Abstract

We report an investigation of waveguide inscription by femtosecond laser direct writing in two newly developed mid-infrared laser garnets. Usable guiding structures are obtained in one of these garnets but not in the other. This difference is mainly attributed to stimulated radiation, which is more intense in the latter garnet so that less absorbed energy of writing laser is involved in the process of waveguide creation. The mechanism for laser modification is ascribed to garnet intrinsic defects creation and crystalline lattices distortions. Their associated refractive index changes and stress field are essential conditions for waveguide formation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fs-laser-written erbium-doped double tungstate waveguide laser

Esrom Kifle, Pavel Loiko, Carolina Romero, Javier Rodríguez Vázquez de Aldana, Airán Ródenas, Venkatesan Jambunathan, Viktor Zakharov, Andrey Veniaminov, Antonio Lucianetti, Tomas Mocek, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Valentin Petrov, and Xavier Mateos
Opt. Express 26(23) 30826-30836 (2018)

Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass

T. Toney Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta
Opt. Express 16(19) 15198-15205 (2008)

Waveguide inscription in Bismuth Germanate crystals using high repetition rate femtosecond lasers pulses

Christopher Miese, Simon Gross, Michael J. Withford, and Alexander Fuerbach
Opt. Mater. Express 5(2) 323-329 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, “Review of mid-infrared mode-locked laser sources in the 2.0 µm-3.5 µm spectral region,” Appl. Phys. Rev. 6(2), 021317 (2019).
    [Crossref]
  2. H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
    [Crossref]
  3. A. Spott, E. J. Stanton, N. Volet, J. P. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous Integration for Mid-infrared Silicon Photonics,” Prog. Quantum Electron. 23(6), 1–10 (2017).
    [Crossref]
  4. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Opt. Quant. Electron. 42, 1–106 (2015).
    [Crossref]
  5. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17(3), 1947–1962 (2009).
    [Crossref]
  6. A. Benayas, D. Jaque, Y. Yao, F. Chen, A. A. Bettiol, A. Ródenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35(23), 3898–3900 (2010).
    [Crossref]
  7. T. Yang and F. Chen, “Waveguide lasers based on platforms of optical dielectric crystals,” Prog. Electromagn. Res. 766 (2016).
  8. K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref]
  9. E. Glezer, M. Milosavljevic, L. Huang, R. Finlay, T. Her, J. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [Crossref]
  10. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [Crossref]
  11. G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
    [Crossref]
  12. A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011).
    [Crossref]
  13. Z. Li, R. Li, C. Pang, N. Dong, J. Wang, H. Yu, and F. Chen, “8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber,” Opt. Express 27(6), 8727–8737 (2019).
    [Crossref]
  14. Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
    [Crossref]
  15. S. Choi, T. Calmano, F. Rotermund, and C. Krankel, “2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser,” Opt. Express 26(5), 5140–5145 (2018).
    [Crossref]
  16. L. Jinman, Z. Shang, Y. Tan, J. R. V. De Aldana, and F. Chen, “Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation,” Opt. Express 25(16), 19603–19608 (2017).
    [Crossref]
  17. J. Lv, X. Hao, and F. Chen, “Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal,” Opt. Express 24(22), 25482–25490 (2016).
    [Crossref]
  18. C. Cheng, H. Liu, Y. Tan, J. R. V. De Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
    [Crossref]
  19. P. Dekker, M. Ams, T. Calmano, S. Gross, C. Krankel, G. Huber, and M. J. Withford, “Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings,” Opt. Express 23(15), 20195–20202 (2015).
    [Crossref]
  20. H. Liu, C. Cheng, C. Romero, J. R. V. De Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
    [Crossref]
  21. S. Choi, T. Calmano, M. Kim, D. Yeom, C. Kraenkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
    [Crossref]
  22. Y. Jia, Y. Tan, C. Cheng, J. R. V. De Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 12900–12908 (2014).
    [Crossref]
  23. E. Kifle, P. Loiko, C. Romero, J. R. V. De Aldana, A. Ródenas, V. Zakharov, A. Veniaminov, M. Aguilo, F. Diaz, and U. Griebner, “Femtosecond-laser-written Ho:KGd(WO4)2 waveguide laser at 2.1 µm,” Opt. Lett. 44(7), 1738–1741 (2019).
    [Crossref]
  24. J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J. M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9 µm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25(13), 14910–14917 (2017).
    [Crossref]
  25. X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Annalen der Physik 528(7-8), 543–550 (2016).
    [Crossref]
  26. D. G. Lancaster, V. J. Stevens, V. Michaud-Belleau, S. Gross, A. Fuerbach, and T. M. Monro, “Holmium-doped 2.1 µm waveguide chip laser with an output power > 1 W,” Opt. Express 23(25), 32664–32670 (2015).
    [Crossref]
  27. Q. An, Y. Jia, H. Liu, JRV. De Aldana, and F. Chen, “Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength,” Opt. Laser Technol. 56, 382–386 (2014).
    [Crossref]
  28. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 µm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
    [Crossref]
  29. Y. Ren, G. Brown, A. Ródenas, S. Beecher F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
    [Crossref]
  30. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 µm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+,Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
    [Crossref]
  31. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  32. Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
    [Crossref]
  33. F. Chen and J. R. V. De Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  34. A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
    [Crossref]
  35. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
    [Crossref]
  36. J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
    [Crossref]
  37. J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, J. Zhang, M. Cheng, Q. Zhang, and S. Yin, “Spectroscopic, diode end-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett. 38(8), 1218–1220 (2013).
    [Crossref]
  38. Qiang Liu, M. Geng, Y. Yu, Q. Chen, and Z. Zhang, “Femtosecond laser processing in new mid-infrared laser crystals,” Asia Communications and Photonics Conference, S4F.4 (2017).
  39. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
    [Crossref]
  40. D. Avram, I. Tiseanu, B. S. Vasile, M. Florea, and C. Tiseanu, “Near infrared emission properties of Er doped cubic sesquioxides in the second/third biological windows,” Sci. Rep. 8(1), 18033 (2018).
    [Crossref]
  41. Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
    [Crossref]
  42. J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
    [Crossref]
  43. Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
    [Crossref]
  44. D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).
  45. A. Ródenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
    [Crossref]
  46. M. A. Butt, H. Nguyen, A. Ródenas, C. Romero, P. Moreno, J. R. de Aldana Vázquez, M. Aguiló, R. M. Solé, M. C. Pujol, and F. Díaz, “Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes,” Opt. Express 23(12), 15343–15355 (2015).
    [Crossref]

