Abstract

Effective thermal management is of paramount importance for all high-temperature systems operating under vacuum. Cooling of such systems relies mainly on radiative heat transfer requiring high spectral emissivity of surfaces, which is strongly affected by the surface condition. Pulsed laser structuring of stainless steel in air resulted in the spectral hemispherical emissivity values exceeding 0.95 in the 2.5–15 µm spectral region. The effects of surface oxidation and topography on spectral emissivity as well as high temperature stability of the surface structures were examined. High performance stability of the laser textured surfaces was confirmed after thermal aging studies at 320°C for 96 hours.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition

Jin Hwan Kim, Sang Min Jung, and Moo Whan Shin
Opt. Express 27(3) 3039-3054 (2019)

Thermal radiation from metal surfaces

A. J. Sievers
J. Opt. Soc. Am. 68(11) 1505-1516 (1978)

Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling

Aru Kong, Boyuan Cai, Peng Shi, and Xiao-cong Yuan
Opt. Express 27(21) 30102-30115 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications,” Opt. Express 26(12), 15995 (2018).
    [Crossref]
  2. Y. S. Touloukian, Thermophysical Properties of Matter-The TPRC Data Series- 7 (1970).
  3. J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
    [Crossref]
  4. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref]
  5. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
    [Crossref]
  6. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimentional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
    [Crossref]
  7. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimentional tungsten photonics crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
    [Crossref]
  8. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
    [Crossref]
  9. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref]
  10. S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimentional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [Crossref]
  11. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersiveinfrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
    [Crossref]
  12. E. Brodu, M. Balat-Pichelin, J. Sans, M. Freeman, and J. Kasper, “Efficiency and behavior of textured high emissivity metallic coatings at high temperature,” Mater. Des. 83, 85–94 (2015).
    [Crossref]
  13. J. King, H. Jo, R. Tirawat, K. Blomstrand, and K. Sridharan, “Effects of surface roughness, oxidation, and temperature on the emissivity of reactor pressure vessel alloys,” Nucl. Technol. 200(1), 1–14 (2017).
    [Crossref]
  14. H. Jo, J. L. King, K. Blomstrand, and K. Sridharan, “Spectral emissivity of oxidized and roughened metal surfaces,” Int. J. Heat Mass Transfer 115, 1065–1071 (2017).
    [Crossref]
  15. B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough Pr2NiO4 coating,” Appl. Phys. Lett. 79(22), 3633–3635 (2001).
    [Crossref]
  16. J.-C. Panitz, M. Schubnell, W. Durisch, and F. Geiger, “Influence of ytterbium concentrationon the emissive properties of Yb:YAG and Yb:Y2O3,” AIP Conf. Proc. 401, 265–276 (1997).
    [Crossref]
  17. L. M. Fraas, L. Ferguson, L. G. McCoy, and U. C. Pernisz, “SiC IR emitter design for thermophotovoltaic generators,” AIP Conf. Proc. 358, 488–494 (1996).
    [Crossref]
  18. G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, CERN Yellow Reports: Monographs4 (1) (2017).
  19. M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
    [Crossref]
  20. L. Vega, A. Abánades, M. Barnes, V. Vlachodimitropoulos, and W. Weterings, “Thermal analysis of the LHC injection kicker magnets,” J. Phys.: Conf. Ser. 874, 012100 (2017).
    [Crossref]
  21. A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref]
  22. J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light from metals,” Appl. Phys. B 106(2), 349–355 (2012).
    [Crossref]
  23. Y. Zhang, T. Fu, L. Fu, and C. Shi, “High temperature thermal radiation property measurements on large periodic micro-structured nickel surfaces fabricated using a femtosecond laser source,” Appl. Surf. Sci. 450, 200–208 (2018).
    [Crossref]
  24. D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G. Shafeev, and A. Simakin, “Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted surface modification,” Infrared Phys. Technol. 45(3), 159–167 (2004).
    [Crossref]
  25. A. Abdolvand, R. W. Lloyd, M. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organised, periodic microstructures on steel surfaces upon laser irradiation,” Appl. Phys. A 95(2), 447–452 (2009).
    [Crossref]
  26. G. Tang and A. Abdolvand, “Laser-assisted highly organised structuring of copper,” Opt. Mater. Express 1(8), 1425–1432 (2011).
    [Crossref]
  27. Cleaning and Descaling Stainless Steel, A Designers’ Handbook Series 9001 (American Iron and Steel Institute, 1988).
  28. N. Ohtsu, K. Kodama, K. Kitagawa, and K. Wagatsuma, “X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere,” Appl. Surf. Sci. 255(16), 7351–7356 (2009).
    [Crossref]
  29. P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
    [Crossref]
  30. F. Halden and W. Kingery, “Surface tension at elevated temperatures. II. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3,” J. Phys. Chem. 59(6), 557–559 (1955).
    [Crossref]
  31. G. Cao, S. Weber, S. Martin, K. Sridharan, M. Anderson, and T. Allen, “Spectral emissivity of candite alloys for very high temperature reactors in high temperature air environment,” J. Nucl. Mater. 441(1-3), 667–673 (2013).
    [Crossref]
  32. C.-D. Wen and I. Mudawar, “Modeling the effect of surface roughness on the emissivity of aluminum alloys,” Int. J. Heat Mass Transfer 49(23-24), 4279–4289 (2006).
    [Crossref]
  33. J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
    [Crossref]
  34. K. Kanayama, “Apparent directional emittances of V-groove and cicular groove rough surfaces,” Heat Transfer – Jpn. Res. 1, 1–22 (1972).

