Abstract

Inkjet printing is an attractive bottom-up microfabrication technology owing to its simplicity, ease of use, and low cost. This method is particularly suitable for patterning of biomaterials because biofunctionality and bioactivity can be preserved during the patterning process in the absence of harsh conditions such as heat, UV radiation, and plasma. However, it is still challenging to apply this technology to biomaterial-based soft photonics, which requires precise control over morphology and uniformity to confine photons efficiently. This study introduces inkjet printing to create silk protein patterns to emit/guide a single-mode distributed feedback (DFB) laser on a single platform. A thin TiO2 coated grating enables coherent feedback of the generated photons for any shape of the printed silk pattern. The lasing wavelength can be adjusted by adding gold nanoparticles to the silk/dye ink. Photonic components of lasers and waveguides are drawn on a DFB board, and the lasing light can be extracted through adjacent waveguides. The printed components can be reformed by post modification (water-removal and reprinting). Additionally, optically absorptive melanin nanoparticles placed on the waveguide can attenuate the propagating light, thus adding utility for sensing applications. This allows a new method to fabricate cost-effective, easily functionalized, and versatile biomaterial photonic chips for advanced sensing and diagnosis.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Inkjet-printed perovskite distributed feedback lasers

Florian Mathies, Philipp Brenner, Gerardo Hernandez-Sosa, Ian A. Howard, Ulrich W. Paetzold, and Uli Lemmer
Opt. Express 26(2) A144-A152 (2018)

Integrated silicon nitride organic hybrid DFB laser with inkjet printed gain medium

Florian Vogelbacher, Joerg Schotter, Martin Sagmeister, Jochen Kraft, Xue Zhou, Jinhua Huang, Mingzhu Li, Ke-Jian Jiang, Yanlin Song, Karl Unterrainer, and Rainer Hainberger
Opt. Express 27(20) 29350-29356 (2019)

Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler

Xiaohui Lin, Amir Hosseini, Xinyuan Dou, Harish Subbaraman, and Ray T. Chen
Opt. Express 21(1) 60-69 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S.-K. Lee, G.-R. Yi, J. H. Moon, S.-M. Yang, and D. Pine, “Pixellated photonic crystal films by selective polymerization,” Adv. Mater. 18(16), 2111–2116 (2006).
    [Crossref]
  2. M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
    [Crossref]
  3. E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenove, E. Kovalska, and C. Kocabas, “Graphene-enabled optoelectronics on paper,” ACS Photonics 3(6), 964–971 (2016).
    [Crossref]
  4. J. Huo, M. Li, and Y. Song, “Patterned colloidal photonic crystals,” Angew. Chem., Int. Ed. 57(10), 2544–2553 (2018).
    [Crossref]
  5. D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
    [Crossref]
  6. T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12(11), 1995–1999 (2012).
    [Crossref]
  7. T. Endo, C. Ueda, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystals,” Microchim. Acta 180(9-10), 929–934 (2013).
    [Crossref]
  8. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
    [Crossref]
  9. E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonics biosensor using label-free detection,” Sensors 18(10), 3519 (2018).
    [Crossref]
  10. G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
    [Crossref]
  11. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
    [Crossref]
  12. S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [Crossref]
  13. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  14. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20(9), 9396–9402 (2012).
    [Crossref]
  15. C.-A. Fustin, G. Glasser, H. W. Spiess, and U. Jonas, “Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces,” Adv. Mater. 15(12), 1025–1028 (2003).
    [Crossref]
  16. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref]
  17. Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
    [Crossref]
  18. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
    [Crossref]
  19. C. Glynn and C. O’Dwyer, “Solution processable metal oxide thin film deposition and material growth for electronics and photonics devices,” Adv. Mater. Interfaces 4(2), 1600610 (2017).
    [Crossref]
  20. S. Arif, M. Umar, and S. Kim, “Interacting metal-insulator-metal resonator by nanaoporous silver and silk protein nanomembranes and its water-sensing applications,” ACS Omega 4(5), 9010–9016 (2019).
    [Crossref]
  21. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6862), 289–293 (2001).
  22. T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. (a) 197(3), 688–702 (2003).
    [Crossref]
  23. H. Jung, K. Min, H. Jeon, and S. Kim, “Physically transient distributed feedback laser using optically activated silk bio-ink,” Adv. Opt. Mater. 4(11), 1738–1743 (2016).
    [Crossref]
  24. L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
    [Crossref]
  25. J. Wang, L. Wang, Y. Song, and L. Jiang, “Patterned photonic crystals fabricated by inkjet printing,” J. Mater. Chem. C 1(38), 6048–6058 (2013).
    [Crossref]
  26. M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
    [Crossref]
  27. T. Wolfer, P. Bollgruen, D. Mager, L. Overmeyer, and J. G. Korvink, “Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems,” Proc. Technol. 15, 521–529 (2014).
    [Crossref]
  28. A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
    [Crossref]
  29. Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
    [Crossref]
  30. F. Mathies, P. Brenner, G. Hernandez-Sosa, I. A. Howard, U. W. Paetzold, and U. Lemmer, “Inkjet-Printed Perovskite distributed feedback lasers,” Opt. Express 26(2), A144–A152 (2018).
    [Crossref]
  31. K. Min, M. Umar, S. Ryu, S. Lee, and S. Kim, “Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer,” Nanotechnology 28(11), 115201 (2017).
    [Crossref]
  32. S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
    [Crossref]
  33. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
    [Crossref]
  34. Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
    [Crossref]
  35. I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
    [Crossref]
  36. W. Huang, S. Ling, C. Li, F. G. Omenetto, and D. L. Kaplan, “Silkworm silk-based materials and devices generated using bio-nanotechnology,” Chem. Soc. Rev. 47(17), 6486–6504 (2018).
    [Crossref]
  37. V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
    [Crossref]
  38. K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U. S. A. 114(24), 6185–6190 (2017).
    [Crossref]
  39. H. Kwon and S. Kim, “Chemically tunable, biocompatible, and cost-effective metal–insulator–metal resonators using silk protein and ultrathin silver films,” ACS Photonics 2(12), 1675–1680 (2015).
    [Crossref]
  40. M. Umar, K. Min, and S. Kim, “A physically transient and eco-friendly distributed feedback laser chemosensor for detecting acid vapor,” Sens. Actuators, B 255(3), 3207–3215 (2018).
    [Crossref]
  41. H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
    [Crossref]
  42. M. Lee, H. Jeon, and S. Kim, “A highly tunable and fully biocompatible silk nanoplasmonic optical sensor,” Nano Lett. 15(5), 3358–3363 (2015).
    [Crossref]
  43. S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
    [Crossref]
  44. H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
    [Crossref]
  45. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluoresence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
    [Crossref]
  46. R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
    [Crossref]
  47. P. J. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [Crossref]
  48. M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, and Y. Taniguchi, “Organic Solid-State Distributed Feedback dye Laser with a Nonmorphological Modification Grating,” Appl. Phys. Lett. 77(17), 2641–2643 (2000).
    [Crossref]
  49. G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship Between Photonic Band Structure and Emission Characteristics of a Polymer Distributed Feedback Laser,” Phys. Rev. B 64(12), 125122 (2001).
    [Crossref]

