Abstract

Spectrally selective coatings are multilayer structures that are deposited on glass. These structures consist of a metal/dielectric bi-layer, in which the metal is silver and the dielectric is a wide-bandgap semiconductor with a high refractive index. These layers are typically very thin (< 30 nm), and thus may be etched away if deposited by a sputtering process. This work has two objectives. First, a new design is fabricated that can sustain the sputtering process. Second, a high-refractive-index material (i.e., bismuth oxide) is selected to serve as the dielectric. Bismuth oxide is deposited by reactive direct-current sputtering, and the deposition parameters are optimized to yield films that are suitable for use in spectrally selective coatings. When used in a silver-based multilayer structure, the resulting peak visible transmittance was 68%, and the maximum infrared reflectance was 85%.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties and environmental stability of oxide coatings deposited by reactive sputtering

Samad M. Edlou, Ali Smajkiewicz, and Ghanim A. Al-Jumaily
Appl. Opt. 32(28) 5601-5605 (1993)

AlF3 thin films deposited by reactive magnetron sputtering with Al target

Cheng-Chung Lee, Bo-Huei Liao, and Ming-Chung Liu
Opt. Express 15(15) 9152-9156 (2007)

Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride

Jan Kischkat, Sven Peters, Bernd Gruska, Mykhaylo Semtsiv, Mikaela Chashnikova, Matthias Klinkmüller, Oliana Fedosenko, Stephan Machulik, Anna Aleksandrova, Gregorii Monastyrskyi, Yuri Flores, and W. Ted Masselink
Appl. Opt. 51(28) 6789-6798 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, “Optical properties of (-Bi2O3 thin films grown by reactive sputtering,” Appl. Phys. Lett. 87(23), 231916 (2005).
    [Crossref]
  2. Y. D. Shen, Y. W. Li, W. M. Li, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Growth of Bi2O3 ultrathin films by atomic layer deposition,” J. Phys. Chem. C 116(5), 3449–3456 (2012).
    [Crossref]
  3. C. Diaz-Guerra, P. Almodovar, M. Camacho-Lopez, S. Camacho-Lopez, and J. Piqueras, “Formation of (-Bi2O3 and (-Bi2O3 during laser irradiation of Bi films studied in-situ bay spatially resolved Raman spectroscopy,” J. Alloys Compd. 723, 520–526 (2017).
    [Crossref]
  4. L. Meng, W. Xu, Q. Zhang, T. Yang, and S. Shi, “Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering,” Appl. Surf. Sci. 472, 165–171 (2019).
    [Crossref]
  5. Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
    [Crossref]
  6. A. Venegas-Castro, A. Reyes-Contreras, M. Camacho-Lopez, O. Olea-Mejia, S. Camacho-Lopez, and A. Esparza-Garcia, “Study of the integrated fluence threshold condition for the formation of (-Bi2O3 on Bi thin films by using ns laser pulses,” Opt. Laser Technol. 81, 50–54 (2016).
    [Crossref]
  7. L. Leontie and G. I. Rusu, “On the electronic transport properties of bismuth oxide thin films,” J. Non-Cryst. Solids 352(9-20), 1475–1478 (2006).
    [Crossref]
  8. R. B. Patil, R. K. Puri, and V. Puri, “Oxidation temperature dependent optical properties of bismuth oxide thin films: Effect of vapour chopping and air exposure,” Appl. Surf. Sci. 253(21), 8682–8688 (2007).
    [Crossref]
  9. X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
    [Crossref]
  10. T. P. Gujar, V. R. Shinde, C. D. Lokhande, R. S. Mane, and S.-H. Han, “Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect,” Appl. Surf. Sci. 250(1-4), 161–167 (2005).
    [Crossref]
  11. N. Reuge, J. Dexpert-Ghys, and B. Caussat, “Fluidized-bed MOCVD of Bi2O3 thin films from bismuth triphenyl under atmospheric pressure,” Chem. Vap. Deposition 16(4-6), 123–126 (2010).
    [Crossref]
  12. L. Leontie, M. Caraman, A. Visinoiu, and G. I. Rusu, “On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition,” Thin Solid Films 473(2), 230–235 (2005).
    [Crossref]
  13. B. L. Zhu and X. Z. Zhao, “Study on structure and optical properties of Bi2O3 thin films prepared by reactive pulsed laser deposition,” Opt. Mater. 29(2-3), 192–198 (2006).
    [Crossref]