2019 (1)

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

2018 (2)

Y. Zhang, T. Fu, L. Fu, and C. Shi, “High temperature thermal radiation property measurements on large periodic micro-structured nickel surfaces fabricated using a femtosecond laser source,” Appl. Surf. Sci. 450, 200–208 (2018).
[Crossref]

W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications,” Opt. Express 26(12), 15995 (2018).
[Crossref]

2017 (5)

J. King, H. Jo, R. Tirawat, K. Blomstrand, and K. Sridharan, “Effects of surface roughness, oxidation, and temperature on the emissivity of reactor pressure vessel alloys,” Nucl. Technol. 200(1), 1–14 (2017).
[Crossref]

H. Jo, J. L. King, K. Blomstrand, and K. Sridharan, “Spectral emissivity of oxidized and roughened metal surfaces,” Int. J. Heat Mass Transfer 115, 1065–1071 (2017).
[Crossref]

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

L. Vega, A. Abánades, M. Barnes, V. Vlachodimitropoulos, and W. Weterings, “Thermal analysis of the LHC injection kicker magnets,” J. Phys.: Conf. Ser. 874, 012100 (2017).
[Crossref]

J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
[Crossref]

2015 (1)

E. Brodu, M. Balat-Pichelin, J. Sans, M. Freeman, and J. Kasper, “Efficiency and behavior of textured high emissivity metallic coatings at high temperature,” Mater. Des. 83, 85–94 (2015).
[Crossref]

2014 (2)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersiveinfrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

2013 (1)

G. Cao, S. Weber, S. Martin, K. Sridharan, M. Anderson, and T. Allen, “Spectral emissivity of candite alloys for very high temperature reactors in high temperature air environment,” J. Nucl. Mater. 441(1-3), 667–673 (2013).
[Crossref]

2012 (1)

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light from metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

2011 (2)

G. Tang and A. Abdolvand, “Laser-assisted highly organised structuring of copper,” Opt. Mater. Express 1(8), 1425–1432 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

2009 (3)

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

N. Ohtsu, K. Kodama, K. Kitagawa, and K. Wagatsuma, “X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere,” Appl. Surf. Sci. 255(16), 7351–7356 (2009).
[Crossref]

A. Abdolvand, R. W. Lloyd, M. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organised, periodic microstructures on steel surfaces upon laser irradiation,” Appl. Phys. A 95(2), 447–452 (2009).
[Crossref]

2008 (1)

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimentional tungsten photonics crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

2006 (1)

C.-D. Wen and I. Mudawar, “Modeling the effect of surface roughness on the emissivity of aluminum alloys,” Int. J. Heat Mass Transfer 49(23-24), 4279–4289 (2006).
[Crossref]

2004 (2)

D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G. Shafeev, and A. Simakin, “Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted surface modification,” Infrared Phys. Technol. 45(3), 159–167 (2004).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimentional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

2003 (2)

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimentional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref]

2001 (1)

B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough Pr2NiO4 coating,” Appl. Phys. Lett. 79(22), 3633–3635 (2001).
[Crossref]

1997 (2)

J.-C. Panitz, M. Schubnell, W. Durisch, and F. Geiger, “Influence of ytterbium concentrationon the emissive properties of Yb:YAG and Yb:Y2O3,” AIP Conf. Proc. 401, 265–276 (1997).
[Crossref]

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

1996 (1)

L. M. Fraas, L. Ferguson, L. G. McCoy, and U. C. Pernisz, “SiC IR emitter design for thermophotovoltaic generators,” AIP Conf. Proc. 358, 488–494 (1996).
[Crossref]

1972 (1)

K. Kanayama, “Apparent directional emittances of V-groove and cicular groove rough surfaces,” Heat Transfer – Jpn. Res. 1, 1–22 (1972).

