Abstract

Thin film grating meta-stadium nanocombs were fabricated and experimentally investigated for the purpose of glucose monitoring. The method of ellipsometry was used to study the sensitivity of the structure to the alterations in glucose concentration in aqueous solution. The existence of Tamm surface waves was demonstrated at the interface of two dielectric mediums (PDMS and SiO2) with acceptable resolution. The results revealed the best sensitivity achieved at a 48° angle of incidence over 350 − 450 nm visible wavelength span when the glucose concentration was varied in the range of 50 mg/l to 100 mg/l. Though the present work emphasizes on the monitoring of glucose, the structure can be used for sensing applications of other biological fluids as well.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
One-dimensional photonic crystal for Bloch surface waves and radiation modes-based sensing

M. Gryga, D. Vala, P. Kolejak, L. Gembalova, D. Ciprian, and P. Hlubina
Opt. Mater. Express 9(10) 4009-4022 (2019)

All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range

Franziska B. Barho, Fernando Gonzalez-Posada, Maria-José Milla-Rodrigo, Mario Bomers, Laurent Cerutti, and Thierry Taliercio
Opt. Express 24(14) 16175-16190 (2016)

Electromagnetically induced transparency in an all-dielectric nano-metamaterial for slow light application

Qiao Wang, Li Yu, Huixuan Gao, Shuwen Chu, and Wei Peng
Opt. Express 27(24) 35012-35026 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67(4), 714–716 (1988).
  2. O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagn. 28(3), 126–145 (2008).
    [Crossref]
  3. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys.: Condens. Matter 22(9), 095501 (2010).
    [Crossref]
  4. I. Tamm, “Über eine mögliche Art der elektronenbindung an kristalloberflächen,” Eur. Phys. J. A 76(11-12), 849–850 (1932).
    [Crossref]
  5. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
    [Crossref]
  6. W. M. Robertson, “Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays,” J. Lightwave Technol. 17(11), 2013–2017 (1999).
    [Crossref]
  7. J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
    [Crossref]
  8. F. Villa-Villa, J. A. Gaspar-Armenta, and A. Mendoza-Suárez, “Surface modes in one dimensional photonic crystals that include left handed materials,” J. Electromagnet Wave 21(4), 485–499 (2007).
    [Crossref]
  9. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
    [Crossref]
  10. P. K. Choudhury, P. Khastgir, S. P. Ojha, D. K. Mahapatra, and O. N. Singh, “Design of an optical filter as a monochromatic selector from atomic emissions,” J. Opt. Soc. Am. A 9(6), 1007–1010 (1992).
    [Crossref]
  11. A.-B. M. A. Ibrahim, P. K. Choudhury, and M. S. B. Alias, “Analytical design of photonic band-gap fibers and their dispersion characteristics,” Optik 116(4), 169–174 (2005).
    [Crossref]
  12. M. M. Rahman and P. K. Choudhury, “On the investigation of field and power through photonic crystal fibers – A simulation approach,” Optik 122(11), 963–969 (2011).
    [Crossref]
  13. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (2nd Ed.), vol. 8, Elsevier, New York, NY (1984).
  14. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51(10), 2558–2571 (2003).
    [Crossref]
  15. A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
    [Crossref]
  16. N. Malkova and C. Z. Ning, “Interplay between Tamm-like and Shockley-like surface states in photonic crystals,” Phys. Rev. B 76(4), 045305 (2007).
    [Crossref]
  17. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref]
  18. S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
    [Crossref]
  19. B. Yang, T. Liu, H. Guo, S. Xiao, and L. Zhou, “High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage,” Sci. Bull. 64(12), 823–835 (2019).
    [Crossref]
  20. Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater.1901548 (2020).
  21. K. V. Sreekanth, P. Mahalakshmi, S. Han, M. S. Mani Rajan, P. K. Choudhury, and R. Singh, “Brewster mode-enhanced sensing with hyperbolic metamaterial,” Adv. Opt. Mater. 7(21), 1900680 (2019).
    [Crossref]
  22. M. A. Baqir and P. K. Choudhury, “On the VO2 metasurface-based temperature sensor,” J. Opt. Soc. Am. B 36(8), F123–F130 (2019).
    [Crossref]
  23. M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
    [Crossref]
  24. M. A. Baqir and P. K. Choudhury, “Design of hyperbolic metamaterial-based absorber comprised of Ti nanoshperes,” IEEE Photonics Technol. Lett. 31(10), 735–738 (2019).
    [Crossref]
  25. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. A 10(2), 283–295 (1993).
    [Crossref]
  26. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun. 102(2-3), 165–173 (1997).
    [Crossref]
  27. V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves and the complex band structure of phononic crystals,” Phys. Rev. B 80(9), 092301 (2009).
    [Crossref]
  28. I. Benesperi, H. Michaels, and M. Freitag, “The researcher’s guide to solid-state dye-sensitized solar cells,” J. Mater. Chem. C 6(44), 11903–11942 (2018).
    [Crossref]
  29. P. Du, X. Lin, and X. Zhang, “Dielectric constants of PDMS nanocomposites using conducting polymer nanowires,” Proc. 16th Intl. Conf. on Solid-State Sensors, Actuators and Microsystems, 645–648 (2011).
  30. E. Iannone, Labs on Chip: Principles, Design and Technology, CRC Press, Boca Raton, FL (2019).
  31. Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, “Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process,” J. Biomed. Mater. Res. 51(4), 605–611 (2000).
    [Crossref]
  32. Y. K. Kim, G. T. Kim, and J. S. Ha, “Simple patterning via adhesion between a buffered-oxide etchant-treated PDMS stamp and a SiO2 substrate,” Adv. Funct. Mater. 17(13), 2125–2132 (2007).
    [Crossref]
  33. L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
    [Crossref]
  34. H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir, “DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels,” Nano Lett. 4(8), 1551–1556 (2004).
    [Crossref]
  35. F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
    [Crossref]
  36. Y. Liu and S. M. Iqbal, “Silicon-based novel bio-sensing platforms at the micro and nano scale,” ECS Trans. 16, 25–45 (2009).
    [Crossref]
  37. I. Tamm, “On the possible bound states of electrons on a crystal surface,” Phys. Z. Sowjetunion 1, 733–746 (1932).
  38. H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
    [Crossref]
  39. A. V. Bykov, M. Kirillin, and A. Priezzhev, “Monte Carlo simulation of light propagation in human tissues and noninvasive glucose sensing,” In Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V. V. Tuchin, (ed.). CRC Press, Boca Raton (2009).
  40. A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract. 77(1), 16–40 (2007).
    [Crossref]
  41. S. Haxha and J. Jhoja, “Optical based noninvasive glucose monitoring sensor prototype,” IEEE Photonics J. 8(6), 1–11 (2016).
    [Crossref]
  42. M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, “Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for anon-invasive monitoring of glucose in the interstitial fluid,” Rev. Sci. Instrum. 84(8), 084901 (2013).
    [Crossref]
  43. J. D. Hoff, L. J. Cheng, E. Meyhöfer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4(5), 853–857 (2004).
    [Crossref]
  44. J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).
  45. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, Wiley, New York, NY (2007).
  46. D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors, Pergamon, Oxford, UK (1968).
  47. F. Wooten, Optical Properties of Solids, Academic Press, New York, NY (1972).
  48. P. L. Nash, R. J. Bell, and R. Alexander, “On the Kramers-Kronig relation for the phase spectrum,” J. Mod. Opt. 42(9), 1837–1842 (1995).
    [Crossref]
  49. M. H. Lee and O. I. Sindoni, “Kramers-Kronig relations with logarithmic kernel and application to the phase spectrum in the Drude model,” Phys. Rev. E 56(4), 3891–3896 (1997).
    [Crossref]
  50. D. Y. Smith, “Dispersion relations and sum rules for magnetoreflectivity,” J. Opt. Soc. Am. 66(6), 547–554 (1976).
    [Crossref]
  51. F. W. King, “Dispersion relations and sum rules for the normal reflectance of conductors and insulators,” J. Chem. Phys. 71(11), 4726–4733 (1979).
    [Crossref]
  52. D. Y. Smith and C. A. Manogue, “Superconvergence relations and sum rules for reflection spectroscopy,” J. Opt. Soc. Am. 71(8), 935–947 (1981).
    [Crossref]
  53. W. G. Chambers, “Failures in the Kramers-Krönig analysis of power-reflectivity,” Infrared Phys. 15(2), 139–141 (1975).
    [Crossref]
  54. D. Y. Smith, “Dispersion relations for complex reflectivities,” J. Opt. Soc. Am. 67(4), 570–571 (1977).
    [Crossref]
  55. J. S. Plaskett and P. N. Schatz, “On the Robinson and Price (Kramers-Kronig) method of interpreting reflection data taken through a transparent window,” J. Chem. Phys. 38(3), 612–617 (1963).
    [Crossref]
  56. F. A. Modine, R. W. Major, T. W. Haywood, G. R. Gruzalski, and D. Y. Smith, “Optical properties of tantalum carbide from the infrared to the near ultraviolet,” Phys. Rev. B 29(2), 836–841 (1984).
    [Crossref]
  57. H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
    [Crossref]
  58. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=816&pn=GT10-A .
  59. https://www.thorlabs.com/thorproduct.cfm?partnumber=LA1805-A .
  60. M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprised of chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
    [Crossref]
  61. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  62. S. Saeidifard, F. Sohrabi, M. H. Ghazimoradi, S. M. Hamidi, S. Farivar, and M. A. Ansari, “Two-dimensional plasmonic biosensing platform: cellular activity detection under laser stimulation,” J. Appl. Phys. 126(10), 104701 (2019).
    [Crossref]
  63. C. Z. Tan, “Review and analysis of refractive index temperature dependence in amorphous SiO2,” J. Non-Cryst. Solids 238(1-2), 30–36 (1998).
    [Crossref]
  64. T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315(1-2), 54–62 (2003).
    [Crossref]
  65. J. Gong, R. Dai, Z. Wang, C. Zhang, X. Yuan, and Z. Zhang, “Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry,” Mater. Res. Express 4(8), 085005 (2017).
    [Crossref]

