Abstract

We proposed a metamaterial absorber composed of an array of trapezoid multilayered grating Au and InP on top of an opaque substrate, which covers two atmosphere-transparent-window bands with appropriate modulation of geometric parameters. The absorption higher than 0.8 is from 3.5 to 4.8 µm and 7 to 14.3 µm. From the effective medium theory and dispersion relation, the reason of the broad-band absorption is the first and third order slow light effect respectively, which is verified by the electromagnetic and thermal loss distribution further. This absorber may greatly promote the practical application of absorbers in double-color infrared imaging, detecting, infrared stealth and sub-ambient passive radiative cooling by thermal emitting.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Selectively thermal radiation control in long-wavelength infrared with broadband all-dielectric absorber

Zengyue Zhao, Guanhai Li, Tao Su, Feilong Yu, Yafeng Zhang, Wenjuan Wang, Weiwei Men, Zhiqiang Wang, Lixin Xuan, Xiaoshuang Chen, and Wei Lu
Opt. Express 27(24) 35088-35095 (2019)

Broadband switching of mid-infrared atmospheric windows by VO2-based thermal emitter

Ruizhi Sun, Peiheng Zhou, Wansen Ai, Yanning Liu, Ya Li, Ruomei Jiang, Wenxin Li, Xiaolong Weng, Lei Bi, and Longjiang Deng
Opt. Express 27(8) 11537-11546 (2019)

Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling

Aru Kong, Boyuan Cai, Peng Shi, and Xiao-cong Yuan
Opt. Express 27(21) 30102-30115 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
    [Crossref]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  3. J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref]
  4. G. Observatory, “IR transmission spectra” ( http://www.gemini.edu/?q=node/10789 ), retrieved.
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  6. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  7. W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
    [Crossref]
  8. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  9. Z. Chen, L. X. Zhu, A. Raman, and S. H. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
    [Crossref]
  10. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
    [Crossref]
  11. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref]
  12. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  13. A. Eshaghian Dorche, S. Abdollahramezani, A. Chizari, and A. Khavasi, “Broadband, polarization-insensitive, and wide-angle optical absorber based on fractal plasmonics,” IEEE Photonics Technol. Lett. 28(22), 2545–2548 (2016).
    [Crossref]
  14. J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
    [Crossref]
  15. D. Kaikai, L. Qiang, Z. Weichun, Y. Yuanqing, and Q. Min, “Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers,” IEEE Photonics J. 7(3), 1–14 (2015).
    [Crossref]
  16. J. Ren and J. Y. Yin, “Cylindrical -water-resonator-based ultra-broadband microwave absorber,” Opt. Mater. Express 8(8), 2060–2071 (2018).
    [Crossref]
  17. G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in SiC micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
    [Crossref]
  18. C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
    [Crossref]
  19. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref]
  20. B. Zhao and Z. M. Zhang, “Perfect absorption with trapezoidal gratings made of natural hyperbolic materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
    [Crossref]
  21. Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
    [Crossref]
  22. Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
    [Crossref]
  23. M. Kobayashi, Y. Katori, M. Yamaguchi, M. Shimojo, and K. Kajikawa, “Broadband light absorber of gold-coated moth-eye film,” Opt. Mater. Express 9(9), 3744–3752 (2019).
    [Crossref]
  24. Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref]
  25. Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
    [Crossref]
  26. Y. L. Liao, Y. Zhao, S. Wu, and S. J. Feng, “Wide-angle broadband absorber based on uniform-sized hyperbolic metamaterial,” Opt. Mater. Express 8(9), 2484–2493 (2018).
    [Crossref]
  27. L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767 (2017).
    [Crossref]
  28. M. A. Baqir, “Wide-band and wide-angle, visible- and near-infrared metamaterial-based absorber made of nanoholed tungsten thin film,” Opt. Mater. Express 9(5), 2358–2367 (2019).
    [Crossref]
  29. Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
    [Crossref]
  30. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
    [Crossref]
  31. J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
    [Crossref]
  32. F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
    [Crossref]
  33. S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagn. Res. 147, 69–79 (2014).
    [Crossref]
  34. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  35. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
    [Crossref]
  36. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  37. Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
    [Crossref]
  38. G. Y. Abdelatif, M. F. O. Hameed, S. S. A. Obayya, and M. Hussein, “Ultrabroadband absorber based on a funnel-shaped anisotropic metamaterial,” J. Opt. Soc. Am. B 36(10), 2889–2895 (2019).
    [Crossref]
  39. Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs,” Plasmonics 9(4), 951–957 (2014).
    [Crossref]
  40. https://apps.lumerical.com/diffraction-grating-fdtd.html .
  41. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  42. A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepanski, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
    [Crossref]
  43. L. B. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66(8), 085108 (2002).
    [Crossref]
  44. L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
    [Crossref]
  45. Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
    [Crossref]
  46. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [Crossref]