2019 (1)

S. Arif, M. Umar, and S. Kim, “Interacting metal-insulator-metal resonator by nanaoporous silver and silk protein nanomembranes and its water-sensing applications,” ACS Omega 4(5), 9010–9016 (2019).
[Crossref]

2018 (8)

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

F. Mathies, P. Brenner, G. Hernandez-Sosa, I. A. Howard, U. W. Paetzold, and U. Lemmer, “Inkjet-Printed Perovskite distributed feedback lasers,” Opt. Express 26(2), A144–A152 (2018).
[Crossref]

J. Huo, M. Li, and Y. Song, “Patterned colloidal photonic crystals,” Angew. Chem., Int. Ed. 57(10), 2544–2553 (2018).
[Crossref]

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonics biosensor using label-free detection,” Sensors 18(10), 3519 (2018).
[Crossref]

W. Huang, S. Ling, C. Li, F. G. Omenetto, and D. L. Kaplan, “Silkworm silk-based materials and devices generated using bio-nanotechnology,” Chem. Soc. Rev. 47(17), 6486–6504 (2018).
[Crossref]

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

M. Umar, K. Min, and S. Kim, “A physically transient and eco-friendly distributed feedback laser chemosensor for detecting acid vapor,” Sens. Actuators, B 255(3), 3207–3215 (2018).
[Crossref]

2017 (5)

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U. S. A. 114(24), 6185–6190 (2017).
[Crossref]

K. Min, M. Umar, S. Ryu, S. Lee, and S. Kim, “Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer,” Nanotechnology 28(11), 115201 (2017).
[Crossref]

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref]

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

C. Glynn and C. O’Dwyer, “Solution processable metal oxide thin film deposition and material growth for electronics and photonics devices,” Adv. Mater. Interfaces 4(2), 1600610 (2017).
[Crossref]

2016 (3)

H. Jung, K. Min, H. Jeon, and S. Kim, “Physically transient distributed feedback laser using optically activated silk bio-ink,” Adv. Opt. Mater. 4(11), 1738–1743 (2016).
[Crossref]

E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenove, E. Kovalska, and C. Kocabas, “Graphene-enabled optoelectronics on paper,” ACS Photonics 3(6), 964–971 (2016).
[Crossref]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

2015 (5)

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

H. Kwon and S. Kim, “Chemically tunable, biocompatible, and cost-effective metal–insulator–metal resonators using silk protein and ultrathin silver films,” ACS Photonics 2(12), 1675–1680 (2015).
[Crossref]

M. Lee, H. Jeon, and S. Kim, “A highly tunable and fully biocompatible silk nanoplasmonic optical sensor,” Nano Lett. 15(5), 3358–3363 (2015).
[Crossref]

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

2014 (3)

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
[Crossref]

T. Wolfer, P. Bollgruen, D. Mager, L. Overmeyer, and J. G. Korvink, “Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems,” Proc. Technol. 15, 521–529 (2014).
[Crossref]

2013 (3)

J. Wang, L. Wang, Y. Song, and L. Jiang, “Patterned photonic crystals fabricated by inkjet printing,” J. Mater. Chem. C 1(38), 6048–6058 (2013).
[Crossref]

T. Endo, C. Ueda, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystals,” Microchim. Acta 180(9-10), 929–934 (2013).
[Crossref]

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

2012 (4)

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12(11), 1995–1999 (2012).
[Crossref]

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20(9), 9396–9402 (2012).
[Crossref]

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

2010 (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

2009 (3)

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

2008 (1)

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

2006 (5)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

S.-K. Lee, G.-R. Yi, J. H. Moon, S.-M. Yang, and D. Pine, “Pixellated photonic crystal films by selective polymerization,” Adv. Mater. 18(16), 2111–2116 (2006).
[Crossref]

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

2005 (1)

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluoresence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref]

2003 (2)

C.-A. Fustin, G. Glasser, H. W. Spiess, and U. Jonas, “Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces,” Adv. Mater. 15(12), 1025–1028 (2003).
[Crossref]

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. (a) 197(3), 688–702 (2003).
[Crossref]

2001 (2)

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6862), 289–293 (2001).