2019 (7)

B. Yang, T. Liu, H. Guo, S. Xiao, and L. Zhou, “High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage,” Sci. Bull. 64(12), 823–835 (2019).
[Crossref]

K. V. Sreekanth, P. Mahalakshmi, S. Han, M. S. Mani Rajan, P. K. Choudhury, and R. Singh, “Brewster mode-enhanced sensing with hyperbolic metamaterial,” Adv. Opt. Mater. 7(21), 1900680 (2019).
[Crossref]

M. A. Baqir and P. K. Choudhury, “On the VO2 metasurface-based temperature sensor,” J. Opt. Soc. Am. B 36(8), F123–F130 (2019).
[Crossref]

M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
[Crossref]

M. A. Baqir and P. K. Choudhury, “Design of hyperbolic metamaterial-based absorber comprised of Ti nanoshperes,” IEEE Photonics Technol. Lett. 31(10), 735–738 (2019).
[Crossref]

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

S. Saeidifard, F. Sohrabi, M. H. Ghazimoradi, S. M. Hamidi, S. Farivar, and M. A. Ansari, “Two-dimensional plasmonic biosensing platform: cellular activity detection under laser stimulation,” J. Appl. Phys. 126(10), 104701 (2019).
[Crossref]

2018 (1)

I. Benesperi, H. Michaels, and M. Freitag, “The researcher’s guide to solid-state dye-sensitized solar cells,” J. Mater. Chem. C 6(44), 11903–11942 (2018).
[Crossref]

2017 (2)

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprised of chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

J. Gong, R. Dai, Z. Wang, C. Zhang, X. Yuan, and Z. Zhang, “Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry,” Mater. Res. Express 4(8), 085005 (2017).
[Crossref]

2016 (1)

S. Haxha and J. Jhoja, “Optical based noninvasive glucose monitoring sensor prototype,” IEEE Photonics J. 8(6), 1–11 (2016).
[Crossref]

2015 (1)

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

2013 (1)

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, “Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for anon-invasive monitoring of glucose in the interstitial fluid,” Rev. Sci. Instrum. 84(8), 084901 (2013).
[Crossref]

2012 (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

2011 (1)

M. M. Rahman and P. K. Choudhury, “On the investigation of field and power through photonic crystal fibers – A simulation approach,” Optik 122(11), 963–969 (2011).
[Crossref]

2010 (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys.: Condens. Matter 22(9), 095501 (2010).
[Crossref]

2009 (2)

V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves and the complex band structure of phononic crystals,” Phys. Rev. B 80(9), 092301 (2009).
[Crossref]

Y. Liu and S. M. Iqbal, “Silicon-based novel bio-sensing platforms at the micro and nano scale,” ECS Trans. 16, 25–45 (2009).
[Crossref]

2008 (1)

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagn. 28(3), 126–145 (2008).
[Crossref]

2007 (4)

F. Villa-Villa, J. A. Gaspar-Armenta, and A. Mendoza-Suárez, “Surface modes in one dimensional photonic crystals that include left handed materials,” J. Electromagnet Wave 21(4), 485–499 (2007).
[Crossref]

N. Malkova and C. Z. Ning, “Interplay between Tamm-like and Shockley-like surface states in photonic crystals,” Phys. Rev. B 76(4), 045305 (2007).
[Crossref]

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract. 77(1), 16–40 (2007).
[Crossref]

Y. K. Kim, G. T. Kim, and J. S. Ha, “Simple patterning via adhesion between a buffered-oxide etchant-treated PDMS stamp and a SiO2 substrate,” Adv. Funct. Mater. 17(13), 2125–2132 (2007).
[Crossref]

2006 (2)

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref]

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

2005 (2)

A.-B. M. A. Ibrahim, P. K. Choudhury, and M. S. B. Alias, “Analytical design of photonic band-gap fibers and their dispersion characteristics,” Optik 116(4), 169–174 (2005).
[Crossref]

