Abstract

Resonant plasmonic metasurfaces and thin film stacks have been extensively studied for spectral control and perfect absorption enhancement functionality. Essentially, the plasmonic nanostructures or metallic films enable the optical field resonant and confinement at the nanoscale, and thus yield the Ohmic heat absorption in the nanoscale metals. However, typical perfect absorbers based on film coatings are usually sensitive to the variation of large oblique incident angles, and mostly lack the capability for direct conversion to photocurrents and photovoltaics. Here, we proposed a lithography-free perfect absorber design consisting of metallic and amorphous silicon (α-Si) films with deep-subwavelength thickness (∼ λ/20 - λ/100). The perfect absorptivity spectrum enjoys Omni-directional optical characteristics, which remains the high absorption for the normal incidence to large oblique incidence angles of ± 60°. Due to the strongly trapped resonance in the Fabry-Perot cavity, the majority of light absorption (∼89%) takes place in the core α-Si layer, which could enable the potential optoelectronic conversion to photocurrents and photovoltaics. Our proposed perfect absorber based on ultrathin α-Si films enjoys the great simplicity of design and manufacturing and suggests a variety of promising applications, including photovoltaics, optical sensors, solar cells, photodetectors, thermal bolometers, nano-imaging devices, color filters, and thermal emitters, etc.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-angle wideband polarization-insensitive perfect absorber based on uniaxial anisotropic metasurfaces

Shi-Kang Tseng, Hui-Hsin Hsiao, and Yih-Peng Chiou
Opt. Mater. Express 10(5) 1193-1203 (2020)

Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks

Yuyin Li, Zhengqi Liu, Houjiao Zhang, Peng Tang, Biao Wu, and Guiqiang Liu
Opt. Express 27(8) 11809-11818 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref]
  2. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
    [Crossref]
  3. J. H. Lee, J. P. Singer, and E. L. Thomas, “Micro-/nanostructured mechanical metamaterials,” Adv. Mater. 24(36), 4782–4810 (2012).
    [Crossref]
  4. J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
    [Crossref]
  5. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
    [Crossref]
  6. J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  7. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  8. P. Tang, Z. Liu, Y. Wang, X. Liu, P. Pan, and G. Liu, “Ultrawideband midinfrared refractory absorbers,” Opt. Eng. 58(11), 115103 (2019).
    [Crossref]
  9. M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure,” Sci. Rep. 8(1), 9162 (2018).
    [Crossref]
  10. Z. Y. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
    [Crossref]
  11. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref]
  12. Z. Li, S. Butun, and K. Aydin, “Lithography-free transmission filters at ultraviolet frequencies using ultra-thin aluminum films,” J. Opt. 18(6), 065006 (2016).
    [Crossref]
  13. J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
    [Crossref]
  14. K. T. Lee, S. Seo, and L. J. Guo, “High-Color-Purity Subtractive Color Filters with a Wide Viewing Angle Based on Plasmonic Perfect Absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
    [Crossref]
  15. T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [Crossref]
  16. M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15(2), 025006 (2013).
    [Crossref]
  17. Y. L. Liao and Y. Zhao, “A wide-angle dual-band polarization-sensitive absorber with a multilayer grating,” Mod. Phys. Lett. B 28(14), 1450109 (2014).
    [Crossref]
  18. F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, “Plasmonically enhanced hot electron based photovoltaic device,” Opt. Express 21(6), 7196–7201 (2013).
    [Crossref]
  19. A. Datas and P. Linares, “Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: A comprehensive review,” Renewable Sustainable Energy Rev. 73, 477–495 (2017).
    [Crossref]
  20. M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
    [Crossref]
  21. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
    [Crossref]
  22. Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
    [Crossref]
  23. Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
    [Crossref]
  24. A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
    [Crossref]
  25. S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7(1), 42349 (2017).
    [Crossref]
  26. K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant Cavity-Enhanced (Rce) Photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
    [Crossref]
  27. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref]
  28. S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
    [Crossref]
  29. J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
    [Crossref]
  30. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
    [Crossref]
  31. J. Meseguer, I. Pérez-Grande, and A. Sanz-Andrés, Spacecraft thermal control (Elsevier, 2012).
  32. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
    [Crossref]
  33. C. M. Ke, I. M. Peters, N. Sahraei, A. G. Aberle, and R. Stangl, “On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells,” J. Appl. Phys. 117(24), 245701 (2015).
    [Crossref]