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship Between Photonic Band Structure and Emission Characteristics of a Polymer Distributed Feedback Laser,” Phys. Rev. B 64(12), 125122 (2001).
[Crossref]

2000 (1)

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, and Y. Taniguchi, “Organic Solid-State Distributed Feedback dye Laser with a Nonmorphological Modification Grating,” Appl. Phys. Lett. 77(17), 2641–2643 (2000).
[Crossref]

1994 (1)

P. J. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Amsden, J.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Amsden, J. J.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

An, B.

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

Andrew, P.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship Between Photonic Band Structure and Emission Characteristics of a Polymer Distributed Feedback Laser,” Phys. Rev. B 64(12), 125122 (2001).
[Crossref]

Arif, S.

S. Arif, M. Umar, and S. Kim, “Interacting metal-insulator-metal resonator by nanaoporous silver and silk protein nanomembranes and its water-sensing applications,” ACS Omega 4(5), 9010–9016 (2019).
[Crossref]

Aslan, K.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluoresence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref]

Baehr-Jones, T.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Baets, R.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Balci, O.

E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenove, E. Kovalska, and C. Kocabas, “Graphene-enabled optoelectronics on paper,” ACS Photonics 3(6), 964–971 (2016).
[Crossref]

Bao, B.

M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
[Crossref]

Barbosa-Silva, R.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Barnes, W. L.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship Between Photonic Band Structure and Emission Characteristics of a Polymer Distributed Feedback Laser,” Phys. Rev. B 64(12), 125122 (2001).
[Crossref]

Begar, E.

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

Bera, K. P.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Berrettini, G.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Biaggio, I.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bloemer, M. J.

P. J. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Bo, X.-Z.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6862), 289–293 (2001).

Bogaerts, W.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bogoni, A.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Bollgruen, P.

T. Wolfer, P. Bollgruen, D. Mager, L. Overmeyer, and J. G. Korvink, “Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems,” Proc. Technol. 15, 521–529 (2014).
[Crossref]

Bowden, C. M.

P. J. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Brenckle, M. A.

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

Brenner, P.

Bressner, J.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Cai, X.

Cavicchioli, M.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Chae, I. S.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Chang, C.-H.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Chang, S.-W.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Chen, Y.-F.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Chen, Z.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Cheung, K. C.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonics biosensor using label-free detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Choi, C.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Choi, M. K.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Choi, Y.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

Chou, R.-J.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Christovan, L. M.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Chrostowski, L.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonics biosensor using label-free detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Conkar, D.

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

Costner, K.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Cui, L.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

Da Silva, R. R.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Dalton, L.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

de Araújo, C. B.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

de Melo, L. S. A.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Denning, R. G.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

Diederich, F.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Djordjevic, S. S.

Dogru, I. B.

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

Domachuk, P.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Dominguez, C. T.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

dos Santos, M. V.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Dowling, P. J.

P. J. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Dumon, P.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Endo, T.

T. Endo, C. Ueda, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystals,” Microchim. Acta 180(9-10), 929–934 (2013).
[Crossref]

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12(11), 1995–1999 (2012).
[Crossref]

Esembeson, B.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Fantini, S.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

Fontaine, N. K.

Freude, W.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Fustin, C.-A.

C.-A. Fustin, G. Glasser, H. W. Spiess, and U. Jonas, “Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces,” Adv. Mater. 15(12), 1025–1028 (2003).
[Crossref]

Geddes, C. D.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluoresence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref]

Geisler, D. J.

Gil, E.-S.

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

Glasser, G.

C.-A. Fustin, G. Glasser, H. W. Spiess, and U. Jonas, “Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces,” Adv. Mater. 15(12), 1025–1028 (2003).
[Crossref]

Glynn, C.

C. Glynn and C. O’Dwyer, “Solution processable metal oxide thin film deposition and material growth for electronics and photonics devices,” Adv. Mater. Interfaces 4(2), 1600610 (2017).
[Crossref]

Gneiting, S.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Gomes, A. S. L.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Goodsell, J.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Graugnard, E.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

Griesser, T.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref]

Gryczynski, I.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluoresence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref]

Haider, G.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Harvard, K.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Haymore, B.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Hernandez-Sosa, G.

Hisamoto, H.

T. Endo, C. Ueda, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystals,” Microchim. Acta 180(9-10), 929–934 (2013).
[Crossref]

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12(11), 1995–1999 (2012).
[Crossref]

Hochberg, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Hou, C.-F.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Howard, I. A.

Hsu, Y.-T.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Hu, H.-W.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Huang, W.

W. Huang, S. Ling, C. Li, F. G. Omenetto, and D. L. Kaplan, “Silkworm silk-based materials and devices generated using bio-nanotechnology,” Chem. Soc. Rev. 47(17), 6486–6504 (2018).
[Crossref]

Huo, J.

J. Huo, M. Li, and Y. Song, “Patterned colloidal photonic crystals,” Angew. Chem., Int. Ed. 57(10), 2544–2553 (2018).
[Crossref]

Hyeon, T.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Ichikawa, M.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, and Y. Taniguchi, “Organic Solid-State Distributed Feedback dye Laser with a Nonmorphological Modification Grating,” Appl. Phys. Lett. 77(17), 2641–2643 (2000).
[Crossref]

Jalali, H. B.