1955 (1)

F. Halden and W. Kingery, “Surface tension at elevated temperatures. II. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3,” J. Phys. Chem. 59(6), 557–559 (1955).
[Crossref]

Abánades, A.

L. Vega, A. Abánades, M. Barnes, V. Vlachodimitropoulos, and W. Weterings, “Thermal analysis of the LHC injection kicker magnets,” J. Phys.: Conf. Ser. 874, 012100 (2017).
[Crossref]

Abdolvand, A.

G. Tang and A. Abdolvand, “Laser-assisted highly organised structuring of copper,” Opt. Mater. Express 1(8), 1425–1432 (2011).
[Crossref]

A. Abdolvand, R. W. Lloyd, M. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organised, periodic microstructures on steel surfaces upon laser irradiation,” Appl. Phys. A 95(2), 447–452 (2009).
[Crossref]

Adraktas, A.

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

Allen, T.

G. Cao, S. Weber, S. Martin, K. Sridharan, M. Anderson, and T. Allen, “Spectral emissivity of candite alloys for very high temperature reactors in high temperature air environment,” J. Nucl. Mater. 441(1-3), 667–673 (2013).
[Crossref]

Alonso, I. B.

G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, CERN Yellow Reports: Monographs4 (1) (2017).

Anderson, M.

G. Cao, S. Weber, S. Martin, K. Sridharan, M. Anderson, and T. Allen, “Spectral emissivity of candite alloys for very high temperature reactors in high temperature air environment,” J. Nucl. Mater. 441(1-3), 667–673 (2013).
[Crossref]

Apollinari, G.

G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, CERN Yellow Reports: Monographs4 (1) (2017).

Arias-González, F.

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersiveinfrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Balat-Pichelin, M.

E. Brodu, M. Balat-Pichelin, J. Sans, M. Freeman, and J. Kasper, “Efficiency and behavior of textured high emissivity metallic coatings at high temperature,” Mater. Des. 83, 85–94 (2015).
[Crossref]

Barnes, M.

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

L. Vega, A. Abánades, M. Barnes, V. Vlachodimitropoulos, and W. Weterings, “Thermal analysis of the LHC injection kicker magnets,” J. Phys.: Conf. Ser. 874, 012100 (2017).
[Crossref]

Bensaoula, A.

D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G. Shafeev, and A. Simakin, “Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted surface modification,” Infrared Phys. Technol. 45(3), 159–167 (2004).
[Crossref]

Bierman, D. M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Blomstrand, K.

J. King, H. Jo, R. Tirawat, K. Blomstrand, and K. Sridharan, “Effects of surface roughness, oxidation, and temperature on the emissivity of reactor pressure vessel alloys,” Nucl. Technol. 200(1), 1–14 (2017).
[Crossref]

H. Jo, J. L. King, K. Blomstrand, and K. Sridharan, “Spectral emissivity of oxidized and roughened metal surfaces,” Int. J. Heat Mass Transfer 115, 1065–1071 (2017).
[Crossref]

Boney, C.

D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G. Shafeev, and A. Simakin, “Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted surface modification,” Infrared Phys. Technol. 45(3), 159–167 (2004).
[Crossref]

Bountinguiza, M.

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

Bregliozzi, G.

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

Brodu, E.

E. Brodu, M. Balat-Pichelin, J. Sans, M. Freeman, and J. Kasper, “Efficiency and behavior of textured high emissivity metallic coatings at high temperature,” Mater. Des. 83, 85–94 (2015).
[Crossref]

Brüning, O.

G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, CERN Yellow Reports: Monographs4 (1) (2017).

Cao, G.

G. Cao, S. Weber, S. Martin, K. Sridharan, M. Anderson, and T. Allen, “Spectral emissivity of candite alloys for very high temperature reactors in high temperature air environment,” J. Nucl. Mater. 441(1-3), 667–673 (2013).
[Crossref]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref]

Celanovic, I.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimentional tungsten photonics crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Chabin, M.

B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough Pr2NiO4 coating,” Appl. Phys. Lett. 79(22), 3633–3635 (2001).
[Crossref]

Chan, W. R.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Chen, G.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimentional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref]

Cid, L. V.

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

Comesaña, R.