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

2004 (3)

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir, “DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels,” Nano Lett. 4(8), 1551–1556 (2004).
[Crossref]

J. D. Hoff, L. J. Cheng, E. Meyhöfer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4(5), 853–857 (2004).
[Crossref]

2003 (2)

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315(1-2), 54–62 (2003).
[Crossref]

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51(10), 2558–2571 (2003).
[Crossref]

2000 (1)

Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, “Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process,” J. Biomed. Mater. Res. 51(4), 605–611 (2000).
[Crossref]

1999 (2)

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

W. M. Robertson, “Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays,” J. Lightwave Technol. 17(11), 2013–2017 (1999).
[Crossref]

1998 (1)

C. Z. Tan, “Review and analysis of refractive index temperature dependence in amorphous SiO2,” J. Non-Cryst. Solids 238(1-2), 30–36 (1998).
[Crossref]

1997 (2)

M. H. Lee and O. I. Sindoni, “Kramers-Kronig relations with logarithmic kernel and application to the phase spectrum in the Drude model,” Phys. Rev. E 56(4), 3891–3896 (1997).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun. 102(2-3), 165–173 (1997).
[Crossref]

1995 (1)

P. L. Nash, R. J. Bell, and R. Alexander, “On the Kramers-Kronig relation for the phase spectrum,” J. Mod. Opt. 42(9), 1837–1842 (1995).
[Crossref]

1993 (1)

1992 (1)

1990 (1)

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
[Crossref]

1988 (1)

M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67(4), 714–716 (1988).

1984 (1)

F. A. Modine, R. W. Major, T. W. Haywood, G. R. Gruzalski, and D. Y. Smith, “Optical properties of tantalum carbide from the infrared to the near ultraviolet,” Phys. Rev. B 29(2), 836–841 (1984).
[Crossref]

1981 (1)

1979 (1)

F. W. King, “Dispersion relations and sum rules for the normal reflectance of conductors and insulators,” J. Chem. Phys. 71(11), 4726–4733 (1979).
[Crossref]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

1977 (1)

1976 (1)

1975 (1)

W. G. Chambers, “Failures in the Kramers-Krönig analysis of power-reflectivity,” Infrared Phys. 15(2), 139–141 (1975).
[Crossref]

1965 (1)

1963 (1)

J. S. Plaskett and P. N. Schatz, “On the Robinson and Price (Kramers-Kronig) method of interpreting reflection data taken through a transparent window,” J. Chem. Phys. 38(3), 612–617 (1963).
[Crossref]

1932 (2)

I. Tamm, “Über eine mögliche Art der elektronenbindung an kristalloberflächen,” Eur. Phys. J. A 76(11-12), 849–850 (1932).
[Crossref]

I. Tamm, “On the possible bound states of electrons on a crystal surface,” Phys. Z. Sowjetunion 1, 733–746 (1932).

Achaoui, Y.

V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves and the complex band structure of phononic crystals,” Phys. Rev. B 80(9), 092301 (2009).
[Crossref]

Agulló-Rueda, F.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
[Crossref]

Alam, M. A.

H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir, “DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels,” Nano Lett. 4(8), 1551–1556 (2004).
[Crossref]

Alexander, R.

P. L. Nash, R. J. Bell, and R. Alexander, “On the Kramers-Kronig relation for the phase spectrum,” J. Mod. Opt. 42(9), 1837–1842 (1995).
[Crossref]

Alias, M. S. B.

A.-B. M. A. Ibrahim, P. K. Choudhury, and M. S. B. Alias, “Analytical design of photonic band-gap fibers and their dispersion characteristics,” Optik 116(4), 169–174 (2005).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51(10), 2558–2571 (2003).
[Crossref]

Andreadakis, G.

H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir, “DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels,” Nano Lett. 4(8), 1551–1556 (2004).
[Crossref]

Ansari, M. A.

S. Saeidifard, F. Sohrabi, M. H. Ghazimoradi, S. M. Hamidi, S. Farivar, and M. A. Ansari, “Two-dimensional plasmonic biosensing platform: cellular activity detection under laser stimulation,” J. Appl. Phys. 126(10), 104701 (2019).
[Crossref]

Arcari, P.

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys.: Condens. Matter 22(9), 095501 (2010).
[Crossref]

Arshad, J.

M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
[Crossref]

Artigas, D.

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagn. 28(3), 126–145 (2008).
[Crossref]

Bao, D.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Baqir, M. A.

M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
[Crossref]

M. A. Baqir and P. K. Choudhury, “Design of hyperbolic metamaterial-based absorber comprised of Ti nanoshperes,” IEEE Photonics Technol. Lett. 31(10), 735–738 (2019).
[Crossref]

M. A. Baqir and P. K. Choudhury, “On the VO2 metasurface-based temperature sensor,” J. Opt. Soc. Am. B 36(8), F123–F130 (2019).
[Crossref]

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprised of chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Bashir, R.

H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir, “DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels,” Nano Lett. 4(8), 1551–1556 (2004).
[Crossref]

Bauer, A.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, “Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for anon-invasive monitoring of glucose in the interstitial fluid,” Rev. Sci. Instrum. 84(8), 084901 (2013).
[Crossref]

Bell, R. J.

P. L. Nash, R. J. Bell, and R. Alexander, “On the Kramers-Kronig relation for the phase spectrum,” J. Mod. Opt. 42(9), 1837–1842 (1995).
[Crossref]

Benchabane, S.

V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves and the complex band structure of phononic crystals,” Phys. Rev. B 80(9), 092301 (2009).
[Crossref]

Benesperi, I.

I. Benesperi, H. Michaels, and M. Freitag, “The researcher’s guide to solid-state dye-sensitized solar cells,” J. Mater. Chem. C 6(44), 11903–11942 (2018).
[Crossref]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys.: Condens. Matter 22(9), 095501 (2010).
[Crossref]

Brum, J. A.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
[Crossref]

Bykov, A. V.

A. V. Bykov, M. Kirillin, and A. Priezzhev, “Monte Carlo simulation of light propagation in human tissues and noninvasive glucose sensing,” In Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V. V. Tuchin, (ed.). CRC Press, Boca Raton (2009).

Chambers, W. G.

W. G. Chambers, “Failures in the Kramers-Krönig analysis of power-reflectivity,” Infrared Phys. 15(2), 139–141 (1975).
[Crossref]

Chang, H.

H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir, “DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels,” Nano Lett. 4(8), 1551–1556 (2004).
[Crossref]

Chang, L. L.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
[Crossref]

Chen, H.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Chen, Q.

Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, “Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process,” J. Biomed. Mater. Res. 51(4), 605–611 (2000).
[Crossref]

Cheng, H.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Cheng, L. J.

J. D. Hoff, L. J. Cheng, E. Meyhöfer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4(5), 853–857 (2004).
[Crossref]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Choudhury, P. K.