2019 (4)

2018 (4)

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Y. L. Liao, Y. Zhao, S. Wu, and S. J. Feng, “Wide-angle broadband absorber based on uniform-sized hyperbolic metamaterial,” Opt. Mater. Express 8(9), 2484–2493 (2018).
[Crossref]

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

J. Ren and J. Y. Yin, “Cylindrical -water-resonator-based ultra-broadband microwave absorber,” Opt. Mater. Express 8(8), 2060–2071 (2018).
[Crossref]

2017 (7)

G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in SiC micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
[Crossref]

B. Zhao and Z. M. Zhang, “Perfect absorption with trapezoidal gratings made of natural hyperbolic materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
[Crossref]

L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767 (2017).
[Crossref]

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepanski, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
[Crossref]

2016 (5)

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref]

A. Eshaghian Dorche, S. Abdollahramezani, A. Chizari, and A. Khavasi, “Broadband, polarization-insensitive, and wide-angle optical absorber based on fractal plasmonics,” IEEE Photonics Technol. Lett. 28(22), 2545–2548 (2016).
[Crossref]

C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Z. Chen, L. X. Zhu, A. Raman, and S. H. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

2015 (3)

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

D. Kaikai, L. Qiang, Z. Weichun, Y. Yuanqing, and Q. Min, “Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

2014 (7)

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

2013 (1)

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

2012 (5)

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

2009 (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

2007 (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

2006 (2)

L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

2002 (1)

L. B. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66(8), 085108 (2002).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Abdelatif, G. Y.

Abdollahramezani, S.

A. Eshaghian Dorche, S. Abdollahramezani, A. Chizari, and A. Khavasi, “Broadband, polarization-insensitive, and wide-angle optical absorber based on fractal plasmonics,” IEEE Photonics Technol. Lett. 28(22), 2545–2548 (2016).
[Crossref]

Alekseyev, L. V.

An, B. W.

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Azad, A. K.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Bao, F.

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

Baqir, M. A.

Bi, L.

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Catrysse, P. B.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Chen, H.

Chen, H. T.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Chen, L.

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Chen, X.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

Chen, Z.

Z. Chen, L. X. Zhu, A. Raman, and S. H. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Cheng, H.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Cheng, J.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

Cheng, P.

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Chizari, A.

A. Eshaghian Dorche, S. Abdollahramezani, A. Chizari, and A. Khavasi, “Broadband, polarization-insensitive, and wide-angle optical absorber based on fractal plasmonics,” IEEE Photonics Technol. Lett. 28(22), 2545–2548 (2016).
[Crossref]

Chui, S. T.

L. B. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66(8), 085108 (2002).
[Crossref]

Chum, C. C.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Cui, Y.

Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Dai, N.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Deng, J.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Deng, L.

Devarapu, G. C. R.

G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in SiC micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Ding, F.

Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ding, R.

Dong, W.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Eshaghian Dorche, A.

A. Eshaghian Dorche, S. Abdollahramezani, A. Chizari, and A. Khavasi, “Broadband, polarization-insensitive, and wide-angle optical absorber based on fractal plasmonics,” IEEE Photonics Technol. Lett. 28(22), 2545–2548 (2016).
[Crossref]

Fan, S.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Fan, S. H.

Z. Chen, L. X. Zhu, A. Raman, and S. H. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Feng, Q.

Feng, S. J.

Foteinopoulou, S.

G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in SiC micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Fu, Y.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Fung, K. H.

Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Gao, J.

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Gu, J. Q.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Guan, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref]

Guo, L. J.

C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Guo, Y.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
[Crossref]

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Hameed, M. F. O.

Han, J. G.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Hao, Y.

He, L.

He, Q.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S.

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

Hsu, P. C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Hu, C.

Hu, L. B.

L. B. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66(8), 085108 (2002).
[Crossref]

Hu, W.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

Huang, T.

Huang, Y.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
[Crossref]

Hussein, M.

Janaszek, B.

Ji, C.

C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Ji, T.

Jin, Y.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Jing, Y.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Kaikai, D.

D. Kaikai, L. Qiang, Z. Weichun, Y. Yuanqing, and Q. Min, “Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

Kajikawa, K.