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

Jen, A. K. Y.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Jeon, H.

H. Jung, K. Min, H. Jeon, and S. Kim, “Physically transient distributed feedback laser using optically activated silk bio-ink,” Adv. Opt. Mater. 4(11), 1738–1743 (2016).
[Crossref]

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

M. Lee, H. Jeon, and S. Kim, “A highly tunable and fully biocompatible silk nanoplasmonic optical sensor,” Nano Lett. 15(5), 3358–3363 (2015).
[Crossref]

Jiang, L.

M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
[Crossref]

J. Wang, L. Wang, Y. Song, and L. Jiang, “Patterned photonic crystals fabricated by inkjet printing,” J. Mater. Chem. C 1(38), 6048–6058 (2013).
[Crossref]

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

Jinno, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Jonas, U.

C.-A. Fustin, G. Glasser, H. W. Spiess, and U. Jonas, “Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces,” Adv. Mater. 15(12), 1025–1028 (2003).
[Crossref]

Jory, M. J.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship Between Photonic Band Structure and Emission Characteristics of a Polymer Distributed Feedback Laser,” Phys. Rev. B 64(12), 125122 (2001).
[Crossref]

Jung, H.

H. Jung, K. Min, H. Jeon, and S. Kim, “Physically transient distributed feedback laser using optically activated silk bio-ink,” Adv. Opt. Mater. 4(11), 1738–1743 (2016).
[Crossref]

Kainerstorfer, J. M.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

Kajita, H.

T. Endo, C. Ueda, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystals,” Microchim. Acta 180(9-10), 929–934 (2013).
[Crossref]

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12(11), 1995–1999 (2012).
[Crossref]

Kakenove, N.

E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenove, E. Kovalska, and C. Kocabas, “Graphene-enabled optoelectronics on paper,” ACS Photonics 3(6), 964–971 (2016).
[Crossref]

Kaltenbrunner, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Kang, K.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Kaplan, D. L.

W. Huang, S. Ling, C. Li, F. G. Omenetto, and D. L. Kaplan, “Silkworm silk-based materials and devices generated using bio-nanotechnology,” Chem. Soc. Rev. 47(17), 6486–6504 (2018).
[Crossref]

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

Karalar, E. N. F.

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

Kataria, M.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Kim, D. C.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Kim, D.-H.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Kim, J. H.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Kim, J. S.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Kim, S.

S. Arif, M. Umar, and S. Kim, “Interacting metal-insulator-metal resonator by nanaoporous silver and silk protein nanomembranes and its water-sensing applications,” ACS Omega 4(5), 9010–9016 (2019).
[Crossref]

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

M. Umar, K. Min, and S. Kim, “A physically transient and eco-friendly distributed feedback laser chemosensor for detecting acid vapor,” Sens. Actuators, B 255(3), 3207–3215 (2018).
[Crossref]

K. Min, M. Umar, S. Ryu, S. Lee, and S. Kim, “Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer,” Nanotechnology 28(11), 115201 (2017).
[Crossref]

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U. S. A. 114(24), 6185–6190 (2017).
[Crossref]

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U. S. A. 114(24), 6185–6190 (2017).
[Crossref]

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

H. Jung, K. Min, H. Jeon, and S. Kim, “Physically transient distributed feedback laser using optically activated silk bio-ink,” Adv. Opt. Mater. 4(11), 1738–1743 (2016).
[Crossref]

H. Kwon and S. Kim, “Chemically tunable, biocompatible, and cost-effective metal–insulator–metal resonators using silk protein and ultrathin silver films,” ACS Photonics 2(12), 1675–1680 (2015).
[Crossref]

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

M. Lee, H. Jeon, and S. Kim, “A highly tunable and fully biocompatible silk nanoplasmonic optical sensor,” Nano Lett. 15(5), 3358–3363 (2015).
[Crossref]

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

Kim, T.-H.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

King, J. S.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

Kitanosako, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Kocabas, C.

E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenove, E. Kovalska, and C. Kocabas, “Graphene-enabled optoelectronics on paper,” ACS Photonics 3(6), 964–971 (2016).
[Crossref]

Koizumi, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Koos, S.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Korvink, J. G.

T. Wolfer, P. Bollgruen, D. Mager, L. Overmeyer, and J. G. Korvink, “Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems,” Proc. Technol. 15, 521–529 (2014).
[Crossref]

Kovalska, E.

E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenove, E. Kovalska, and C. Kocabas, “Graphene-enabled optoelectronics on paper,” ACS Photonics 3(6), 964–971 (2016).
[Crossref]

Koyama, T.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, and Y. Taniguchi, “Organic Solid-State Distributed Feedback dye Laser with a Nonmorphological Modification Grating,” Appl. Phys. Lett. 77(17), 2641–2643 (2000).
[Crossref]

Kratzer, M.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref]

Krauss, T. F.

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. (a) 197(3), 688–702 (2003).
[Crossref]

Krawczyk, K. K.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref]

Kuang, M.

M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
[Crossref]

Kwon, H.

H. Kwon and S. Kim, “Chemically tunable, biocompatible, and cost-effective metal–insulator–metal resonators using silk protein and ultrathin silver films,” ACS Photonics 2(12), 1675–1680 (2015).
[Crossref]

Lakowicz, J. R.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluoresence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Lawson, R.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Lee, M.

M. Lee, H. Jeon, and S. Kim, “A highly tunable and fully biocompatible silk nanoplasmonic optical sensor,” Nano Lett. 15(5), 3358–3363 (2015).
[Crossref]

Lee, S.