2019 (4)

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

P. Tang, Z. Liu, Y. Wang, X. Liu, P. Pan, and G. Liu, “Ultrawideband midinfrared refractory absorbers,” Opt. Eng. 58(11), 115103 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
[Crossref]

2018 (2)

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure,” Sci. Rep. 8(1), 9162 (2018).
[Crossref]

2017 (4)

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7(1), 42349 (2017).
[Crossref]

A. Datas and P. Linares, “Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: A comprehensive review,” Renewable Sustainable Energy Rev. 73, 477–495 (2017).
[Crossref]

2016 (1)

Z. Li, S. Butun, and K. Aydin, “Lithography-free transmission filters at ultraviolet frequencies using ultra-thin aluminum films,” J. Opt. 18(6), 065006 (2016).
[Crossref]

2015 (4)

K. T. Lee, S. Seo, and L. J. Guo, “High-Color-Purity Subtractive Color Filters with a Wide Viewing Angle Based on Plasmonic Perfect Absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

Z. Y. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

C. M. Ke, I. M. Peters, N. Sahraei, A. G. Aberle, and R. Stangl, “On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells,” J. Appl. Phys. 117(24), 245701 (2015).
[Crossref]

2014 (2)

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

Y. L. Liao and Y. Zhao, “A wide-angle dual-band polarization-sensitive absorber with a multilayer grating,” Mod. Phys. Lett. B 28(14), 1450109 (2014).
[Crossref]

2013 (4)

F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, “Plasmonically enhanced hot electron based photovoltaic device,” Opt. Express 21(6), 7196–7201 (2013).
[Crossref]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref]

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref]

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15(2), 025006 (2013).
[Crossref]

2012 (1)

J. H. Lee, J. P. Singer, and E. L. Thomas, “Micro-/nanostructured mechanical metamaterials,” Adv. Mater. 24(36), 4782–4810 (2012).
[Crossref]

2011 (4)

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[Crossref]

2010 (3)

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

2008 (1)

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

2003 (1)

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

1991 (1)

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant Cavity-Enhanced (Rce) Photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Aalizadeh, M.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure,” Sci. Rep. 8(1), 9162 (2018).
[Crossref]

Abdelsalam, M.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Aberle, A. G.

C. M. Ke, I. M. Peters, N. Sahraei, A. G. Aberle, and R. Stangl, “On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells,” J. Appl. Phys. 117(24), 245701 (2015).
[Crossref]

Allen, M.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Arsenault, L.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant Cavity-Enhanced (Rce) Photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Atar, F. B.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Lithography-free transmission filters at ultraviolet frequencies using ultra-thin aluminum films,” J. Opt. 18(6), 065006 (2016).
[Crossref]

Z. Y. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Aygun, L. E.

Bartlett, P. N.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Battal, E.

Baumberg, J. J.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Bayindir, M.

Belov, P. A.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

Bessonov, A. A.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Borisov, A. G.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Bottomley, J.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Butun, B.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure,” Sci. Rep. 8(1), 9162 (2018).
[Crossref]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Lithography-free transmission filters at ultraviolet frequencies using ultra-thin aluminum films,” J. Opt. 18(6), 065006 (2016).
[Crossref]

Z. Y. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

Cahill, D. G.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Chen, Q.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref]

Chen, S.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Chyi, J. I.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant Cavity-Enhanced (Rce) Photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Colli, A.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Daglar, B.

Datas, A.

A. Datas and P. Linares, “Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: A comprehensive review,” Renewable Sustainable Energy Rev. 73, 477–495 (2017).
[Crossref]

de Abajo, F. J. G.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Deng, J.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Deng, L.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Dereshgi, S. A.

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7(1), 42349 (2017).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Ford, W. K.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Fu, G.

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Fung, M.

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Goodson, K. E.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Guan, Z.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Guo, L. J.