2019 (5)

J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, “Review of mid-infrared mode-locked laser sources in the 2.0 µm-3.5 µm spectral region,” Appl. Phys. Rev. 6(2), 021317 (2019).
[Crossref]

Z. Li, R. Li, C. Pang, N. Dong, J. Wang, H. Yu, and F. Chen, “8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber,” Opt. Express 27(6), 8727–8737 (2019).
[Crossref]

E. Kifle, P. Loiko, C. Romero, J. R. V. De Aldana, A. Ródenas, V. Zakharov, A. Veniaminov, M. Aguilo, F. Diaz, and U. Griebner, “Femtosecond-laser-written Ho:KGd(WO4)2 waveguide laser at 2.1 µm,” Opt. Lett. 44(7), 1738–1741 (2019).
[Crossref]

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
[Crossref]

2018 (3)

2017 (5)

L. Jinman, Z. Shang, Y. Tan, J. R. V. De Aldana, and F. Chen, “Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation,” Opt. Express 25(16), 19603–19608 (2017).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

A. Spott, E. J. Stanton, N. Volet, J. P. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous Integration for Mid-infrared Silicon Photonics,” Prog. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]

J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J. M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9 µm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25(13), 14910–14917 (2017).
[Crossref]

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

2016 (4)

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Annalen der Physik 528(7-8), 543–550 (2016).
[Crossref]

Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref]

J. Lv, X. Hao, and F. Chen, “Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal,” Opt. Express 24(22), 25482–25490 (2016).
[Crossref]