K. Min, M. Umar, S. Ryu, S. Lee, and S. Kim, “Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer,” Nanotechnology 28(11), 115201 (2017).
[Crossref]

Lee, S.-K.

S.-K. Lee, G.-R. Yi, J. H. Moon, S.-M. Yang, and D. Pine, “Pixellated photonic crystal films by selective polymerization,” Adv. Mater. 18(16), 2111–2116 (2006).
[Crossref]

Lee, Y.-H.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Lemmer, U.

Leuthold, J.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Levitt, J.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

Lewis, J. A.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Li, C.

W. Huang, S. Ling, C. Li, F. G. Omenetto, and D. L. Kaplan, “Silkworm silk-based materials and devices generated using bio-nanotechnology,” Chem. Soc. Rev. 47(17), 6486–6504 (2018).
[Crossref]

Li, F.

M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
[Crossref]

Li, J.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Li, M.

J. Huo, M. Li, and Y. Song, “Patterned colloidal photonic crystals,” Angew. Chem., Int. Ed. 57(10), 2544–2553 (2018).
[Crossref]

Li, Y.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

Liang, S.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Liao, W.-C.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Liao, Y.-M.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Lin, S.-Y.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Lin, T.-Y.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Lin, W.-J.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Lindesy, M.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Ling, S.

W. Huang, S. Ling, C. Li, F. G. Omenetto, and D. L. Kaplan, “Silkworm silk-based materials and devices generated using bio-nanotechnology,” Chem. Soc. Rev. 47(17), 6486–6504 (2018).
[Crossref]

Luan, E.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonics biosensor using label-free detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Luo, J.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Mager, D.

T. Wolfer, P. Bollgruen, D. Mager, L. Overmeyer, and J. G. Korvink, “Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems,” Proc. Technol. 15, 521–529 (2014).
[Crossref]

Malacarne, A.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Malicka, J.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluoresence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref]

Marelli, B.

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

Mathies, F.

Matsuhisa, N.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Matveeva, E.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluoresence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref]

Michinobu, T.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Min, K.

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

M. Umar, K. Min, and S. Kim, “A physically transient and eco-friendly distributed feedback laser chemosensor for detecting acid vapor,” Sens. Actuators, B 255(3), 3207–3215 (2018).
[Crossref]

K. Min, M. Umar, S. Ryu, S. Lee, and S. Kim, “Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer,” Nanotechnology 28(11), 115201 (2017).
[Crossref]

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U. S. A. 114(24), 6185–6190 (2017).
[Crossref]

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

H. Jung, K. Min, H. Jeon, and S. Kim, “Physically transient distributed feedback laser using optically activated silk bio-ink,” Adv. Opt. Mater. 4(11), 1738–1743 (2016).
[Crossref]

Mitropoulos, A. N.

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

Monk, A.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Moon, J. H.

S.-K. Lee, G.-R. Yi, J. H. Moon, S.-M. Yang, and D. Pine, “Pixellated photonic crystal films by selective polymerization,” Adv. Mater. 18(16), 2111–2116 (2006).
[Crossref]

Moser, A.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref]

Nagawa, M.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, and Y. Taniguchi, “Organic Solid-State Distributed Feedback dye Laser with a Nonmorphological Modification Grating,” Appl. Phys. Lett. 77(17), 2641–2643 (2000).
[Crossref]

Nekvindova, P.

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

Nizamoglu, S.

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

Norris, D. J.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6862), 289–293 (2001).

Nygaard, E.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

O’Dwyer, C.

C. Glynn and C. O’Dwyer, “Solution processable metal oxide thin film deposition and material growth for electronics and photonics devices,” Adv. Mater. Interfaces 4(2), 1600610 (2017).
[Crossref]

Okuda, N.

T. Endo, C. Ueda, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystals,” Microchim. Acta 180(9-10), 929–934 (2013).
[Crossref]

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12(11), 1995–1999 (2012).
[Crossref]

Omenetto, F. G.

W. Huang, S. Ling, C. Li, F. G. Omenetto, and D. L. Kaplan, “Silkworm silk-based materials and devices generated using bio-nanotechnology,” Chem. Soc. Rev. 47(17), 6486–6504 (2018).
[Crossref]

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

Onses, M. S.

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

Overmeyer, L.

T. Wolfer, P. Bollgruen, D. Mager, L. Overmeyer, and J. G. Korvink, “Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems,” Proc. Technol. 15, 521–529 (2014).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Paetzold, U. W.

Panilaitis, B. J. B.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

Park, C.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Parker, S. T.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Paullnbaraj, C. R.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Pearson, M.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Peatross, J.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Pine, D.

S.-K. Lee, G.-R. Yi, J. H. Moon, S.-M. Yang, and D. Pine, “Pixellated photonic crystal films by selective polymerization,” Adv. Mater. 18(16), 2111–2116 (2006).
[Crossref]

Polat, E. O.

E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenove, E. Kovalska, and C. Kocabas, “Graphene-enabled optoelectronics on paper,” ACS Photonics 3(6), 964–971 (2016).
[Crossref]

Potí, L.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Prajzler, V.

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

Pritchard, E. M.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

Qaderi, K.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Rasmussen, J.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Ratner, D. M.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonics biosensor using label-free detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Ribeiro, S. J. L.

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Roche, O. M.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

Rogers, J. A.

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

Rogers, W.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Roy, P. K.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Ryu, S.