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersiveinfrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Del Val, J.

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

Ducimetière, L.

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

Durisch, W.

J.-C. Panitz, M. Schubnell, W. Durisch, and F. Geiger, “Influence of ytterbium concentrationon the emissive properties of Yb:YAG and Yb:Y2O3,” AIP Conf. Proc. 401, 265–276 (1997).
[Crossref]

Echegut, P.

B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough Pr2NiO4 coating,” Appl. Phys. Lett. 79(22), 3633–3635 (2001).
[Crossref]

Fan, S.

Ferguson, L.

L. M. Fraas, L. Ferguson, L. G. McCoy, and U. C. Pernisz, “SiC IR emitter design for thermophotovoltaic generators,” AIP Conf. Proc. 358, 488–494 (1996).
[Crossref]

Fessia, P.

G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, CERN Yellow Reports: Monographs4 (1) (2017).

Fleming, J.

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimentional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Fraas, L. M.

L. M. Fraas, L. Ferguson, L. G. McCoy, and U. C. Pernisz, “SiC IR emitter design for thermophotovoltaic generators,” AIP Conf. Proc. 358, 488–494 (1996).
[Crossref]

Freeman, M.

E. Brodu, M. Balat-Pichelin, J. Sans, M. Freeman, and J. Kasper, “Efficiency and behavior of textured high emissivity metallic coatings at high temperature,” Mater. Des. 83, 85–94 (2015).
[Crossref]

Fu, L.

Y. Zhang, T. Fu, L. Fu, and C. Shi, “High temperature thermal radiation property measurements on large periodic micro-structured nickel surfaces fabricated using a femtosecond laser source,” Appl. Surf. Sci. 450, 200–208 (2018).
[Crossref]

Fu, T.

Y. Zhang, T. Fu, L. Fu, and C. Shi, “High temperature thermal radiation property measurements on large periodic micro-structured nickel surfaces fabricated using a femtosecond laser source,” Appl. Surf. Sci. 450, 200–208 (2018).
[Crossref]

Geiger, F.

J.-C. Panitz, M. Schubnell, W. Durisch, and F. Geiger, “Influence of ytterbium concentrationon the emissive properties of Yb:YAG and Yb:Y2O3,” AIP Conf. Proc. 401, 265–276 (1997).
[Crossref]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Goddard, B.

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

Greffet, J.-J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref]

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

Guo, C.

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

Halden, F.

F. Halden and W. Kingery, “Surface tension at elevated temperatures. II. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3,” J. Phys. Chem. 59(6), 557–559 (1955).
[Crossref]

Huang, Y.

J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
[Crossref]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersiveinfrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Jiang, H.

J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
[Crossref]

Jo, H.

J. King, H. Jo, R. Tirawat, K. Blomstrand, and K. Sridharan, “Effects of surface roughness, oxidation, and temperature on the emissivity of reactor pressure vessel alloys,” Nucl. Technol. 200(1), 1–14 (2017).
[Crossref]

H. Jo, J. L. King, K. Blomstrand, and K. Sridharan, “Spectral emissivity of oxidized and roughened metal surfaces,” Int. J. Heat Mass Transfer 115, 1065–1071 (2017).
[Crossref]

Joannopoulos, J. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimentional tungsten photonics crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Kanayama, K.

K. Kanayama, “Apparent directional emittances of V-groove and cicular groove rough surfaces,” Heat Transfer – Jpn. Res. 1, 1–22 (1972).

Kasper, J.

E. Brodu, M. Balat-Pichelin, J. Sans, M. Freeman, and J. Kasper, “Efficiency and behavior of textured high emissivity metallic coatings at high temperature,” Mater. Des. 83, 85–94 (2015).
[Crossref]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimentional tungsten photonics crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

King, J.

J. King, H. Jo, R. Tirawat, K. Blomstrand, and K. Sridharan, “Effects of surface roughness, oxidation, and temperature on the emissivity of reactor pressure vessel alloys,” Nucl. Technol. 200(1), 1–14 (2017).
[Crossref]

King, J. L.

H. Jo, J. L. King, K. Blomstrand, and K. Sridharan, “Spectral emissivity of oxidized and roughened metal surfaces,” Int. J. Heat Mass Transfer 115, 1065–1071 (2017).
[Crossref]

Kingery, W.

F. Halden and W. Kingery, “Surface tension at elevated temperatures. II. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3,” J. Phys. Chem. 59(6), 557–559 (1955).
[Crossref]

Kitagawa, K.