M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
[Crossref]

M. A. Baqir and P. K. Choudhury, “Design of hyperbolic metamaterial-based absorber comprised of Ti nanoshperes,” IEEE Photonics Technol. Lett. 31(10), 735–738 (2019).
[Crossref]

M. A. Baqir and P. K. Choudhury, “On the VO2 metasurface-based temperature sensor,” J. Opt. Soc. Am. B 36(8), F123–F130 (2019).
[Crossref]

K. V. Sreekanth, P. Mahalakshmi, S. Han, M. S. Mani Rajan, P. K. Choudhury, and R. Singh, “Brewster mode-enhanced sensing with hyperbolic metamaterial,” Adv. Opt. Mater. 7(21), 1900680 (2019).
[Crossref]

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprised of chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

M. M. Rahman and P. K. Choudhury, “On the investigation of field and power through photonic crystal fibers – A simulation approach,” Optik 122(11), 963–969 (2011).
[Crossref]

A.-B. M. A. Ibrahim, P. K. Choudhury, and M. S. B. Alias, “Analytical design of photonic band-gap fibers and their dispersion characteristics,” Optik 116(4), 169–174 (2005).
[Crossref]

P. K. Choudhury, P. Khastgir, S. P. Ojha, D. K. Mahapatra, and O. N. Singh, “Design of an optical filter as a monochromatic selector from atomic emissions,” J. Opt. Soc. Am. A 9(6), 1007–1010 (1992).
[Crossref]

Crasovan, L. C.

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagn. 28(3), 126–145 (2008).
[Crossref]

Cui, T. J.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Dai, R.

J. Gong, R. Dai, Z. Wang, C. Zhang, X. Yuan, and Z. Zhang, “Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry,” Mater. Res. Express 4(8), 085005 (2017).
[Crossref]

Dai, S.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

De Stefano, L.

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

Dennis, A. E.

J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).

DeSimone, J. M.

J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).

Di, J.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Du, P.

P. Du, X. Lin, and X. Zhang, “Dielectric constants of PDMS nanocomposites using conducting polymer nanowires,” Proc. 16th Intl. Conf. on Solid-State Sensors, Actuators and Microsystems, 645–648 (2011).

Dyakonov, M. I.

M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67(4), 714–716 (1988).

Engheta, N.

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51(10), 2558–2571 (2003).
[Crossref]

Esaki, L.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
[Crossref]

Euliss, L. E.

J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun. 102(2-3), 165–173 (1997).
[Crossref]

Fan, Y.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Farivar, S.

S. Saeidifard, F. Sohrabi, M. H. Ghazimoradi, S. M. Hamidi, S. Farivar, and M. A. Ansari, “Two-dimensional plasmonic biosensing platform: cellular activity detection under laser stimulation,” J. Appl. Phys. 126(10), 104701 (2019).
[Crossref]

Farmani, A.

M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
[Crossref]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys.: Condens. Matter 22(9), 095501 (2010).
[Crossref]

Freitag, M.

I. Benesperi, H. Michaels, and M. Freitag, “The researcher’s guide to solid-state dye-sensitized solar cells,” J. Mater. Chem. C 6(44), 11903–11942 (2018).
[Crossref]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, Wiley, New York, NY (2007).

Gaspar-Armenta, J. A.

F. Villa-Villa, J. A. Gaspar-Armenta, and A. Mendoza-Suárez, “Surface modes in one dimensional photonic crystals that include left handed materials,” J. Electromagnet Wave 21(4), 485–499 (2007).
[Crossref]

Ghasemi, M.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprised of chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Ghazimoradi, M. H.

S. Saeidifard, F. Sohrabi, M. H. Ghazimoradi, S. M. Hamidi, S. Farivar, and M. A. Ansari, “Two-dimensional plasmonic biosensing platform: cellular activity detection under laser stimulation,” J. Appl. Phys. 126(10), 104701 (2019).
[Crossref]

Gong, J.

J. Gong, R. Dai, Z. Wang, C. Zhang, X. Yuan, and Z. Zhang, “Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry,” Mater. Res. Express 4(8), 085005 (2017).
[Crossref]

Greenaway, D. L.

D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors, Pergamon, Oxford, UK (1968).

Gruzalski, G. R.

F. A. Modine, R. W. Major, T. W. Haywood, G. R. Gruzalski, and D. Y. Smith, “Optical properties of tantalum carbide from the infrared to the near ultraviolet,” Phys. Rev. B 29(2), 836–841 (1984).
[Crossref]

Guo, H.

B. Yang, T. Liu, H. Guo, S. Xiao, and L. Zhou, “High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage,” Sci. Bull. 64(12), 823–835 (2019).
[Crossref]

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater.1901548 (2020).

Guo, L. J.

J. D. Hoff, L. J. Cheng, E. Meyhöfer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4(5), 853–857 (2004).
[Crossref]

Ha, J. S.

Y. K. Kim, G. T. Kim, and J. S. Ha, “Simple patterning via adhesion between a buffered-oxide etchant-treated PDMS stamp and a SiO2 substrate,” Adv. Funct. Mater. 17(13), 2125–2132 (2007).
[Crossref]

Hamidi, S. M.

S. Saeidifard, F. Sohrabi, M. H. Ghazimoradi, S. M. Hamidi, S. Farivar, and M. A. Ansari, “Two-dimensional plasmonic biosensing platform: cellular activity detection under laser stimulation,” J. Appl. Phys. 126(10), 104701 (2019).
[Crossref]

Han, S.

K. V. Sreekanth, P. Mahalakshmi, S. Han, M. S. Mani Rajan, P. K. Choudhury, and R. Singh, “Brewster mode-enhanced sensing with hyperbolic metamaterial,” Adv. Opt. Mater. 7(21), 1900680 (2019).
[Crossref]

Harbeke, G.

D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors, Pergamon, Oxford, UK (1968).

Haxha, S.

S. Haxha and J. Jhoja, “Optical based noninvasive glucose monitoring sensor prototype,” IEEE Photonics J. 8(6), 1–11 (2016).
[Crossref]

Haywood, T. W.

F. A. Modine, R. W. Major, T. W. Haywood, G. R. Gruzalski, and D. Y. Smith, “Optical properties of tantalum carbide from the infrared to the near ultraviolet,” Phys. Rev. B 29(2), 836–841 (1984).
[Crossref]

He, Q.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Hertzberg, O.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, “Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for anon-invasive monitoring of glucose in the interstitial fluid,” Rev. Sci. Instrum. 84(8), 084901 (2013).
[Crossref]

Hoff, J. D.

J. D. Hoff, L. J. Cheng, E. Meyhöfer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4(5), 853–857 (2004).
[Crossref]

Hong, J. M.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
[Crossref]

Hunt, A. J.

J. D. Hoff, L. J. Cheng, E. Meyhöfer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4(5), 853–857 (2004).
[Crossref]

Iannone, E.

E. Iannone, Labs on Chip: Principles, Design and Technology, CRC Press, Boca Raton, FL (2019).

Ibrahim, A.-B. M. A.