Kaplan, A. F.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Katori, Y.

Ke, L.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Khavasi, A.

A. Eshaghian Dorche, S. Abdollahramezani, A. Chizari, and A. Khavasi, “Broadband, polarization-insensitive, and wide-angle optical absorber based on fractal plasmonics,” IEEE Photonics Technol. Lett. 28(22), 2545–2548 (2016).
[Crossref]

Kobayashi, M.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lee, K. T.

C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Li, B.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Li, D.

Li, L. Z.

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

Li, W.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref]

Li, X.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
[Crossref]

Li, Y. L.

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

Liang, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Liao, L.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

Liao, Y. L.

Lin, Y.

Liu, C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Liu, H.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Liu, X.

C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Liu, X. J.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Long, C.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Lou, R. N.

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Lu, W.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

Lu, Z.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Luo, B.

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Luo, J.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
[Crossref]

Luo, W.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

Luo, X.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
[Crossref]

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Ma, X.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Y. F.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Ma, Y. G.

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Maier, S. A.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Miao, J.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

Min, Q.

D. Kaikai, L. Qiang, Z. Weichun, Y. Yuanqing, and Q. Min, “Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

Mo, L.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Narimanov, E.

Obayya, S. S. A.

Padilla, W. J.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).

Pan, A.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

Pan, W.

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Peng, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Pu, M.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
[Crossref]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
[Crossref]

Qiang, L.

D. Kaikai, L. Qiang, Z. Weichun, Y. Yuanqing, and Q. Min, “Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

Quan, X.

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Raman, A.

Z. Chen, L. X. Zhu, A. Raman, and S. H. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Ren, J.

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Shen, L.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Shen, W.

C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Shimojo, M.

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Singh, R.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Song, A. Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Sun, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Sun, Y.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Szczepanski, P.

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Taylor, A. J.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Teng, J. H.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Teo, S. L.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Tian, Z.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Tyszka-Zawadzka, A.

Wang, B.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Wang, T.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Wang, W.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref]

Wang, Z.

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Wei, T.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Weichun, Z.

D. Kaikai, L. Qiang, Z. Weichun, Y. Yuanqing, and Q. Min, “Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

Weng, X.

Wu, S.

Y. L. Liao, Y. Zhao, S. Wu, and S. J. Feng, “Wide-angle broadband absorber based on uniform-sized hyperbolic metamaterial,” Opt. Mater. Express 8(9), 2484–2493 (2018).
[Crossref]

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

Xie, J.

L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Yamaguchi, M.

Yan, L.

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Yang, C.

C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Yang, L.

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yang, R. G.

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Ye, Z.

Yin, J. Y.

Yin, S.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yin, X. B.

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yu, W.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Yuanqing, Y.

D. Kaikai, L. Qiang, Z. Weichun, Y. Yuanqing, and Q. Min, “Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

Zhai, Y.

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhang, K.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Zhang, L.

Zhang, S.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, W. L.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, X. Q.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, Y.

C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Zhang, Z. M.

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

B. Zhao and Z. M. Zhang, “Perfect absorption with trapezoidal gratings made of natural hyperbolic materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Perfect absorption with trapezoidal gratings made of natural hyperbolic materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
[Crossref]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhao, D. L.

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhao, Y.

Zhao, Z.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
[Crossref]

Zhen, G.

Zhou, J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Zhou, L.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhou, P.

Zhu, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Zhu, L. X.

Z. Chen, L. X. Zhu, A. Raman, and S. H. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

ACS Photonics (2)

C. Yang, C. Ji, W. Shen, K. T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Adv. Opt. Mater. (1)

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Adv. Sci. (Weinheim, Ger.) (1)

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. (Weinheim, Ger.) 6(7), 1801691 (2019).
[Crossref]

Appl. Phys. Lett. (2)

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

IEEE Photonics J. (1)

D. Kaikai, L. Qiang, Z. Weichun, Y. Yuanqing, and Q. Min, “Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Eshaghian Dorche, S. Abdollahramezani, A. Chizari, and A. Khavasi, “Broadband, polarization-insensitive, and wide-angle optical absorber based on fractal plasmonics,” IEEE Photonics Technol. Lett. 28(22), 2545–2548 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Nano Lett. (2)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, “High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref]

Nanoscale Microscale Thermophys. Eng. (1)

B. Zhao and Z. M. Zhang, “Perfect absorption with trapezoidal gratings made of natural hyperbolic materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
[Crossref]

Nat. Commun. (2)

Z. Chen, L. X. Zhu, A. Raman, and S. H. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Nature (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (6)

Opt. Quantum Electron. (1)

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

Phys. Rev. Appl. (1)

G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in SiC micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Phys. Rev. B (2)

L. B. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66(8), 085108 (2002).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Plasmonics (1)

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Prog. Electromagn. Res. (1)

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

Sci. Rep. (2)

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref]

Science (4)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Small (1)

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref]

Sol. Energy (2)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Other (3)

G. Observatory, “IR transmission spectra” ( http://www.gemini.edu/?q=node/10789 ), retrieved.

https://apps.lumerical.com/diffraction-grating-fdtd.html .