N. Ohtsu, K. Kodama, K. Kitagawa, and K. Wagatsuma, “X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere,” Appl. Surf. Sci. 255(16), 7351–7356 (2009).
[Crossref]

Kodama, K.

N. Ohtsu, K. Kodama, K. Kitagawa, and K. Wagatsuma, “X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere,” Appl. Surf. Sci. 255(16), 7351–7356 (2009).
[Crossref]

Lamont, M.

G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, CERN Yellow Reports: Monographs4 (1) (2017).

Le Gall, J.

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

Lenert, A.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Li, L.

A. Abdolvand, R. W. Lloyd, M. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organised, periodic microstructures on steel surfaces upon laser irradiation,” Appl. Phys. A 95(2), 447–452 (2009).
[Crossref]

Li, W.

Lin, S.-Y.

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimentional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Liu, Y.

J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
[Crossref]

Liu, Z.

A. Abdolvand, R. W. Lloyd, M. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organised, periodic microstructures on steel surfaces upon laser irradiation,” Appl. Phys. A 95(2), 447–452 (2009).
[Crossref]

Lloyd, R. W.

A. Abdolvand, R. W. Lloyd, M. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organised, periodic microstructures on steel surfaces upon laser irradiation,” Appl. Phys. A 95(2), 447–452 (2009).
[Crossref]

Lusquiños, F.

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref]

Makin, V.

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

Martin, S.

G. Cao, S. Weber, S. Martin, K. Sridharan, M. Anderson, and T. Allen, “Spectral emissivity of candite alloys for very high temperature reactors in high temperature air environment,” J. Nucl. Mater. 441(1-3), 667–673 (2013).
[Crossref]

McCoy, L. G.

L. M. Fraas, L. Ferguson, L. G. McCoy, and U. C. Pernisz, “SiC IR emitter design for thermophotovoltaic generators,” AIP Conf. Proc. 358, 488–494 (1996).
[Crossref]

Moreno, J.

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimentional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Mudawar, I.

C.-D. Wen and I. Mudawar, “Modeling the effect of surface roughness on the emissivity of aluminum alloys,” Int. J. Heat Mass Transfer 49(23-24), 4279–4289 (2006).
[Crossref]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimentional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersiveinfrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Odier, P.

B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough Pr2NiO4 coating,” Appl. Phys. Lett. 79(22), 3633–3635 (2001).
[Crossref]

Ohtsu, N.

N. Ohtsu, K. Kodama, K. Kitagawa, and K. Wagatsuma, “X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere,” Appl. Surf. Sci. 255(16), 7351–7356 (2009).
[Crossref]

Olivier, M.

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Panitz, J.-C.

J.-C. Panitz, M. Schubnell, W. Durisch, and F. Geiger, “Influence of ytterbium concentrationon the emissive properties of Yb:YAG and Yb:Y2O3,” AIP Conf. Proc. 401, 265–276 (1997).
[Crossref]

Pernisz, U. C.

L. M. Fraas, L. Ferguson, L. G. McCoy, and U. C. Pernisz, “SiC IR emitter design for thermophotovoltaic generators,” AIP Conf. Proc. 358, 488–494 (1996).
[Crossref]

Pillai, R.

D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G. Shafeev, and A. Simakin, “Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted surface modification,” Infrared Phys. Technol. 45(3), 159–167 (2004).
[Crossref]

Pou, J.

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

Pou, P.

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

Quintero, F.

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Riveiro, A.

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

Rossi, L.

G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, CERN Yellow Reports: Monographs4 (1) (2017).

Rousseau, B.

B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough Pr2NiO4 coating,” Appl. Phys. Lett. 79(22), 3633–3635 (2001).
[Crossref]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Salvant, B.

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

Sans, J.

E. Brodu, M. Balat-Pichelin, J. Sans, M. Freeman, and J. Kasper, “Efficiency and behavior of textured high emissivity metallic coatings at high temperature,” Mater. Des. 83, 85–94 (2015).
[Crossref]

Schmidt, M. J.

A. Abdolvand, R. W. Lloyd, M. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organised, periodic microstructures on steel surfaces upon laser irradiation,” Appl. Phys. A 95(2), 447–452 (2009).
[Crossref]

Schubnell, M.

J.-C. Panitz, M. Schubnell, W. Durisch, and F. Geiger, “Influence of ytterbium concentrationon the emissive properties of Yb:YAG and Yb:Y2O3,” AIP Conf. Proc. 401, 265–276 (1997).
[Crossref]

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Sestak, J.

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

Shafeev, G.