A.-B. M. A. Ibrahim, P. K. Choudhury, and M. S. B. Alias, “Analytical design of photonic band-gap fibers and their dispersion characteristics,” Optik 116(4), 169–174 (2005).
[Crossref]

Iqbal, S. M.

Y. Liu and S. M. Iqbal, “Silicon-based novel bio-sensing platforms at the micro and nano scale,” ECS Trans. 16, 25–45 (2009).
[Crossref]

Jhoja, J.

S. Haxha and J. Jhoja, “Optical based noninvasive glucose monitoring sensor prototype,” IEEE Photonics J. 8(6), 1–11 (2016).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun. 102(2-3), 165–173 (1997).
[Crossref]

Johansen, S. K.

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagn. 28(3), 126–145 (2008).
[Crossref]

Karimi, S.

M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
[Crossref]

Kavokin, A.

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

Khastgir, P.

Khelif, A.

V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves and the complex band structure of phononic crystals,” Phys. Rev. B 80(9), 092301 (2009).
[Crossref]

Kim, G. T.

Y. K. Kim, G. T. Kim, and J. S. Ha, “Simple patterning via adhesion between a buffered-oxide etchant-treated PDMS stamp and a SiO2 substrate,” Adv. Funct. Mater. 17(13), 2125–2132 (2007).
[Crossref]

Kim, Y. K.

Y. K. Kim, G. T. Kim, and J. S. Ha, “Simple patterning via adhesion between a buffered-oxide etchant-treated PDMS stamp and a SiO2 substrate,” Adv. Funct. Mater. 17(13), 2125–2132 (2007).
[Crossref]

King, F. W.

F. W. King, “Dispersion relations and sum rules for the normal reflectance of conductors and insulators,” J. Chem. Phys. 71(11), 4726–4733 (1979).
[Crossref]

Kirillin, M.

A. V. Bykov, M. Kirillin, and A. Priezzhev, “Monte Carlo simulation of light propagation in human tissues and noninvasive glucose sensing,” In Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V. V. Tuchin, (ed.). CRC Press, Boca Raton (2009).

Kokubo, T.

Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, “Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process,” J. Biomed. Mater. Res. 51(4), 605–611 (2000).
[Crossref]

Kosari, F.

H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir, “DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels,” Nano Lett. 4(8), 1551–1556 (2004).
[Crossref]

Lamberti, A.

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

Landau, L. D.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (2nd Ed.), vol. 8, Elsevier, New York, NY (1984).

Laude, V.

V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves and the complex band structure of phononic crystals,” Phys. Rev. B 80(9), 092301 (2009).
[Crossref]

Lee, M. H.

M. H. Lee and O. I. Sindoni, “Kramers-Kronig relations with logarithmic kernel and application to the phase spectrum in the Drude model,” Phys. Rev. E 56(4), 3891–3896 (1997).
[Crossref]

Li, E.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Li, Y.

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater.1901548 (2020).

Lieber, C. M.

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref]

Lieblein, T.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, “Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for anon-invasive monitoring of glucose in the interstitial fluid,” Rev. Sci. Instrum. 84(8), 084901 (2013).
[Crossref]

Lifshitz, E. M.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (2nd Ed.), vol. 8, Elsevier, New York, NY (1984).

Lin, J.

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater.1901548 (2020).

Lin, X.

P. Du, X. Lin, and X. Zhang, “Dielectric constants of PDMS nanocomposites using conducting polymer nanowires,” Proc. 16th Intl. Conf. on Solid-State Sensors, Actuators and Microsystems, 645–648 (2011).

Liu, S.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Liu, T.

B. Yang, T. Liu, H. Guo, S. Xiao, and L. Zhou, “High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage,” Sci. Bull. 64(12), 823–835 (2019).
[Crossref]

Liu, Y.

Y. Liu and S. M. Iqbal, “Silicon-based novel bio-sensing platforms at the micro and nano scale,” ECS Trans. 16, 25–45 (2009).
[Crossref]

Longo, O.

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

Lu, H.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Ma, S.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Mahalakshmi, P.

K. V. Sreekanth, P. Mahalakshmi, S. Han, M. S. Mani Rajan, P. K. Choudhury, and R. Singh, “Brewster mode-enhanced sensing with hyperbolic metamaterial,” Adv. Opt. Mater. 7(21), 1900680 (2019).
[Crossref]

Mahapatra, D. K.

Majlis, B. Y.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprised of chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Major, R. W.

F. A. Modine, R. W. Major, T. W. Haywood, G. R. Gruzalski, and D. Y. Smith, “Optical properties of tantalum carbide from the infrared to the near ultraviolet,” Phys. Rev. B 29(2), 836–841 (1984).
[Crossref]

Malitson, I. H.

Malkova, N.

N. Malkova and C. Z. Ning, “Interplay between Tamm-like and Shockley-like surface states in photonic crystals,” Phys. Rev. B 76(4), 045305 (2007).
[Crossref]

Malpuech, G.

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

Mani Rajan, M. S.

K. V. Sreekanth, P. Mahalakshmi, S. Han, M. S. Mani Rajan, P. K. Choudhury, and R. Singh, “Brewster mode-enhanced sensing with hyperbolic metamaterial,” Adv. Opt. Mater. 7(21), 1900680 (2019).
[Crossref]

Manogue, C. A.

Mantele, W.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, “Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for anon-invasive monitoring of glucose in the interstitial fluid,” Rev. Sci. Instrum. 84(8), 084901 (2013).
[Crossref]

Mao, D.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Maran, A.

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract. 77(1), 16–40 (2007).
[Crossref]

Martorell, J.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

Maynor, B. W.

J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).

Mei, T.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Mendez, E. E.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
[Crossref]

Mendoza-Suárez, A.

F. Villa-Villa, J. A. Gaspar-Armenta, and A. Mendoza-Suárez, “Surface modes in one dimensional photonic crystals that include left handed materials,” J. Electromagnet Wave 21(4), 485–499 (2007).
[Crossref]

Meyhöfer, E.

J. D. Hoff, L. J. Cheng, E. Meyhöfer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4(5), 853–857 (2004).
[Crossref]

Michaels, H.

I. Benesperi, H. Michaels, and M. Freitag, “The researcher’s guide to solid-state dye-sensitized solar cells,” J. Mater. Chem. C 6(44), 11903–11942 (2018).
[Crossref]

Mihalache, D.

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagn. 28(3), 126–145 (2008).
[Crossref]

Mir, A.

M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
[Crossref]

Miyata, N.

Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, “Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process,” J. Biomed. Mater. Res. 51(4), 605–611 (2000).
[Crossref]

Modine, F. A.

F. A. Modine, R. W. Major, T. W. Haywood, G. R. Gruzalski, and D. Y. Smith, “Optical properties of tantalum carbide from the infrared to the near ultraviolet,” Phys. Rev. B 29(2), 836–841 (1984).
[Crossref]

Mohamed, M. A.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprised of chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Moretti, L.