K. Min, M. Umar, S. Ryu, S. Lee, and S. Kim, “Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer,” Nanotechnology 28(11), 115201 (2017).
[Crossref]

Samuel, I. D. W.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship Between Photonic Band Structure and Emission Characteristics of a Polymer Distributed Feedback Laser,” Phys. Rev. B 64(12), 125122 (2001).
[Crossref]

Samusjew, A.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref]

Sassaroli, A.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

Sato, M.

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12(11), 1995–1999 (2012).
[Crossref]

Scalora, M.

P. J. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Scherer, A.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Scott, R. P.

Scrimgeour, J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

Sharp, D. N.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

Shearn, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Shen, H.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Shirai, H.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, and Y. Taniguchi, “Organic Solid-State Distributed Feedback dye Laser with a Nonmorphological Modification Grating,” Appl. Phys. Lett. 77(17), 2641–2643 (2000).
[Crossref]

Shoman, H.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonics biosensor using label-free detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Siebert, S. M.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

Simi, A.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Smalley, D. E.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Someya, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Song, Y.

J. Huo, M. Li, and Y. Song, “Patterned colloidal photonic crystals,” Angew. Chem., Int. Ed. 57(10), 2544–2553 (2018).
[Crossref]

M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
[Crossref]

J. Wang, L. Wang, Y. Song, and L. Jiang, “Patterned photonic crystals fabricated by inkjet printing,” J. Mater. Chem. C 1(38), 6048–6058 (2013).
[Crossref]

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

Spiess, H. W.

C.-A. Fustin, G. Glasser, H. W. Spiess, and U. Jonas, “Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces,” Adv. Mater. 15(12), 1025–1028 (2003).
[Crossref]

Squire, K.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Sturm, J. C.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6862), 289–293 (2001).

Su, C.-Y.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Su, T.

Sullivan, P.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Summers, C. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

Tachibana, Y.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Tai, C.-T.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Tanaka, S.

T. Endo, C. Ueda, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystals,” Microchim. Acta 180(9-10), 929–934 (2013).
[Crossref]

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12(11), 1995–1999 (2012).
[Crossref]

Taniguchi, Y.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, and Y. Taniguchi, “Organic Solid-State Distributed Feedback dye Laser with a Nonmorphological Modification Grating,” Appl. Phys. Lett. 77(17), 2641–2643 (2000).
[Crossref]

Tao, H.

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

Teichert, C.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref]

Tian, E.

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

Tsioris, K.

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

Turberfield, A. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

Turnbull, G. A.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship Between Photonic Band Structure and Emission Characteristics of a Polymer Distributed Feedback Laser,” Phys. Rev. B 64(12), 125122 (2001).
[Crossref]

Ueda, C.

T. Endo, C. Ueda, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystals,” Microchim. Acta 180(9-10), 929–934 (2013).
[Crossref]

Umar, M.

S. Arif, M. Umar, and S. Kim, “Interacting metal-insulator-metal resonator by nanaoporous silver and silk protein nanomembranes and its water-sensing applications,” ACS Omega 4(5), 9010–9016 (2019).
[Crossref]

M. Umar, K. Min, and S. Kim, “A physically transient and eco-friendly distributed feedback laser chemosensor for detecting acid vapor,” Sens. Actuators, B 255(3), 3207–3215 (2018).
[Crossref]

K. Min, M. Umar, S. Ryu, S. Lee, and S. Kim, “Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer,” Nanotechnology 28(11), 115201 (2017).
[Crossref]

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

Uzlu, H. B.

E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenove, E. Kovalska, and C. Kocabas, “Graphene-enabled optoelectronics on paper,” ACS Photonics 3(6), 964–971 (2016).
[Crossref]

Vallaitis, T.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6862), 289–293 (2001).

Vorreau, P.

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Wagnoer, J. V.

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Wang, G.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Wang, J.

M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
[Crossref]

J. Wang, L. Wang, Y. Song, and L. Jiang, “Patterned photonic crystals fabricated by inkjet printing,” J. Mater. Chem. C 1(38), 6048–6058 (2013).
[Crossref]

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

Wang, L.

M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
[Crossref]

J. Wang, L. Wang, Y. Song, and L. Jiang, “Patterned photonic crystals fabricated by inkjet printing,” J. Mater. Chem. C 1(38), 6048–6058 (2013).
[Crossref]

Wang, Z.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Wolfer, T.

T. Wolfer, P. Bollgruen, D. Mager, L. Overmeyer, and J. G. Korvink, “Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems,” Proc. Technol. 15, 521–529 (2014).
[Crossref]

Wu, M.-H.

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Xie, J.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Yang, B.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Yang, J.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Yang, M.

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

Yang, S.-M.

S.-K. Lee, G.-R. Yi, J. H. Moon, S.-M. Yang, and D. Pine, “Pixellated photonic crystal films by selective polymerization,” Adv. Mater. 18(16), 2111–2116 (2006).
[Crossref]

Yi, G.-R.

S.-K. Lee, G.-R. Yi, J. H. Moon, S.-M. Yang, and D. Pine, “Pixellated photonic crystal films by selective polymerization,” Adv. Mater. 18(16), 2111–2116 (2006).
[Crossref]

Yin, Y.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Yokota, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Yoo, S. J. B.

Yukita, W.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Zalar, P.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Zhang, H.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Zhang, J.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Zhang, L.

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Zhang, X.

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

Zhang, Y.