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) The 3D schematic diagram of the metamaterial absorber and its cross-section of one unit in the x-z plane. The yellow region represents gold, and the blue is for InP. The thicknesses of InP and Au are denoted as l1 and l2, respectively. The number of the layers of Au and InP is denoted as n. The top and bottom width of the multilayered trapezoid grating are denoted by p and w, respectively. The lattice constant is assumed to be a. A plane wave light source is used for illumination with its propagation direction and polarization along the negative z-axis and x-axis, respectively. (b) The absorption spectra of the metamaterial absorber simulated by 2D or 3D methods in FDTD, which are shown in blue squares and red circles, respectively.
Fig. 2.
Fig. 2. (a) The parallel component ɛx and (b) perpendicular component ɛz of the complex relative permittivity of the anisotropic homogeneous effective medium composed of the Au and InP based multiplayer film. The real parts of relative permittivity extracted from FDTD index and sampled data are shown in green and black symbols, respectively. The imaginary parts are shown in blue and red symbols, respectively. (c) The equivalent 3D schematic diagram of the metamaterial absorber and its cross-section of one unit in the x-z plane after the deal with EMT. The yellow region is the Au substrate and the blue region is the anisotropic homogeneous effective medium, with the complex relative permittivity shown in (a) and (b). (d) The absorption spectrum of structure (c) simulated by 3D FDTD, which is shown in the green triangle. The blue and red symbols are the results in Fig. 1(b), which are the absorption spectra of the real structure.
Fig. 3.
Fig. 3. (a) First order fundamental slowlight waveguide mode’s dispersion curve when the width of the waveguide core d is tuned from 800 nm to 1800nm. (b) Third order dispersion curves when d is tuned from 800 nm to 1800nm. (c) For different orders of waveguide modes, the degeneracy wavelength where the slowlight is excited and the group velocity approaches zero, i.e., vg = 0 with tuned core width d. The first and third order curves are shown in blue squares and red circles, respectively.
Fig. 4.
Fig. 4. The electric, magnetic field intensity, Poynting vector and thermal loss distribution at three wavelengths in the MWIR on the x-z plane of the absorber. (a), (b), (c) and (d) are the electric, magnetic intensity, Poynting vector and thermal loss distribution extracted from wavelength 3.5 µm, respectively. (e), (f), (g) and (h) are the electric, magnetic intensity, Poynting vector and thermal loss distribution extracted from wavelength 4 µm respectively. (i), (j), (k) and (l) were extracted from wavelength 4.5 µm.
Fig. 5.
Fig. 5. The electric, magnetic field intensity, Poynting vector and thermal loss distribution at three wavelengths in the MWIR on the x-z plane of the absorber. (a), (b), (c) and (d) are the electric, magnetic intensity, Poynting vector and thermal loss distribution extracted from wavelength 8 µm, respectively. (e), (f), (g) and (h) are the electric and magnetic intensity, Poynting vector and thermal loss distribution extracted from wavelength 10 µm respectively. (i), (j), (k) and (l) were extracted from wavelength 12 µm.
Fig. 6.
Fig. 6. The absorption spectra of the absorber for changes of the geometry parameters of the anisotropic trapezoid array. (a) The number of the layer n. (b) The thickness of InP l1. (c) The thickness of Au l2. (d) The top width of trapezoid anisotropic array p. (e) The bottom width of trapezoid anisotropic array w. (f) The period of trapezoid anisotropic array a is varied while the other structural parameters are set as given in Fig. 1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε ¯ ¯ = [ ε x 0 0 0 ε y 0 0 0 ε z ] ,
ε x = ε y = ε || = t m ε m + t d ε d t m + t d a n d ε z = ε = ε m ε d ( t m + t d ) t m ε d + t d ε m ,
k 2 = β 2 ω 2 c 2 μ ε d ,
β 2 ε x + k x 2 ε z = ω 2 c 2 ,
t a n k x d m π 2 = k ε z k x ε d ,