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

Morozov, G. V.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

Nagata, K.

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315(1-2), 54–62 (2003).
[Crossref]

Nakamura, T.

Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, “Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process,” J. Biomed. Mater. Res. 51(4), 605–611 (2000).
[Crossref]

Nash, P. L.

P. L. Nash, R. J. Bell, and R. Alexander, “On the Kramers-Kronig relation for the phase spectrum,” J. Mod. Opt. 42(9), 1837–1842 (1995).
[Crossref]

Ning, C. Z.

N. Malkova and C. Z. Ning, “Interplay between Tamm-like and Shockley-like surface states in photonic crystals,” Phys. Rev. B 76(4), 045305 (2007).
[Crossref]

Ohno, H.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
[Crossref]

Ojha, S. P.

Pacini, G.

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract. 77(1), 16–40 (2007).
[Crossref]

Patolsky, F.

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref]

Pitaevskii, L. P.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (2nd Ed.), vol. 8, Elsevier, New York, NY (1984).

Plaskett, J. S.

J. S. Plaskett and P. N. Schatz, “On the Robinson and Price (Kramers-Kronig) method of interpreting reflection data taken through a transparent window,” J. Chem. Phys. 38(3), 612–617 (1963).
[Crossref]

Pleitez, M. A.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, “Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for anon-invasive monitoring of glucose in the interstitial fluid,” Rev. Sci. Instrum. 84(8), 084901 (2013).
[Crossref]

Priezzhev, A.

A. V. Bykov, M. Kirillin, and A. Priezzhev, “Monte Carlo simulation of light propagation in human tissues and noninvasive glucose sensing,” In Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V. V. Tuchin, (ed.). CRC Press, Boca Raton (2009).

Rahman, M. M.

M. M. Rahman and P. K. Choudhury, “On the investigation of field and power through photonic crystal fibers – A simulation approach,” Optik 122(11), 963–969 (2011).
[Crossref]

Rendina, I.

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

Robertson, W. M.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

W. M. Robertson, “Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays,” J. Lightwave Technol. 17(11), 2013–2017 (1999).
[Crossref]

Rocchia, M.

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

Rolland, J. P.

J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).

Rossi, A. M.

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

Rothrock, G. D.

J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).

Saeidifard, S.

S. Saeidifard, F. Sohrabi, M. H. Ghazimoradi, S. M. Hamidi, S. Farivar, and M. A. Ansari, “Two-dimensional plasmonic biosensing platform: cellular activity detection under laser stimulation,” J. Appl. Phys. 126(10), 104701 (2019).
[Crossref]

Samulski, E. T.

J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).

Samulski, R. J.

J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).

Schatz, P. N.

J. S. Plaskett and P. N. Schatz, “On the Robinson and Price (Kramers-Kronig) method of interpreting reflection data taken through a transparent window,” J. Chem. Phys. 38(3), 612–617 (1963).
[Crossref]

Shelykh, I.

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

Sindoni, O. I.

M. H. Lee and O. I. Sindoni, “Kramers-Kronig relations with logarithmic kernel and application to the phase spectrum in the Drude model,” Phys. Rev. E 56(4), 3891–3896 (1997).
[Crossref]

Singh, O. N.

Singh, R.

K. V. Sreekanth, P. Mahalakshmi, S. Han, M. S. Mani Rajan, P. K. Choudhury, and R. Singh, “Brewster mode-enhanced sensing with hyperbolic metamaterial,” Adv. Opt. Mater. 7(21), 1900680 (2019).
[Crossref]

Smith, D. Y.

Sohrabi, F.

S. Saeidifard, F. Sohrabi, M. H. Ghazimoradi, S. M. Hamidi, S. Farivar, and M. A. Ansari, “Two-dimensional plasmonic biosensing platform: cellular activity detection under laser stimulation,” J. Appl. Phys. 126(10), 104701 (2019).
[Crossref]

Sprung, D. W. L.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, P. Mahalakshmi, S. Han, M. S. Mani Rajan, P. K. Choudhury, and R. Singh, “Brewster mode-enhanced sensing with hyperbolic metamaterial,” Adv. Opt. Mater. 7(21), 1900680 (2019).
[Crossref]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Sun, W.

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater.1901548 (2020).

Susa, M.

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315(1-2), 54–62 (2003).
[Crossref]

Takayama, O.

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagn. 28(3), 126–145 (2008).
[Crossref]

Tamm, I.

I. Tamm, “Über eine mögliche Art der elektronenbindung an kristalloberflächen,” Eur. Phys. J. A 76(11-12), 849–850 (1932).
[Crossref]

I. Tamm, “On the possible bound states of electrons on a crystal surface,” Phys. Z. Sowjetunion 1, 733–746 (1932).

Tan, C. Z.

C. Z. Tan, “Review and analysis of refractive index temperature dependence in amorphous SiO2,” J. Non-Cryst. Solids 238(1-2), 30–36 (1998).
[Crossref]

Torner, L.

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagn. 28(3), 126–145 (2008).
[Crossref]

Tura, A.

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract. 77(1), 16–40 (2007).
[Crossref]

Vasmatzis, G.

H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir, “DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels,” Nano Lett. 4(8), 1551–1556 (2004).
[Crossref]

Villa-Villa, F.

F. Villa-Villa, J. A. Gaspar-Armenta, and A. Mendoza-Suárez, “Surface modes in one dimensional photonic crystals that include left handed materials,” J. Electromagnet Wave 21(4), 485–499 (2007).
[Crossref]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun. 102(2-3), 165–173 (1997).
[Crossref]

von Lilienfeld-Toal, H.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, “Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for anon-invasive monitoring of glucose in the interstitial fluid,” Rev. Sci. Instrum. 84(8), 084901 (2013).
[Crossref]

Wang, Z.

J. Gong, R. Dai, Z. Wang, C. Zhang, X. Yuan, and Z. Zhang, “Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry,” Mater. Res. Express 4(8), 085005 (2017).
[Crossref]

Wooten, F.

F. Wooten, Optical Properties of Solids, Academic Press, New York, NY (1972).

Xiao, S.

B. Yang, T. Liu, H. Guo, S. Xiao, and L. Zhou, “High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage,” Sci. Bull. 64(12), 823–835 (2019).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater.1901548 (2020).

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Yablonovitch, E.

Yagi, T.

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315(1-2), 54–62 (2003).
[Crossref]

Yang, B.

B. Yang, T. Liu, H. Guo, S. Xiao, and L. Zhou, “High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage,” Sci. Bull. 64(12), 823–835 (2019).
[Crossref]

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Younas, T.

M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
[Crossref]

Yuan, X.

J. Gong, R. Dai, Z. Wang, C. Zhang, X. Yuan, and Z. Zhang, “Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry,” Mater. Res. Express 4(8), 085005 (2017).
[Crossref]

Yue, Z.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Zain, A. R. M.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprised of chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Zhang, C.

J. Gong, R. Dai, Z. Wang, C. Zhang, X. Yuan, and Z. Zhang, “Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry,” Mater. Res. Express 4(8), 085005 (2017).
[Crossref]

Zhang, X.