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

ACS Appl. Mater. Interfaces (1)

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref]

ACS Omega (1)

S. Arif, M. Umar, and S. Kim, “Interacting metal-insulator-metal resonator by nanaoporous silver and silk protein nanomembranes and its water-sensing applications,” ACS Omega 4(5), 9010–9016 (2019).
[Crossref]

ACS Photonics (2)

H. Kwon and S. Kim, “Chemically tunable, biocompatible, and cost-effective metal–insulator–metal resonators using silk protein and ultrathin silver films,” ACS Photonics 2(12), 1675–1680 (2015).
[Crossref]

E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenove, E. Kovalska, and C. Kocabas, “Graphene-enabled optoelectronics on paper,” ACS Photonics 3(6), 964–971 (2016).
[Crossref]

Adv. Mater. (5)

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: from printable forms to printable functions,” Adv. Mater. 27(29), 4273–4279 (2015).
[Crossref]

S.-K. Lee, G.-R. Yi, J. H. Moon, S.-M. Yang, and D. Pine, “Pixellated photonic crystal films by selective polymerization,” Adv. Mater. 18(16), 2111–2116 (2006).
[Crossref]

C.-A. Fustin, G. Glasser, H. W. Spiess, and U. Jonas, “Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces,” Adv. Mater. 15(12), 1025–1028 (2003).
[Crossref]

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[Crossref]

Adv. Mater. Interfaces (1)

C. Glynn and C. O’Dwyer, “Solution processable metal oxide thin film deposition and material growth for electronics and photonics devices,” Adv. Mater. Interfaces 4(2), 1600610 (2017).
[Crossref]

Adv. Mater. Technol. (1)

Y.-M. Liao, W.-C. Liao, S.-W. Chang, C.-F. Hou, C.-T. Tai, C.-Y. Su, Y.-T. Hsu, M.-H. Wu, R.-J. Chou, Y.-H. Lee, S.-Y. Lin, W.-J. Lin, C.-H. Chang, G. Haider, M. Kataria, P. K. Roy, K. P. Bera, C. R. Paullnbaraj, H.-W. Hu, T.-Y. Lin, and Y.-F. Chen, “Inkjet-printed random lasers,” Adv. Mater. Technol. 3(12), 1800214 (2018).
[Crossref]

Adv. Opt. Mater. (2)

M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, “Inkjet printing pattered photonic crystal demos for wide viewing-angle displays by controlling the sliding three phases contact line,” Adv. Opt. Mater. 2(1), 34–38 (2014).
[Crossref]

H. Jung, K. Min, H. Jeon, and S. Kim, “Physically transient distributed feedback laser using optically activated silk bio-ink,” Adv. Opt. Mater. 4(11), 1738–1743 (2016).
[Crossref]

Angew. Chem., Int. Ed. (1)

J. Huo, M. Li, and Y. Song, “Patterned colloidal photonic crystals,” Angew. Chem., Int. Ed. 57(10), 2544–2553 (2018).
[Crossref]

Appl. Mater. Interfaces (1)

Z. Wang, J. Zhang, J. Xie, Y. Yin, Z. Wang, H. Shen, Y. Li, J. Li, S. Liang, L. Cui, L. Zhang, H. Zhang, and B. Yang, “Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and microcavities through photolithography: towards tunable colorful patterns as highly selective sensors,” Appl. Mater. Interfaces 4(3), 1397–1403 (2012).
[Crossref]

Appl. Phys. Lett. (2)

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, and Y. Taniguchi, “Organic Solid-State Distributed Feedback dye Laser with a Nonmorphological Modification Grating,” Appl. Phys. Lett. 77(17), 2641–2643 (2000).
[Crossref]

I. B. Dogru, K. Min, M. Umar, H. B. Jalali, E. Begar, D. Conkar, E. N. F. Karalar, S. Kim, and S. Nizamoglu, “Single transverse mode protein laser,” Appl. Phys. Lett. 111(23), 231103 (2017).
[Crossref]

Chem. Soc. Rev. (1)

W. Huang, S. Ling, C. Li, F. G. Omenetto, and D. L. Kaplan, “Silkworm silk-based materials and devices generated using bio-nanotechnology,” Chem. Soc. Rev. 47(17), 6486–6504 (2018).
[Crossref]

Curr. Opin. Biotechnol. (1)

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluoresence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

J. Appl. Phys. (1)

P. J. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

J. Mater. Chem. (1)

L. Cui, Y. Li, J. Wang, E. Tian, X. Zhang, Y. Zhang, Y. Song, and L. Jiang, “Fabrication of large-area patterned photonic crystals by ink-jet printing,” J. Mater. Chem. 19(31), 5499–5502 (2009).
[Crossref]

J. Mater. Chem. C (2)

J. Wang, L. Wang, Y. Song, and L. Jiang, “Patterned photonic crystals fabricated by inkjet printing,” J. Mater. Chem. C 1(38), 6048–6058 (2013).
[Crossref]

R. R. Da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for dfb laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Lab Chip (2)

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12(11), 1995–1999 (2012).
[Crossref]

Materials (1)

V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials 11(1), 112 (2018).
[Crossref]

Microchim. Acta (1)

T. Endo, C. Ueda, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystals,” Microchim. Acta 180(9-10), 929–934 (2013).
[Crossref]

Nano Lett. (1)

M. Lee, H. Jeon, and S. Kim, “A highly tunable and fully biocompatible silk nanoplasmonic optical sensor,” Nano Lett. 15(5), 3358–3363 (2015).
[Crossref]

Nanotechnology (1)

K. Min, M. Umar, S. Ryu, S. Lee, and S. Kim, “Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer,” Nanotechnology 28(11), 115201 (2017).
[Crossref]

Nat. Commun. (1)

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, J. S. Kim, I. S. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6(1), 7149 (2015).
[Crossref]

Nat. Mater. (1)

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, Z. Chen, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid systems,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref]

Nat. Nanotechnol. (1)

S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, and F. G. Omenetto, “All-water-based electron-beam lithography using silk as a resist,” Nat. Nanotechnol. 9(4), 306–310 (2014).
[Crossref]

Nat. Photonics (3)

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

S. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Nature (2)

D. E. Smalley, E. Nygaard, K. Squire, J. V. Wagnoer, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindesy, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6862), 289–293 (2001).