C. Cheng, H. Liu, Y. Tan, J. R. V. De Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[Crossref]

2015 (6)

2014 (3)

Q. An, Y. Jia, H. Liu, JRV. De Aldana, and F. Chen, “Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength,” Opt. Laser Technol. 56, 382–386 (2014).
[Crossref]

F. Chen and J. R. V. De Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Jia, Y. Tan, C. Cheng, J. R. V. De Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 12900–12908 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (3)

2010 (1)

2009 (3)

L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17(3), 1947–1962 (2009).
[Crossref]

A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

2008 (1)

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

2007 (1)

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

2005 (2)

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

1996 (2)

Agarwal, A.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Aguilo, M.

Aguiló, M.

Ams, M.

An, Q.

Q. An, Y. Jia, H. Liu, JRV. De Aldana, and F. Chen, “Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength,” Opt. Laser Technol. 56, 382–386 (2014).
[Crossref]

Avram, D.

D. Avram, I. Tiseanu, B. S. Vasile, M. Florea, and C. Tiseanu, “Near infrared emission properties of Er doped cubic sesquioxides in the second/third biological windows,” Sci. Rep. 8(1), 18033 (2018).
[Crossref]

Bai, Z.

Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref]

Benayas, A.

Bettiol, A. A.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Bookey, H. T.

Bowers, J. E.

A. Spott, E. J. Stanton, N. Volet, J. P. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous Integration for Mid-infrared Silicon Photonics,” Prog. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]

Brown, C. T. A.

Brown, G.

Butt, M. A.

Callan, J.

Calmano, T.

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Chen, D.

J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
[Crossref]

Chen, F.

Z. Li, R. Li, C. Pang, N. Dong, J. Wang, H. Yu, and F. Chen, “8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber,” Opt. Express 27(6), 8727–8737 (2019).
[Crossref]

Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
[Crossref]

L. Jinman, Z. Shang, Y. Tan, J. R. V. De Aldana, and F. Chen, “Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation,” Opt. Express 25(16), 19603–19608 (2017).
[Crossref]

J. Lv, X. Hao, and F. Chen, “Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal,” Opt. Express 24(22), 25482–25490 (2016).
[Crossref]

C. Cheng, H. Liu, Y. Tan, J. R. V. De Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[Crossref]

H. Liu, C. Cheng, C. Romero, J. R. V. De Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
[Crossref]

Y. Jia, Y. Tan, C. Cheng, J. R. V. De Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 12900–12908 (2014).
[Crossref]

Q. An, Y. Jia, H. Liu, JRV. De Aldana, and F. Chen, “Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength,” Opt. Laser Technol. 56, 382–386 (2014).
[Crossref]

F. Chen and J. R. V. De Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

A. Benayas, D. Jaque, Y. Yao, F. Chen, A. A. Bettiol, A. Ródenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35(23), 3898–3900 (2010).
[Crossref]

A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

T. Yang and F. Chen, “Waveguide lasers based on platforms of optical dielectric crystals,” Prog. Electromagn. Res. 766 (2016).

Chen, J.

Chen, L.

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

Chen, Q.

Qiang Liu, M. Geng, Y. Yu, Q. Chen, and Z. Zhang, “Femtosecond laser processing in new mid-infrared laser crystals,” Asia Communications and Photonics Conference, S4F.4 (2017).

Chen, S. Beecher F.

Cheng, C.

Cheng, M.

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, J. Zhang, M. Cheng, Q. Zhang, and S. Yin, “Spectroscopic, diode end-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett. 38(8), 1218–1220 (2013).
[Crossref]

Choi, S.

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Davis, K.

Dawson, M. D.

De Aldana, J. R. V.

De Aldana, JRV.

Q. An, Y. Jia, H. Liu, JRV. De Aldana, and F. Chen, “Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength,” Opt. Laser Technol. 56, 382–386 (2014).
[Crossref]

de Aldana Vázquez, J. R.

Dekker, P.

Deng, H.

J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
[Crossref]

Diaz, F.

Díaz, F.