P. Du, X. Lin, and X. Zhang, “Dielectric constants of PDMS nanocomposites using conducting polymer nanowires,” Proc. 16th Intl. Conf. on Solid-State Sensors, Actuators and Microsystems, 645–648 (2011).

Zhang, Z.

J. Gong, R. Dai, Z. Wang, C. Zhang, X. Yuan, and Z. Zhang, “Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry,” Mater. Res. Express 4(8), 085005 (2017).
[Crossref]

Zhao, J.

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Zheng, G.

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref]

Zhou, L.

B. Yang, T. Liu, H. Guo, S. Xiao, and L. Zhou, “High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage,” Sci. Bull. 64(12), 823–835 (2019).
[Crossref]

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater.1901548 (2020).

Zhuge, J.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Adv. Funct. Mater. (1)

Y. K. Kim, G. T. Kim, and J. S. Ha, “Simple patterning via adhesion between a buffered-oxide etchant-treated PDMS stamp and a SiO2 substrate,” Adv. Funct. Mater. 17(13), 2125–2132 (2007).
[Crossref]

Adv. Opt. Mater. (1)

K. V. Sreekanth, P. Mahalakshmi, S. Han, M. S. Mani Rajan, P. K. Choudhury, and R. Singh, “Brewster mode-enhanced sensing with hyperbolic metamaterial,” Adv. Opt. Mater. 7(21), 1900680 (2019).
[Crossref]

Appl. Phys. Lett. (3)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005).
[Crossref]

Diabetes Res. Clin. Pract. (1)

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract. 77(1), 16–40 (2007).
[Crossref]

ECS Trans. (1)

Y. Liu and S. M. Iqbal, “Silicon-based novel bio-sensing platforms at the micro and nano scale,” ECS Trans. 16, 25–45 (2009).
[Crossref]

Electromagn. (1)

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagn. 28(3), 126–145 (2008).
[Crossref]

Eur. Phys. J. A (1)

I. Tamm, “Über eine mögliche Art der elektronenbindung an kristalloberflächen,” Eur. Phys. J. A 76(11-12), 849–850 (1932).
[Crossref]

IEEE Photonics J. (2)

S. Haxha and J. Jhoja, “Optical based noninvasive glucose monitoring sensor prototype,” IEEE Photonics J. 8(6), 1–11 (2016).
[Crossref]

M. A. Baqir, A. Farmani, P. K. Choudhury, T. Younas, J. Arshad, A. Mir, and S. Karimi, “Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure,” IEEE Photonics J. 11(4), 1–10 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. A. Baqir and P. K. Choudhury, “Design of hyperbolic metamaterial-based absorber comprised of Ti nanoshperes,” IEEE Photonics Technol. Lett. 31(10), 735–738 (2019).
[Crossref]

IEEE Trans. Antennas Propag. (1)

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51(10), 2558–2571 (2003).
[Crossref]

IEEE Trans. Nanotechnol. (1)

L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol. 3(1), 49–54 (2004).
[Crossref]

Infrared Phys. (1)

W. G. Chambers, “Failures in the Kramers-Krönig analysis of power-reflectivity,” Infrared Phys. 15(2), 139–141 (1975).
[Crossref]

J. Appl. Phys. (2)

S. Saeidifard, F. Sohrabi, M. H. Ghazimoradi, S. M. Hamidi, S. Farivar, and M. A. Ansari, “Two-dimensional plasmonic biosensing platform: cellular activity detection under laser stimulation,” J. Appl. Phys. 126(10), 104701 (2019).
[Crossref]

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

J. Biomed. Mater. Res. (1)

Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, “Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process,” J. Biomed. Mater. Res. 51(4), 605–611 (2000).
[Crossref]

J. Chem. Phys. (2)

F. W. King, “Dispersion relations and sum rules for the normal reflectance of conductors and insulators,” J. Chem. Phys. 71(11), 4726–4733 (1979).
[Crossref]

J. S. Plaskett and P. N. Schatz, “On the Robinson and Price (Kramers-Kronig) method of interpreting reflection data taken through a transparent window,” J. Chem. Phys. 38(3), 612–617 (1963).
[Crossref]

J. Electromagnet Wave (1)

F. Villa-Villa, J. A. Gaspar-Armenta, and A. Mendoza-Suárez, “Surface modes in one dimensional photonic crystals that include left handed materials,” J. Electromagnet Wave 21(4), 485–499 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. C (1)

I. Benesperi, H. Michaels, and M. Freitag, “The researcher’s guide to solid-state dye-sensitized solar cells,” J. Mater. Chem. C 6(44), 11903–11942 (2018).
[Crossref]

J. Mod. Opt. (1)

P. L. Nash, R. J. Bell, and R. Alexander, “On the Kramers-Kronig relation for the phase spectrum,” J. Mod. Opt. 42(9), 1837–1842 (1995).
[Crossref]

J. Nanophotonics (1)

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprised of chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

J. Non-Cryst. Solids (2)

C. Z. Tan, “Review and analysis of refractive index temperature dependence in amorphous SiO2,” J. Non-Cryst. Solids 238(1-2), 30–36 (1998).
[Crossref]

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315(1-2), 54–62 (2003).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys.: Condens. Matter 22(9), 095501 (2010).
[Crossref]

Mater. Res. Express (1)

J. Gong, R. Dai, Z. Wang, C. Zhang, X. Yuan, and Z. Zhang, “Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry,” Mater. Res. Express 4(8), 085005 (2017).
[Crossref]

Nano Lett. (2)

J. D. Hoff, L. J. Cheng, E. Meyhöfer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4(5), 853–857 (2004).
[Crossref]

H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir, “DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels,” Nano Lett. 4(8), 1551–1556 (2004).
[Crossref]

Nanoscale (1)

H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Nat. Protoc. (1)

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref]

Optik (2)

A.-B. M. A. Ibrahim, P. K. Choudhury, and M. S. B. Alias, “Analytical design of photonic band-gap fibers and their dispersion characteristics,” Optik 116(4), 169–174 (2005).
[Crossref]

M. M. Rahman and P. K. Choudhury, “On the investigation of field and power through photonic crystal fibers – A simulation approach,” Optik 122(11), 963–969 (2011).
[Crossref]

Phys. Rev. B (3)

N. Malkova and C. Z. Ning, “Interplay between Tamm-like and Shockley-like surface states in photonic crystals,” Phys. Rev. B 76(4), 045305 (2007).
[Crossref]

V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves and the complex band structure of phononic crystals,” Phys. Rev. B 80(9), 092301 (2009).
[Crossref]

F. A. Modine, R. W. Major, T. W. Haywood, G. R. Gruzalski, and D. Y. Smith, “Optical properties of tantalum carbide from the infrared to the near ultraviolet,” Phys. Rev. B 29(2), 836–841 (1984).
[Crossref]

Phys. Rev. E (1)