Opt. Express (2)

Phys. Rev. B (1)

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship Between Photonic Band Structure and Emission Characteristics of a Polymer Distributed Feedback Laser,” Phys. Rev. B 64(12), 125122 (2001).
[Crossref]

Phys. Stat. Sol. (a) (1)

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. (a) 197(3), 688–702 (2003).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012).
[Crossref]

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U. S. A. 114(24), 6185–6190 (2017).
[Crossref]

Proc. Technol. (1)

T. Wolfer, P. Bollgruen, D. Mager, L. Overmeyer, and J. G. Korvink, “Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems,” Proc. Technol. 15, 521–529 (2014).
[Crossref]

Sci. Adv. (1)

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Sens. Actuators, B (1)

M. Umar, K. Min, and S. Kim, “A physically transient and eco-friendly distributed feedback laser chemosensor for detecting acid vapor,” Sens. Actuators, B 255(3), 3207–3215 (2018).
[Crossref]

Sensors (1)

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonics biosensor using label-free detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Inkjet-printed silk gain on a distributed feedback (DFB) board. (a) Schematic illustration of the single mode DFB lasing from the inkjet-printed silk gain layer. Although the printed silk layer is not optically thin and uniform to support waveguide mode and DFB effect, coherent feedback can be induced by the thin TiO2 layer on the grating. (b-e) Scanning electron microscopy (SEM) images of the printed DFB board. The top-view SEM image in b shows the clear boundary between the nonprinted and printed silk layer. The side-view SEM image in (c) shows the uneven surface of the printed silk layer. Scale bars indicate 5 µm in (b) and 50 µm in (c). Magnified SEM images are shown in (d) (at the thick layer) and (e) (at the thin layer).
Fig. 2.
Fig. 2. Optical properties of the inkjet-printed DFB-lasing silk texts. (a) Normalized optical absorption and photoluminescence (PL) spectra of the printed silk/RhB layer. The inset shows a photograph for the printed silk text under UV laser excitation. (b) PL spectra of the printed silk/RhB letters under picosecond-pulsed excitation. Above the threshold, the lasing peak is seen at a wavelength of 588.3 nm. Insets show the photographs of the printed silk/RhB layer on the plane quartz (top) and the TiO2-coated quartz grating (bottom). (c) Plot for the light-in versus light-out (LL) of the DFB laser showing threshold behavior. (d) Simulated spectrum of the DFB mode. The inset shows the electric field (parallel to the grating surface) profile of the DFB mode.
Fig. 3.
Fig. 3. Size dependence on lasing characteristics. (a) Lasing spectra with increasing diameter of the printed silk/RhB dots. (b) Corresponding LL curves to compare thresholds of lasing modes for each dot size.
Fig. 4.
Fig. 4. Tuning of the DFB laser. (a) Schematic illustration for inkjet printing of the gold nanoparticle (AuNP) mixed silk/RhB ink. (b),(c) Lasing spectra showing the blue shift in (b) and LL plots showing threshold behaviors in (c) with increasing concentration of AuNPs.
Fig. 5.
Fig. 5. Integrated biophotonic circuit printed on a DFB board (a),(b) Photographs of the printed waveguide adjacent to the printed laser device (a) in daylight and (b) under pumping. The lasing light is coupled-out to the waveguide and propagated through it. (c) Measured lasing spectra at the end of the waveguide. The inset shows the LL curve of the laser. (d) Schematic illustration of the particle sensing application of the device. (e) Lasing spectra attenuated by the melanin nanoparticles on the waveguide. (f) Schematic illustration and (g) photograph for the post modification of the printed circuit by water washing and reprinting.
Fig. 6.
Fig. 6. DFB modes at gratings with different pitch sizes. (a) Lasing spectra from the inkjet-printed silk/RhB layer on gratings with pitch sizes of 375, 380, and 385 nm and (b) their corresponding LL curves.
Fig. 7.
Fig. 7. Simulated spectra for DFB gratings with different pitch sizes.
Fig. 8.
Fig. 8. Simulated spectra showing DFB resonances for gratings with different numbers of grooves. As the number of grooves increases, the resonant wavelength and quality factor also increase.
Fig. 9.
Fig. 9. Simulated spectra for the changing RI of the silk ink. (a) Simulated resonance peaks when the RI of silk is reduced by Δn = 0.02. (b) Simulated peak position by changing the RI of silk. A Δλ of 4 nm is observed by reducing RI to 1.52 from 1.54.
Fig. 10.
Fig. 10. Absorption spectra of silk/RhB solution containing AuNPs. Blue shift and narrowing of the absorption peak were observed after addition of AuNPs (cation species).
Fig. 11.
Fig. 11. Schematic illustration of the laser interference lithography process to yield second-order Bragg grating.
Fig. 12.
Fig. 12. Schematic illustration of pulsed laser pumping and measurement of surface emission of the inkjet-printed silk DFB laser.

Metrics