K. T. Lee, S. Seo, and L. J. Guo, “High-Color-Purity Subtractive Color Filters with a Wide Viewing Angle Based on Plasmonic Perfect Absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

Hahn, J. W.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Han, K.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

Hao, J. M.

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Hao, Q.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Huang, T. J.

Huang, Z.

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Jin, L.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref]

Jin, W.

J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
[Crossref]

Kallioinen, S.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref]

Ke, C. M.

C. M. Ke, I. M. Peters, N. Sahraei, A. G. Aberle, and R. Stangl, “On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells,” J. Appl. Phys. 117(24), 245701 (2015).
[Crossref]

Khavasi, A.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure,” Sci. Rep. 8(1), 9162 (2018).
[Crossref]

Khoo, I. C.

Kim, J.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

Kiraly, B.

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref]

Kishino, K.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant Cavity-Enhanced (Rce) Photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Kivshar, Y. S.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

Lai, S.

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

Lee, C.

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

Lee, J. H.

J. H. Lee, J. P. Singer, and E. L. Thomas, “Micro-/nanostructured mechanical metamaterials,” Adv. Mater. 24(36), 4782–4810 (2012).
[Crossref]

Lee, K. T.

K. T. Lee, S. Seo, and L. J. Guo, “High-Color-Purity Subtractive Color Filters with a Wide Viewing Angle Based on Plasmonic Perfect Absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

Lee, S.

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

Lei, D.

J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
[Crossref]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref]

Li, G.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Li, Z.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Lithography-free transmission filters at ultraviolet frequencies using ultra-thin aluminum films,” J. Opt. 18(6), 065006 (2016).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

Li, Z. Y.

Z. Y. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Liao, Y. L.

Y. L. Liao and Y. Zhao, “A wide-angle dual-band polarization-sensitive absorber with a multilayer grating,” Mod. Phys. Lett. B 28(14), 1450109 (2014).
[Crossref]

Linares, P.

A. Datas and P. Linares, “Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: A comprehensive review,” Renewable Sustainable Energy Rev. 73, 477–495 (2017).
[Crossref]

Liu, D.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Liu, G.

P. Tang, Z. Liu, Y. Wang, X. Liu, P. Pan, and G. Liu, “Ultrawideband midinfrared refractory absorbers,” Opt. Eng. 58(11), 115103 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Liu, M.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Liu, T.

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

Liu, X.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

P. Tang, Z. Liu, Y. Wang, X. Liu, P. Pan, and G. Liu, “Ultrawideband midinfrared refractory absorbers,” Opt. Eng. 58(11), 115103 (2019).
[Crossref]

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Liu, Y.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Liu, Z.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

P. Tang, Z. Liu, Y. Wang, X. Liu, P. Pan, and G. Liu, “Ultrawideband midinfrared refractory absorbers,” Opt. Eng. 58(11), 115103 (2019).
[Crossref]

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Lo, M.

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Mahan, G. D.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Majumdar, A.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Malik, S.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Maris, H. J.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Medina-Salazar, I.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Merlin, R.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Meseguer, J.

J. Meseguer, I. Pérez-Grande, and A. Sanz-Andrés, Spacecraft thermal control (Elsevier, 2012).

Morkoc, H.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant Cavity-Enhanced (Rce) Photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Ng, T.

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Okyay, A. K.

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7(1), 42349 (2017).
[Crossref]

F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, “Plasmonically enhanced hot electron based photovoltaic device,” Opt. Express 21(6), 7196–7201 (2013).
[Crossref]

Orlov, A. A.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

Ozbay, E.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure,” Sci. Rep. 8(1), 9162 (2018).
[Crossref]

Pan, P.

P. Tang, Z. Liu, Y. Wang, X. Liu, P. Pan, and G. Liu, “Ultrawideband midinfrared refractory absorbers,” Opt. Eng. 58(11), 115103 (2019).
[Crossref]

Pérez-Grande, I.

J. Meseguer, I. Pérez-Grande, and A. Sanz-Andrés, Spacecraft thermal control (Elsevier, 2012).

Peters, I. M.

C. M. Ke, I. M. Peters, N. Sahraei, A. G. Aberle, and R. Stangl, “On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells,” J. Appl. Phys. 117(24), 245701 (2015).
[Crossref]

Qiu, M.