D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G. Shafeev, and A. Simakin, “Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted surface modification,” Infrared Phys. Technol. 45(3), 159–167 (2004).
[Crossref]

Shi, C.

Y. Zhang, T. Fu, L. Fu, and C. Shi, “High temperature thermal radiation property measurements on large periodic micro-structured nickel surfaces fabricated using a femtosecond laser source,” Appl. Surf. Sci. 450, 200–208 (2018).
[Crossref]

Simakin, A.

D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G. Shafeev, and A. Simakin, “Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted surface modification,” Infrared Phys. Technol. 45(3), 159–167 (2004).
[Crossref]

Sin, A.

B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough Pr2NiO4 coating,” Appl. Phys. Lett. 79(22), 3633–3635 (2001).
[Crossref]

Soljacic, M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Sridharan, K.

H. Jo, J. L. King, K. Blomstrand, and K. Sridharan, “Spectral emissivity of oxidized and roughened metal surfaces,” Int. J. Heat Mass Transfer 115, 1065–1071 (2017).
[Crossref]

J. King, H. Jo, R. Tirawat, K. Blomstrand, and K. Sridharan, “Effects of surface roughness, oxidation, and temperature on the emissivity of reactor pressure vessel alloys,” Nucl. Technol. 200(1), 1–14 (2017).
[Crossref]

G. Cao, S. Weber, S. Martin, K. Sridharan, M. Anderson, and T. Allen, “Spectral emissivity of candite alloys for very high temperature reactors in high temperature air environment,” J. Nucl. Mater. 441(1-3), 667–673 (2013).
[Crossref]

Starikov, D.

D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G. Shafeev, and A. Simakin, “Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted surface modification,” Infrared Phys. Technol. 45(3), 159–167 (2004).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Sun, J.

J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
[Crossref]

Tang, G.

Tavian, L.

G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, CERN Yellow Reports: Monographs4 (1) (2017).

Tirawat, R.

J. King, H. Jo, R. Tirawat, K. Blomstrand, and K. Sridharan, “Effects of surface roughness, oxidation, and temperature on the emissivity of reactor pressure vessel alloys,” Nucl. Technol. 200(1), 1–14 (2017).
[Crossref]

Touloukian, Y. S.

Y. S. Touloukian, Thermophysical Properties of Matter-The TPRC Data Series- 7 (1970).

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Vallgren, C. Y.

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

Vega, L.

L. Vega, A. Abánades, M. Barnes, V. Vlachodimitropoulos, and W. Weterings, “Thermal analysis of the LHC injection kicker magnets,” J. Phys.: Conf. Ser. 874, 012100 (2017).
[Crossref]

Vlachodimitropoulos, V.

L. Vega, A. Abánades, M. Barnes, V. Vlachodimitropoulos, and W. Weterings, “Thermal analysis of the LHC injection kicker magnets,” J. Phys.: Conf. Ser. 874, 012100 (2017).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

Wagatsuma, K.

N. Ohtsu, K. Kodama, K. Kitagawa, and K. Wagatsuma, “X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere,” Appl. Surf. Sci. 255(16), 7351–7356 (2009).
[Crossref]

Wang, E. N.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Wang, Y.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light from metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Weber, S.

G. Cao, S. Weber, S. Martin, K. Sridharan, M. Anderson, and T. Allen, “Spectral emissivity of candite alloys for very high temperature reactors in high temperature air environment,” J. Nucl. Mater. 441(1-3), 667–673 (2013).
[Crossref]

Weiss, F.

B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough Pr2NiO4 coating,” Appl. Phys. Lett. 79(22), 3633–3635 (2001).
[Crossref]

Wen, C.-D.

C.-D. Wen and I. Mudawar, “Modeling the effect of surface roughness on the emissivity of aluminum alloys,” Int. J. Heat Mass Transfer 49(23-24), 4279–4289 (2006).
[Crossref]

Weterings, W.

L. Vega, A. Abánades, M. Barnes, V. Vlachodimitropoulos, and W. Weterings, “Thermal analysis of the LHC injection kicker magnets,” J. Phys.: Conf. Ser. 874, 012100 (2017).
[Crossref]

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

Whitehead, D. J.

A. Abdolvand, R. W. Lloyd, M. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organised, periodic microstructures on steel surfaces upon laser irradiation,” Appl. Phys. A 95(2), 447–452 (2009).
[Crossref]

Wu, D.

J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
[Crossref]

Yang, J.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light from metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Yang, Y.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light from metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Yeng, Y. X.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Zhang, Y.