  14. P. Lunca-Popa, S. Sonderby, S. Kerdsongpanya, J. Lu, N. Bonanos, and P. Eklund, “Highly oriented (-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering,” J. Appl. Phys. 113(4), 046101 (2013).
    [Crossref]
  15. J. Morasch, S. Li, J. Brotz, W. Jaegermann, and A. Klein, “Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties,” Phys. Status Solidi A 211(1), 93–100 (2014).
    [Crossref]
  16. C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
    [Crossref]
  17. H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of (-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D: Appl. Phys. 39(9), 1939–1943 (2006).
    [Crossref]
  18. X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
    [Crossref]
  19. C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
    [Crossref]
  20. J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
    [Crossref]
  21. J. Jiang, D. G. Lim, K. Ramadoss, and S. Ramanathan, “Ionic conduction and unipolar resistance switching in (-phase Bi2O3 thin films,” Solid-State Electron. 146, 13–20 (2018).
    [Crossref]
  22. A. Iljinas, S. Burinskas, and J. Dudonis, “Synthesis of bismuth oxide thin films deposited by reactive magnetron sputtering,” Acta Phys. Pol., A 120(1), 60–62 (2011).
    [Crossref]
  23. B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll, and S. M. Aouadi, “Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering,” Thin Solid Films 520(19), 6118–6123 (2012).
    [Crossref]
  24. M. Rasheed and R. Barille, “Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics,” J. Alloys Compd. 728, 1186–1198 (2017).
    [Crossref]
  25. Z. Wang, X. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80(5), 438–443 (2006).
    [Crossref]
  26. E. Valkonen, B. Karlsson, and C.-G. Ribbing, “Solar optical properties of thin films of Cu, Ag, Au, Cr, Fe, Co, Ni and Al,” Sol. Energy 32(2), 211–222 (1984).
    [Crossref]
  27. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
    [Crossref]
  28. C.-C. Lee, S.-H. Chen, and C.-C. Jaing, “Optical monitoring of silver-based heat mirrors,” Appl. Opt. 35(28), 5698–5703 (1996).
    [Crossref]
  29. C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Sol. Energy Mater. 6(1), 1–41 (1981).
    [Crossref]
  30. H. Kostlin and G. Frank, “Optimization of transparent heat mirrors based on a thin silver film between antireflection films,” Thin Solid Films 89(3), 287–293 (1982).
    [Crossref]
  31. C. G. Granqvist, “Radiative heating and cooling with spectrally selective surfaces,” Appl. Opt. 20(15), 2606–2615 (1981).
    [Crossref]
  32. B. E. Yoldas and T. O’Keefe, “Deposition of optically transparent IR reflective coatings on glass,” Appl. Opt. 23(20), 3638–3643 (1984).
    [Crossref]
  33. P. H. Berning, “Principles of design of architectural coatings,” Appl. Opt. 22(24), 4127–4141 (1983).
    [Crossref]
  34. J. George, B. Pradeep, and K. S. Joseph, “Preparation of heat mirrors using bismuth oxide films,” Phys. Status Solidi A 100(2), 513–519 (1987).
    [Crossref]
  35. R. E. Schropp and A. Madan, “Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering,” J. Appl. Phys. 66(5), 2027–2031 (1989).
    [Crossref]
  36. A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 ( https://srdata.nist.gov/xps/ ), National Institute of Standards and Measures, USA (2012).
  37. A. Ziabari and F. E. Ghodsi, “Optoelectronic studies of sol-gel derived nanostructured CdO-ZnO composite films,” J. Alloys Compd. 509(35), 8748–8755 (2011).
    [Crossref]
  38. S. Kim, H. Yoon, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, “Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method,” Opt. Mater. 35(12), 2418–2424 (2013).
    [Crossref]
  39. J. C. Fan, F. J. Bachner, G. H. Foley, and P. M. Zavracky, “Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation,” Appl. Phys. Lett. 25(12), 693–695 (1974).
    [Crossref]
  40. G. B. Smith, G. A. Niklasson, J. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experimental and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571–581 (1986).
    [Crossref]
  41. A. A. Sayigh, Solar Energy Engineering (Academic Press, 1977).
  42. S. J. Williamson and H. Z. Cummins, Light and Color in Nature and Art (Wiley, 1983).