J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
[Crossref]

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref]

Reed, J.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant Cavity-Enhanced (Rce) Photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Roy, V.

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

Rushton, A.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Sahraei, N.

C. M. Ke, I. M. Peters, N. Sahraei, A. G. Aberle, and R. Stangl, “On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells,” J. Appl. Phys. 117(24), 245701 (2015).
[Crossref]

Sanz-Andrés, A.

J. Meseguer, I. Pérez-Grande, and A. Sanz-Andrés, Spacecraft thermal control (Elsevier, 2012).

Seo, S.

K. T. Lee, S. Seo, and L. J. Guo, “High-Color-Purity Subtractive Color Filters with a Wide Viewing Angle Based on Plasmonic Perfect Absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Singer, J. P.

J. H. Lee, J. P. Singer, and E. L. Thomas, “Micro-/nanostructured mechanical metamaterials,” Adv. Mater. 24(36), 4782–4810 (2012).
[Crossref]

Sisman, Z.

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7(1), 42349 (2017).
[Crossref]

Song, S.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref]

Sr, P.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Stangl, R.

C. M. Ke, I. M. Peters, N. Sahraei, A. G. Aberle, and R. Stangl, “On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells,” J. Appl. Phys. 117(24), 245701 (2015).
[Crossref]

Sugawara, Y.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Sun, F.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref]

Tang, P.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

P. Tang, Z. Liu, Y. Wang, X. Liu, P. Pan, and G. Liu, “Ultrawideband midinfrared refractory absorbers,” Opt. Eng. 58(11), 115103 (2019).
[Crossref]

Tao, J.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Teperik, T. V.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Thomas, E. L.

J. H. Lee, J. P. Singer, and E. L. Thomas, “Micro-/nanostructured mechanical metamaterials,” Adv. Mater. 24(36), 4782–4810 (2012).
[Crossref]

Topalli, K.

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7(1), 42349 (2017).
[Crossref]

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Unlu, M. S.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant Cavity-Enhanced (Rce) Photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Voroshilov, P. M.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

Voutilainen, M.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

Wang, Y.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

P. Tang, Z. Liu, Y. Wang, X. Liu, P. Pan, and G. Liu, “Ultrawideband midinfrared refractory absorbers,” Opt. Eng. 58(11), 115103 (2019).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Yan, M.

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15(2), 025006 (2013).
[Crossref]

Yang, X.

J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
[Crossref]

Yang, Y.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Yi, Z.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Yu, S.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Yu, X.

J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
[Crossref]

Yu, Y.

J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
[Crossref]

Zhang, B.

Zhao, J.

J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
[Crossref]

Zhao, Y.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Zheng, G.

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Zhou, L.

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

ACS Nano (3)

J. Deng, Y. Yang, J. Tao, L. Deng, D. Liu, Z. Guan, G. Li, Z. Li, S. Yu, and G. Zheng, “Spatial frequency multiplexed meta-holography and meta-nanoprinting,” ACS Nano 13(8), 9237–9246 (2019).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley, A. Rushton, I. Medina-Salazar, M. Voutilainen, S. Kallioinen, and A. Colli, “Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,” ACS Nano 11(6), 5547–5557 (2017).
[Crossref]

ACS Photonics (1)

Z. Y. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Adv. Mater. (1)

J. H. Lee, J. P. Singer, and E. L. Thomas, “Micro-/nanostructured mechanical metamaterials,” Adv. Mater. 24(36), 4782–4810 (2012).
[Crossref]

Adv. Opt. Mater. (2)

J. Zhao, M. Qiu, X. Yu, X. Yang, W. Jin, D. Lei, and Y. Yu, “Defining Deep-Subwavelength-Resolution, Wide-Color-Gamut, and Large-Viewing-Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity,” Adv. Opt. Mater. 7(23), 1900646 (2019).
[Crossref]

K. T. Lee, S. Seo, and L. J. Guo, “High-Color-Purity Subtractive Color Filters with a Wide Viewing Angle Based on Plasmonic Perfect Absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

Appl. Phys. Lett. (1)