Y. Zhang, T. Fu, L. Fu, and C. Shi, “High temperature thermal radiation property measurements on large periodic micro-structured nickel surfaces fabricated using a femtosecond laser source,” Appl. Surf. Sci. 450, 200–208 (2018).
[Crossref]

Zhao, B.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light from metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Zheng, X.

J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
[Crossref]

Zhu, X.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light from metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Zhuang, J.

J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
[Crossref]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, and M. Soljačić, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar therophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

AIP Conf. Proc. (2)

J.-C. Panitz, M. Schubnell, W. Durisch, and F. Geiger, “Influence of ytterbium concentrationon the emissive properties of Yb:YAG and Yb:Y2O3,” AIP Conf. Proc. 401, 265–276 (1997).
[Crossref]

L. M. Fraas, L. Ferguson, L. G. McCoy, and U. C. Pernisz, “SiC IR emitter design for thermophotovoltaic generators,” AIP Conf. Proc. 358, 488–494 (1996).
[Crossref]

Appl. Phys. A (1)

A. Abdolvand, R. W. Lloyd, M. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organised, periodic microstructures on steel surfaces upon laser irradiation,” Appl. Phys. A 95(2), 447–452 (2009).
[Crossref]

Appl. Phys. B (1)

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light from metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Appl. Phys. Express (1)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersiveinfrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Appl. Phys. Lett. (4)

S.-Y. Lin, J. Moreno, and J. Fleming, “Three-dimentional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimentional tungsten photonics crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough Pr2NiO4 coating,” Appl. Phys. Lett. 79(22), 3633–3635 (2001).
[Crossref]

Appl. Surf. Sci. (3)

N. Ohtsu, K. Kodama, K. Kitagawa, and K. Wagatsuma, “X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere,” Appl. Surf. Sci. 255(16), 7351–7356 (2009).
[Crossref]

P. Pou, J. Del Val, A. Riveiro, R. Comesaña, F. Arias-González, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, “Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces,” Appl. Surf. Sci. 475, 896–905 (2019).
[Crossref]

Y. Zhang, T. Fu, L. Fu, and C. Shi, “High temperature thermal radiation property measurements on large periodic micro-structured nickel surfaces fabricated using a femtosecond laser source,” Appl. Surf. Sci. 450, 200–208 (2018).
[Crossref]

Appl. Therm. Eng. (1)

J. Sun, J. Zhuang, H. Jiang, Y. Huang, X. Zheng, Y. Liu, and D. Wu, “Thermal dissipationperformance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study,” Appl. Therm. Eng. 121, 492–500 (2017).
[Crossref]

Heat Transfer – Jpn. Res. (1)

K. Kanayama, “Apparent directional emittances of V-groove and cicular groove rough surfaces,” Heat Transfer – Jpn. Res. 1, 1–22 (1972).

Infrared Phys. Technol. (1)

D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G. Shafeev, and A. Simakin, “Spectral and surface analysis of heated micro-column arrays fabricated by laser-assisted surface modification,” Infrared Phys. Technol. 45(3), 159–167 (2004).
[Crossref]

Int. J. Heat Mass Transfer (2)

C.-D. Wen and I. Mudawar, “Modeling the effect of surface roughness on the emissivity of aluminum alloys,” Int. J. Heat Mass Transfer 49(23-24), 4279–4289 (2006).
[Crossref]

H. Jo, J. L. King, K. Blomstrand, and K. Sridharan, “Spectral emissivity of oxidized and roughened metal surfaces,” Int. J. Heat Mass Transfer 115, 1065–1071 (2017).
[Crossref]

J. Nucl. Mater. (1)

G. Cao, S. Weber, S. Martin, K. Sridharan, M. Anderson, and T. Allen, “Spectral emissivity of candite alloys for very high temperature reactors in high temperature air environment,” J. Nucl. Mater. 441(1-3), 667–673 (2013).
[Crossref]

J. Phys. Chem. (1)

F. Halden and W. Kingery, “Surface tension at elevated temperatures. II. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3,” J. Phys. Chem. 59(6), 557–559 (1955).
[Crossref]

J. Phys.: Conf. Ser. (2)

M. Barnes, A. Adraktas, G. Bregliozzi, B. Goddard, L. Ducimetière, B. Salvant, J. Sestak, L. V. Cid, W. Weterings, and C. Y. Vallgren, “Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans,” J. Phys.: Conf. Ser. 874, 012101 (2017).
[Crossref]