Dong, N.

Dou, R.

Ebendorff-Heidepriem, H.

Fang, Z.

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

Finlay, R.

Florea, M.

D. Avram, I. Tiseanu, B. S. Vasile, M. Florea, and C. Tiseanu, “Near infrared emission properties of Er doped cubic sesquioxides in the second/third biological windows,” Sci. Rep. 8(1), 18033 (2018).
[Crossref]

Fuerbach, A.

Geng, M.

Qiang Liu, M. Geng, Y. Yu, Q. Chen, and Z. Zhang, “Femtosecond laser processing in new mid-infrared laser crystals,” Asia Communications and Photonics Conference, S4F.4 (2017).

Glezer, E.

Griebner, U.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Gross, S.

Gu, C.

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

Gu, T.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Guo, Z.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Annalen der Physik 528(7-8), 543–550 (2016).
[Crossref]

Hao, X.

Her, T.

Hirao, K.

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Hopkins, J. M.

Hu, J.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Hu, L.

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

Hu, Y.

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

Huang, L.

Huber, G.

Jackson, S. D.

Jaque, D.

A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011).
[Crossref]

A. Benayas, D. Jaque, Y. Yao, F. Chen, A. A. Bettiol, A. Ródenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35(23), 3898–3900 (2010).
[Crossref]

A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Jia, Y.

Jiang, B.

Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref]

Jiang, H.

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

Jiang, X.

Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref]

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Annalen der Physik 528(7-8), 543–550 (2016).
[Crossref]

Jin, Y.

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

Jinman, L.

Ju, G.

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

Kang, H.

Kar, A. K.

Khrushchev, I.

Kifle, E.

Kim, M.

Kimerling, L. C.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Kong, W.

J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
[Crossref]

Kraenkel, C.

Krankel, C.

Labadie, L.

Lagatsky, A. A.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Lancaster, D. G.

Leng, Y.

Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref]

Li, R.

Li, Z.

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Lin, H.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Liu, F.

J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
[Crossref]

Liu, H.

Liu, J.

J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
[Crossref]

Liu, Qiang

Qiang Liu, M. Geng, Y. Yu, Q. Chen, and Z. Zhang, “Femtosecond laser processing in new mid-infrared laser crystals,” Asia Communications and Photonics Conference, S4F.4 (2017).

Loiko, P.

Long, L.

J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
[Crossref]

Luo, J.

Luo, Z.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Lv, F.

J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
[Crossref]

Lv, J.

Lv, Y.

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

Ma, J.

J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, “Review of mid-infrared mode-locked laser sources in the 2.0 µm-3.5 µm spectral region,” Appl. Phys. Rev. 6(2), 021317 (2019).
[Crossref]

Macdonald, J. R.

Maestro, L. M.

A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

Mazur, E.

Meyer, J. R.

A. Spott, E. J. Stanton, N. Volet, J. P. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous Integration for Mid-infrared Silicon Photonics,” Prog. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]

Michaud-Belleau, V.

Milosavljevic, M.

Mitchell, J.

Miura, K.

Monro, T. M.

Moreno, P.

Morris, J.

Nguyen, H.

Okhrimchuk, A. G.

Pang, C.

Peng, Y.

Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref]

Peters, J. P.

A. Spott, E. J. Stanton, N. Volet, J. P. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous Integration for Mid-infrared Silicon Photonics,” Prog. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]

Petrov, V.

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Opt. Quant. Electron. 42, 1–106 (2015).
[Crossref]

Pujol, M. C.

Qian, L.

J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, “Review of mid-infrared mode-locked laser sources in the 2.0 µm-3.5 µm spectral region,” Appl. Phys. Rev. 6(2), 021317 (2019).
[Crossref]

Qin, Z.

J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, “Review of mid-infrared mode-locked laser sources in the 2.0 µm-3.5 µm spectral region,” Appl. Phys. Rev. 6(2), 021317 (2019).
[Crossref]

Quan, C.

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

Ramirez, M. O.

A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Ren, Y.

Ródenas, A.