M. Lo, T. Ng, T. Liu, V. Roy, S. Lai, M. Fung, C. Lee, and S. Lee, “Limits of open circuit voltage in organic photovoltaic devices,” Appl. Phys. Lett. 96(11), 113303 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant Cavity-Enhanced (Rce) Photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

J. Appl. Phys. (2)

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and P. Sr, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

C. M. Ke, I. M. Peters, N. Sahraei, A. G. Aberle, and R. Stangl, “On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells,” J. Appl. Phys. 117(24), 245701 (2015).
[Crossref]

J. Opt. (2)

Z. Li, S. Butun, and K. Aydin, “Lithography-free transmission filters at ultraviolet frequencies using ultra-thin aluminum films,” J. Opt. 18(6), 065006 (2016).
[Crossref]

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15(2), 025006 (2013).
[Crossref]

Mod. Phys. Lett. B (1)

Y. L. Liao and Y. Zhao, “A wide-angle dual-band polarization-sensitive absorber with a multilayer grating,” Mod. Phys. Lett. B 28(14), 1450109 (2014).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nanoscale (1)

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref]

Nanotechnology (1)

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Nat. Nanotechnol. (1)

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref]

Nat. Photonics (1)

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Opt. Eng. (1)

P. Tang, Z. Liu, Y. Wang, X. Liu, P. Pan, and G. Liu, “Ultrawideband midinfrared refractory absorbers,” Opt. Eng. 58(11), 115103 (2019).
[Crossref]

Opt. Express (2)

Phys. Rev. Appl. (1)

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Phys. Rev. B (2)

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Renewable Sustainable Energy Rev. (1)

A. Datas and P. Linares, “Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: A comprehensive review,” Renewable Sustainable Energy Rev. 73, 477–495 (2017).
[Crossref]

Sci. Rep. (3)

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure,” Sci. Rep. 8(1), 9162 (2018).
[Crossref]

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7(1), 42349 (2017).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Other (1)

J. Meseguer, I. Pérez-Grande, and A. Sanz-Andrés, Spacecraft thermal control (Elsevier, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) 3D schematic of the proposed MSM structure based on planar Ag/Si/Ag cavity. (b) Simulated reflection and (c) absorption spectra for MIM cavity with top Ag spacer thickness of t = 3 nm, 8 nm, 11 nm and 14 nm, and the core α-Si thickness of d = 15 nm, 25 nm, 35 nm and 45 nm, respectively.
Fig. 2.
Fig. 2. Calculated absorption spectra as a function of the wavelength and top Ag film thickness t, for the cases of the amorphous silicon thickness of d = 15 nm, 25 nm, 35 nm, and 45 nm. The white point in each figure indicates the optimum value of t and the peak wavelength at the maximum absorption.
Fig. 3.
Fig. 3. (a) 2D schematic of the MSM structure at the cross-section. (b) Electric field distribution over the cross-section of absorber and (c) absorbed power distribution at the peak wavelength of 625 nm for the case of top Ag film thickness t = 8 nm and the core α-Si layer thickness d = 25 nm.
Fig. 4.
Fig. 4. Total absorption spectra for (a) triple film stack of Ag/Si/Ag, (b) dual film stack of Si/Ag, (c) dual film stack of Si/SiO2. (d) Total absorption enhancement between Ag/Si/Ag vs. Si/Ag (without the top Ag film). (e) Total absorption enhancement between Ag/Si/Ag vs. Si/SiO2 (without the top and bottom Ag films). The α-Si layer is set at the same thickness in all the above cases for a fair comparison. The substrate layer thickness remains at 100 nm for either Ag or SiO2.
Fig. 5.
Fig. 5. Contour map of the simulated absorptivity spectral evolution for t = 8 nm and d = 25 nm under (a) TM polarization and (b) TE polarization illumination.
Fig. 6.
Fig. 6. Absorption spectral comparison between TMM modeling and FDTD simulations at (a) normal incidence; (b) oblique incident angle of 50° with TM polarization and (c) TE polarization.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( E + ( Z i + 1 ) E ( Z i + 1 ) ) = M i ( E + ( Z i 1 ) E ( Z i 1 ) )

Metrics