L. Vega, A. Abánades, M. Barnes, V. Vlachodimitropoulos, and W. Weterings, “Thermal analysis of the LHC injection kicker magnets,” J. Phys.: Conf. Ser. 874, 012100 (2017).
[Crossref]

Mater. Des. (1)

E. Brodu, M. Balat-Pichelin, J. Sans, M. Freeman, and J. Kasper, “Efficiency and behavior of textured high emissivity metallic coatings at high temperature,” Mater. Des. 83, 85–94 (2015).
[Crossref]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref]

Nucl. Technol. (1)

J. King, H. Jo, R. Tirawat, K. Blomstrand, and K. Sridharan, “Effects of surface roughness, oxidation, and temperature on the emissivity of reactor pressure vessel alloys,” Nucl. Technol. 200(1), 1–14 (2017).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimentional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

Other (3)

G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, CERN Yellow Reports: Monographs4 (1) (2017).

Y. S. Touloukian, Thermophysical Properties of Matter-The TPRC Data Series- 7 (1970).

Cleaning and Descaling Stainless Steel, A Designers’ Handbook Series 9001 (American Iron and Steel Institute, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Spectral hemispherical emissivity responses of the as-received (dashed curve) and laser-structured (solid curve) 304L steel measured at 22°C. (b) Surface topography of the untreated steel. (c) Surface topography of the steel surface after laser structuring in air.
Fig. 2.
Fig. 2. (a) Spectral hemispherical emissivity responses of the chemically etched and air-oxidized 304L steel surfaces measured at 22°C (emissivity response of the best performing topography shown in black). (b) Surface topography of the steel after laser structuring in nitrogen (N2). (c) Surface topography of the in-air laser-structured steel after acid pickling.
Fig. 3.
Fig. 3. (a) Room temperature spectral hemispherical emissivity of 304L steel surfaces processed with different number of pulses per spot (emissivity response of the best performing topography processed in the air atmosphere is shown in black). Surface cross sections after ns-laser structuring (100-μm scale bar is shown in black): (b) N2 atmosphere, 140 pulses/spot, microcavity depth ∼160 µm; (c) N2 atmosphere, 700 pulses/spot, microcavity depth ∼220 µm; (d) N2 atmosphere, 1400 pulses/spot, microcavity depth ∼290 µm); (e) air atmosphere, 1400 pulses/spot, measured microcavity depth ∼350 µm.
Fig. 4.
Fig. 4. Calculated temperature dependence of total hemispherical emissivity of 304L steel after laser structuring in air (laser fluence of ∼3.6 J/cm2, scanning speed of 10 mm/s, hatch distance 75 µm, and 1400 pulses/spot). Dashed curves are the upper and lower theoretical limits of total emissivity.
Fig. 5.
Fig. 5. Room temperature spectral hemispherical emissivity responses of the laser-structured 304L steel in air before (solid black curve) and after (dotted red curve) thermal aging in air at 320°C for 96 hours.
Fig. 6.
Fig. 6. Schematic of the emissivity measurements.
Fig. 7.
Fig. 7. Surface topographies of the laser-structured surfaces in N2 before and after air oxidation: (a) before oxidation, (b) after 7-h oxidation at 320°C, (c) after 50-h oxidation at 320°C, (d) after 100-h oxidation at 320°C, (e) after 6-h oxidation at 600°C.
Fig. 8.
Fig. 8. Surface topographies of the laser-structured surfaces in N2: (a) 140 pulses/spot, (b) 700 pulses/spot, (c) 1400 pulses/spot.

Tables (1)

Tables Icon

Table 1. Total hemispherical emissivity performance of 304L steel surfaces in the spectral region from 2.5 to 14 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε ( λ , θ , T ) = α ( λ , θ , T ) = 1 R ( λ , θ , T )
ε λ 1 λ 2 ( T ) = λ 1 λ 2 ε ( λ , T ) E b λ ( λ , T ) d λ λ 1 λ 2 E b λ ( λ , T ) d λ
ε l ( T ) = λ 1 λ 2 ε ( λ , T ) E b λ ( λ , T ) d λ 0 E b λ ( λ , T ) d λ = λ 1 λ 2 ε ( λ , T ) E b λ ( λ , T ) d λ σ T 4
ε h ( T ) = 0 λ 1 E b λ ( λ , T ) d λ + λ 1 λ 2 ε ( λ , T ) E b λ ( λ , T ) d λ + λ 2 E b λ ( λ , T ) d λ 0 E b λ ( λ , T ) d λ = = f 1 + λ 1 λ 2 ε ( λ , T ) E b λ ( λ , T ) d λ σ T 4 + f 2

Metrics