E. Kifle, P. Loiko, C. Romero, J. R. V. De Aldana, A. Ródenas, V. Zakharov, A. Veniaminov, M. Aguilo, F. Diaz, and U. Griebner, “Femtosecond-laser-written Ho:KGd(WO4)2 waveguide laser at 2.1 µm,” Opt. Lett. 44(7), 1738–1741 (2019).
[Crossref]

M. A. Butt, H. Nguyen, A. Ródenas, C. Romero, P. Moreno, J. R. de Aldana Vázquez, M. Aguiló, R. M. Solé, M. C. Pujol, and F. Díaz, “Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes,” Opt. Express 23(12), 15343–15355 (2015).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref]

A. Ródenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[Crossref]

A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011).
[Crossref]

A. Benayas, D. Jaque, Y. Yao, F. Chen, A. A. Bettiol, A. Ródenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35(23), 3898–3900 (2010).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Romero, C.

Roso, L.

A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Rotermund, F.

Shang, Z.

Shao, S.

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

Shestakov, A. V.

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Solé, R. M.

Spott, A.

A. Spott, E. J. Stanton, N. Volet, J. P. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous Integration for Mid-infrared Silicon Photonics,” Prog. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]

Stanton, E. J.

A. Spott, E. J. Stanton, N. Volet, J. P. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous Integration for Mid-infrared Silicon Photonics,” Prog. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]

Stevens, V. J.

Stevenson, N. K.

Su, J.

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

Sugimoto, N.

Sun, D.

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
[Crossref]

J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, J. Zhang, M. Cheng, Q. Zhang, and S. Yin, “Spectroscopic, diode end-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett. 38(8), 1218–1220 (2013).
[Crossref]

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

Sun, T.

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

Tan, Y.

Tang, D.

J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, “Review of mid-infrared mode-locked laser sources in the 2.0 µm-3.5 µm spectral region,” Appl. Phys. Rev. 6(2), 021317 (2019).
[Crossref]

Tang, D. Y.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Tiseanu, C.

D. Avram, I. Tiseanu, B. S. Vasile, M. Florea, and C. Tiseanu, “Near infrared emission properties of Er doped cubic sesquioxides in the second/third biological windows,” Sci. Rep. 8(1), 18033 (2018).
[Crossref]

Tiseanu, I.

D. Avram, I. Tiseanu, B. S. Vasile, M. Florea, and C. Tiseanu, “Near infrared emission properties of Er doped cubic sesquioxides in the second/third biological windows,” Sci. Rep. 8(1), 18033 (2018).
[Crossref]

Torchia, G. A.

A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Vasile, B. S.

D. Avram, I. Tiseanu, B. S. Vasile, M. Florea, and C. Tiseanu, “Near infrared emission properties of Er doped cubic sesquioxides in the second/third biological windows,” Sci. Rep. 8(1), 18033 (2018).
[Crossref]

Veniaminov, A.

Volet, N.

A. Spott, E. J. Stanton, N. Volet, J. P. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous Integration for Mid-infrared Silicon Photonics,” Prog. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]

Wada, K.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Wallner, O.

Wang, A.

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

Wang, C.

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

Wang, J.

Withford, M. J.

Xiao, J.

Xie, G.

J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, “Review of mid-infrared mode-locked laser sources in the 2.0 µm-3.5 µm spectral region,” Appl. Phys. Rev. 6(2), 021317 (2019).
[Crossref]

Yang, T.

T. Yang and F. Chen, “Waveguide lasers based on platforms of optical dielectric crystals,” Prog. Electromagn. Res. 766 (2016).

Yao, Y.

Yeom, D.

Yin, S.

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
[Crossref]

J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, J. Zhang, M. Cheng, Q. Zhang, and S. Yin, “Spectroscopic, diode end-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett. 38(8), 1218–1220 (2013).
[Crossref]

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

Yu, H.

Yu, Y.

Qiang Liu, M. Geng, Y. Yu, Q. Chen, and Z. Zhang, “Femtosecond laser processing in new mid-infrared laser crystals,” Asia Communications and Photonics Conference, S4F.4 (2017).