M. H. Lee and O. I. Sindoni, “Kramers-Kronig relations with logarithmic kernel and application to the phase spectrum in the Drude model,” Phys. Rev. E 56(4), 3891–3896 (1997).
[Crossref]

Phys. Rev. Lett. (1)

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Tamm states in superlattices,” Phys. Rev. Lett. 64(21), 2555–2558 (1990).
[Crossref]

Phys. Z. Sowjetunion (1)

I. Tamm, “On the possible bound states of electrons on a crystal surface,” Phys. Z. Sowjetunion 1, 733–746 (1932).

Rev. Sci. Instrum. (1)

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, “Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for anon-invasive monitoring of glucose in the interstitial fluid,” Rev. Sci. Instrum. 84(8), 084901 (2013).
[Crossref]

Sci. Bull. (1)

B. Yang, T. Liu, H. Guo, S. Xiao, and L. Zhou, “High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage,” Sci. Bull. 64(12), 823–835 (2019).
[Crossref]

Solid State Commun. (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun. 102(2-3), 165–173 (1997).
[Crossref]

Sov. Phys. JETP (1)

M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67(4), 714–716 (1988).

Other (11)

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (2nd Ed.), vol. 8, Elsevier, New York, NY (1984).

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater.1901548 (2020).

A. V. Bykov, M. Kirillin, and A. Priezzhev, “Monte Carlo simulation of light propagation in human tissues and noninvasive glucose sensing,” In Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V. V. Tuchin, (ed.). CRC Press, Boca Raton (2009).

P. Du, X. Lin, and X. Zhang, “Dielectric constants of PDMS nanocomposites using conducting polymer nanowires,” Proc. 16th Intl. Conf. on Solid-State Sensors, Actuators and Microsystems, 645–648 (2011).

E. Iannone, Labs on Chip: Principles, Design and Technology, CRC Press, Boca Raton, FL (2019).

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=816&pn=GT10-A .

https://www.thorlabs.com/thorproduct.cfm?partnumber=LA1805-A .

J. M. DeSimone, J. P. Rolland, B. W. Maynor, L. E. Euliss, G. D. Rothrock, A. E. Dennis, E. T. Samulski, and R. J. Samulski, Methods for Fabricating Isolated Micro-or Nano-Structures Using Soft or Imprint Lithography, U.S. Patent 9877920 (2018).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, Wiley, New York, NY (2007).

D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors, Pergamon, Oxford, UK (1968).

F. Wooten, Optical Properties of Solids, Academic Press, New York, NY (1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Fabrication process flow incorporating (a) the design of Si-mold, (b) treating the mold with cured PDMS, (c) baking, imprinting and separation processes, and finally (d) ending up with the silica coating.
Fig. 2.
Fig. 2. (a) Dimensional features of the unit cell of meta-stadium nanocomb, and (b) front-view of the unit-cell array of Si-mold.
Fig. 3.
Fig. 3. (a) SEM of the grating PDMS nanocombs, and (b) a magnified image showing the dimensional features.
Fig. 4.
Fig. 4. (a) Schematic representation of ellipsometry, and (b) beam polarization using the Glan-Taylor calcite polarizer.
Fig. 5.
Fig. 5. Schematic of the experimental set-up for ellipsometry measurements.
Fig. 6.
Fig. 6. Spectral response of white light used for the ellipsometry measurements.
Fig. 7.
Fig. 7. Experimental set-up used to measure the light polarization parameters (${\Psi },{\Delta }$).
Fig. 8.
Fig. 8. Schematic of the cross-sectional view of the unit cell.
Fig. 9.
Fig. 9. Broadband RI variation of SiO2 and PDMS mediums with wavelength.
Fig. 10.
Fig. 10. Plots of ${\Psi }$ and ${\Delta }$ to determine the permittivity values.
Fig. 11.
Fig. 11. Wavelength dependence of effective permittivity corresponding to measurand thickness (a) 25 nm, (b) 50 nm and (c) 100 nm.
Fig. 12.
Fig. 12. Reflection spectra of the 2D-grating nanocombs infiltrated with water and aqueous solutions of different glucose concentrations corresponding to the ${s}$- (a, b) and ${p}$-polarized (c, d) waves. The used values of ${\theta }$ are 38° (a, c) and 48° (b, d).
Fig. 13.
Fig. 13. Dependence of ${\Psi }$ and ${\Delta}$ on the measurand RI corresponding to ${\theta}$ as 48°.
Fig. 14.
Fig. 14. Spectral response of the 2D-grating nanocombs infiltrated with water and aqueous solutions of different glucose concentrations corresponding to 38° (a, b) and 48° (c, d) values of ${\theta }$; measurements of wavelength-dependence of ${\Psi }$ (a, b) and (c, d).
Fig. 15.
Fig. 15. Spectral response of the 2D-grating nanocombs having free-space void region corresponding to 48° incidence angle.

Tables (3)

Tables Icon

Table 1. Parametric values of the developed PDMS meta-stadium grating nanocombs.

Tables Icon

Table 2. The observation details of Fig. 12 corresponding to 38° and 48° angles of incidence.

Tables Icon

Table 3. Ellipsometry parameters Ψ and Δ corresponding to the incidence angles 38° and 48°, as obtained in Fig. 14, toward determining the sensitivity.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Λ ( ω ) = tan [ Ψ ( ω ) ] exp [ i Δ ( ω ) ]
and  Λ ( ω ) r p ( ω ) r s ( ω ) E r p ( ω ) . E i s ( ω ) E i p ( ω ) . E r s ( ω )
r ( ω ) = n ( ω ) 1 + i k ( ω ) n ( ω ) + 1 + i k ( ω )
r ( ω ) = [ r ( ω ) ]
R ( ω ) = | r ( ω ) | 2 = r ( ω ) . r ( ω )
i θ = ln r ( ω ) ln | r ( ω ) |
Υ ( ω ) = | ln r ( ω ) | ω 2 ω 2
θ ( ω ) = 2 ω π P 0 Υ ( ω ) d ω
ln | r ( ω 1 ) | ln | r ( ω 2 ) | = 2 π P 0 ω θ ( ω ) [ 1 ω 2 ω 1 2 1 ω 2 ω 2 2 ] d ω
Δ θ ( ω ) = ω π P ω m Υ ( ω ) d ω
ζ = t Si O 2 t Si O 2 + t Water / Glucose
ε e f f = ε Si O 2 2 ( 1 ζ ) ε Si O 2 + ( 1 + 2 ζ ) ε Water / Glucose ( 2 + ζ ) ε Si O 2 + ( 1 ζ ) ε Water / Glucose
ε Si O 2 = 0.69617 λ 2 λ 2 0.0684043 2 + 0.4079426 λ 2 λ 2 0.1162414 2 + 0.8974794 λ 2 λ 2 9.896161 2 + 1
( Ψ s ) Conc . = | Ψ Water Ψ Glucose λ Water λ Glucose | Conc .
( Δ s ) Conc . = | Δ Water Δ Glucose λ Water λ Glucose | Conc .
n T = R D T + d R T