 2 π λ λ ) ( n 2 / n 2 A e f f A e f f ) [ W 1 k m  -  1 ]
A e f f = ( S Z 2 d r 2 ) 2 S Z 2 d r 2 [ μ m 2 ]