Zakharov, V.

Zhang, H.

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Annalen der Physik 528(7-8), 543–550 (2016).
[Crossref]

J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
[Crossref]

Zhang, J.

Zhang, L.

Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref]

Zhang, Q.

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, J. Zhang, M. Cheng, Q. Zhang, and S. Yin, “Spectroscopic, diode end-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett. 38(8), 1218–1220 (2013).
[Crossref]

J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
[Crossref]

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

Zhang, X.

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

Zhang, Y.

Zhang, Z.

Qiang Liu, M. Geng, Y. Yu, Q. Chen, and Z. Zhang, “Femtosecond laser processing in new mid-infrared laser crystals,” Asia Communications and Photonics Conference, S4F.4 (2017).

Zhao, X.

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

Zou, X.

Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref]

Annalen der Physik (1)

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Annalen der Physik 528(7-8), 543–550 (2016).
[Crossref]

Appl. Phys. B (1)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Appl. Phys. Lett. (1)

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Appl. Phys. Rev. (1)

J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, “Review of mid-infrared mode-locked laser sources in the 2.0 µm-3.5 µm spectral region,” Appl. Phys. Rev. 6(2), 021317 (2019).
[Crossref]

Cailiao Kexue (Shanghai, China) (1)

Z. Fang, D. Sun, J. Luo, H. Zhang, X. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, “Study on the Raman Spectra of a new type GYSGG radiation resistant crystal,” Cailiao Kexue (Shanghai, China) 07(04), 515–523 (2017).
[Crossref]

Dyes Pigm. (1)

Y. Lv, Y. Jin, T. Sun, J. Su, C. Wang, G. Ju, L. Chen, and Y. Hu, “Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ CLn = Nd, Yb, Er),” Dyes Pigm. 161, 137–146 (2019).
[Crossref]

J. Appl. Phys. (2)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

A. Ródenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

J. Lumin. (1)

J. Liu, H. Deng, F. Lv, W. Kong, D. Chen, F. Liu, and L. Long, “Up-/downconversion luminescence in Gd2O3:Yb3+/Er3+ nanocrystals: Emission manipulation and energy transfer phenomena,” J. Lumin. 206, 486–491 (2019).
[Crossref]

J. Optoelectron. Laser (1)

D. Sun, Q. Zhang, X. Zhang, S. Shao, C. Gu, A. Wang, H. Jiang, and S. Yin, “Study on the growth and Raman spectra of the Nd:Gd3Ga5O12 crystal,” J. Optoelectron. Laser 18(6), 706–709 (2007).

Laser Photonics Rev. (1)

F. Chen and J. R. V. De Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Nanophotonics (1)

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2017).
[Crossref]

Opt. Express (16)

A. Ródenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[Crossref]

P. Dekker, M. Ams, T. Calmano, S. Gross, C. Krankel, G. Huber, and M. J. Withford, “Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings,” Opt. Express 23(15), 20195–20202 (2015).
[Crossref]

J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J. M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9 µm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25(13), 14910–14917 (2017).
[Crossref]

S. Choi, T. Calmano, M. Kim, D. Yeom, C. Kraenkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
[Crossref]

J. Lv, X. Hao, and F. Chen, “Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal,” Opt. Express 24(22), 25482–25490 (2016).
[Crossref]

S. Choi, T. Calmano, F. Rotermund, and C. Krankel, “2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser,” Opt. Express 26(5), 5140–5145 (2018).
[Crossref]

Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
[Crossref]

J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
[Crossref]

M. A. Butt, H. Nguyen, A. Ródenas, C. Romero, P. Moreno, J. R. de Aldana Vázquez, M. Aguiló, R. M. Solé, M. C. Pujol, and F. Díaz, “Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes,” Opt. Express 23(12), 15343–15355 (2015).
[Crossref]

D. G. Lancaster, V. J. Stevens, V. Michaud-Belleau, S. Gross, A. Fuerbach, and T. M. Monro, “Holmium-doped 2.1 µm waveguide chip laser with an output power > 1 W,” Opt. Express 23(25), 32664–32670 (2015).
[Crossref]

Z. Li, R. Li, C. Pang, N. Dong, J. Wang, H. Yu, and F. Chen, “8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber,” Opt. Express 27(6), 8727–8737 (2019).
[Crossref]

C. Cheng, H. Liu, Y. Tan, J. R. V. De Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[Crossref]

L. Jinman, Z. Shang, Y. Tan, J. R. V. De Aldana, and F. Chen, “Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation,” Opt. Express 25(16), 19603–19608 (2017).
[Crossref]

L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17(3), 1947–1962 (2009).
[Crossref]

Y. Jia, Y. Tan, C. Cheng, J. R. V. De Aldana, and F. Chen, “Efficient lasing in continuous wave and grapheme Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 12900–12908 (2014).
[Crossref]

H. Liu, C. Cheng, C. Romero, J. R. V. De Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
[Crossref]

Opt. Laser Technol. (1)

Q. An, Y. Jia, H. Liu, JRV. De Aldana, and F. Chen, “Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength,” Opt. Laser Technol. 56, 382–386 (2014).
[Crossref]

Opt. Lett. (10)

A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 µm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref]

E. Kifle, P. Loiko, C. Romero, J. R. V. De Aldana, A. Ródenas, V. Zakharov, A. Veniaminov, M. Aguilo, F. Diaz, and U. Griebner, “Femtosecond-laser-written Ho:KGd(WO4)2 waveguide laser at 2.1 µm,” Opt. Lett. 44(7), 1738–1741 (2019).
[Crossref]

E. Glezer, M. Milosavljevic, L. Huang, R. Finlay, T. Her, J. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[Crossref]

J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, J. Zhang, M. Cheng, Q. Zhang, and S. Yin, “Spectroscopic, diode end-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett. 38(8), 1218–1220 (2013).
[Crossref]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 µm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+,Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
[Crossref]

K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref]

A. Benayas, D. Jaque, Y. Yao, F. Chen, A. A. Bettiol, A. Ródenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35(23), 3898–3900 (2010).
[Crossref]

Opt. Quant. Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Opt. Quant. Electron. 42, 1–106 (2015).
[Crossref]

Prog. Quantum Electron. (2)

A. Spott, E. J. Stanton, N. Volet, J. P. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous Integration for Mid-infrared Silicon Photonics,” Prog. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Sci. Rep. (2)

Y. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref]

D. Avram, I. Tiseanu, B. S. Vasile, M. Florea, and C. Tiseanu, “Near infrared emission properties of Er doped cubic sesquioxides in the second/third biological windows,” Sci. Rep. 8(1), 18033 (2018).
[Crossref]

Other (2)

Qiang Liu, M. Geng, Y. Yu, Q. Chen, and Z. Zhang, “Femtosecond laser processing in new mid-infrared laser crystals,” Asia Communications and Photonics Conference, S4F.4 (2017).

T. Yang and F. Chen, “Waveguide lasers based on platforms of optical dielectric crystals,” Prog. Electromagn. Res. 766 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Bright field microscope images and guidances in waveguides created in Er,Pr:GYSGG. From top to bottom, the gap between two filaments of a waveguide is 15, 20, 30, 40 and 50 µm respectively. (a) top-view of structures created using 100 nJ pulse energy; (b) cross section of structures created using 100 nJ pulse energy, writing laser incident from left; (c) near field modes of guidances in structures created using 100 nJ pulse energy; (d) near field modes of guidances in structures created using 500 nJ pulse energy.
Fig. 2.
Fig. 2. Normalized Raman spectra of MIR garnets pump at 532 nm.
Fig. 3.
Fig. 3. Experimental data of MIR garnets pump at 785 nm.
Fig. 4.
Fig. 4. Bright field microscope images of micro-filaments in Yb,Er,Ho:GYSGG. (a) micro-filaments appeared when writing laser energy exceeded 2 µJ; (b) cracks caused by stress overlapping, shown for comparison.