2019 (1)

L. Meng, W. Xu, Q. Zhang, T. Yang, and S. Shi, “Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering,” Appl. Surf. Sci. 472, 165–171 (2019).
[Crossref]

2018 (1)

J. Jiang, D. G. Lim, K. Ramadoss, and S. Ramanathan, “Ionic conduction and unipolar resistance switching in (-phase Bi2O3 thin films,” Solid-State Electron. 146, 13–20 (2018).
[Crossref]

2017 (2)

M. Rasheed and R. Barille, “Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics,” J. Alloys Compd. 728, 1186–1198 (2017).
[Crossref]

C. Diaz-Guerra, P. Almodovar, M. Camacho-Lopez, S. Camacho-Lopez, and J. Piqueras, “Formation of (-Bi2O3 and (-Bi2O3 during laser irradiation of Bi films studied in-situ bay spatially resolved Raman spectroscopy,” J. Alloys Compd. 723, 520–526 (2017).
[Crossref]

2016 (2)

A. Venegas-Castro, A. Reyes-Contreras, M. Camacho-Lopez, O. Olea-Mejia, S. Camacho-Lopez, and A. Esparza-Garcia, “Study of the integrated fluence threshold condition for the formation of (-Bi2O3 on Bi thin films by using ns laser pulses,” Opt. Laser Technol. 81, 50–54 (2016).
[Crossref]

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

2015 (2)

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

2014 (2)

J. Morasch, S. Li, J. Brotz, W. Jaegermann, and A. Klein, “Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties,” Phys. Status Solidi A 211(1), 93–100 (2014).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
[Crossref]

2013 (5)

P. Lunca-Popa, S. Sonderby, S. Kerdsongpanya, J. Lu, N. Bonanos, and P. Eklund, “Highly oriented (-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering,” J. Appl. Phys. 113(4), 046101 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

S. Kim, H. Yoon, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, “Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method,” Opt. Mater. 35(12), 2418–2424 (2013).
[Crossref]

2012 (2)

B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll, and S. M. Aouadi, “Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering,” Thin Solid Films 520(19), 6118–6123 (2012).
[Crossref]

Y. D. Shen, Y. W. Li, W. M. Li, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Growth of Bi2O3 ultrathin films by atomic layer deposition,” J. Phys. Chem. C 116(5), 3449–3456 (2012).
[Crossref]

2011 (2)

A. Iljinas, S. Burinskas, and J. Dudonis, “Synthesis of bismuth oxide thin films deposited by reactive magnetron sputtering,” Acta Phys. Pol., A 120(1), 60–62 (2011).
[Crossref]

A. Ziabari and F. E. Ghodsi, “Optoelectronic studies of sol-gel derived nanostructured CdO-ZnO composite films,” J. Alloys Compd. 509(35), 8748–8755 (2011).
[Crossref]

2010 (1)

N. Reuge, J. Dexpert-Ghys, and B. Caussat, “Fluidized-bed MOCVD of Bi2O3 thin films from bismuth triphenyl under atmospheric pressure,” Chem. Vap. Deposition 16(4-6), 123–126 (2010).
[Crossref]

2007 (1)

R. B. Patil, R. K. Puri, and V. Puri, “Oxidation temperature dependent optical properties of bismuth oxide thin films: Effect of vapour chopping and air exposure,” Appl. Surf. Sci. 253(21), 8682–8688 (2007).
[Crossref]

2006 (4)

L. Leontie and G. I. Rusu, “On the electronic transport properties of bismuth oxide thin films,” J. Non-Cryst. Solids 352(9-20), 1475–1478 (2006).
[Crossref]

B. L. Zhu and X. Z. Zhao, “Study on structure and optical properties of Bi2O3 thin films prepared by reactive pulsed laser deposition,” Opt. Mater. 29(2-3), 192–198 (2006).
[Crossref]

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of (-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D: Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

Z. Wang, X. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80(5), 438–443 (2006).
[Crossref]

2005 (3)

L. Leontie, M. Caraman, A. Visinoiu, and G. I. Rusu, “On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition,” Thin Solid Films 473(2), 230–235 (2005).
[Crossref]

T. P. Gujar, V. R. Shinde, C. D. Lokhande, R. S. Mane, and S.-H. Han, “Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect,” Appl. Surf. Sci. 250(1-4), 161–167 (2005).
[Crossref]

H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, “Optical properties of (-Bi2O3 thin films grown by reactive sputtering,” Appl. Phys. Lett. 87(23), 231916 (2005).
[Crossref]

1996 (1)

1989 (1)

R. E. Schropp and A. Madan, “Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering,” J. Appl. Phys. 66(5), 2027–2031 (1989).
[Crossref]

1987 (1)

J. George, B. Pradeep, and K. S. Joseph, “Preparation of heat mirrors using bismuth oxide films,” Phys. Status Solidi A 100(2), 513–519 (1987).
[Crossref]

1986 (1)

G. B. Smith, G. A. Niklasson, J. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experimental and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571–581 (1986).
[Crossref]

1984 (2)

B. E. Yoldas and T. O’Keefe, “Deposition of optically transparent IR reflective coatings on glass,” Appl. Opt. 23(20), 3638–3643 (1984).
[Crossref]

E. Valkonen, B. Karlsson, and C.-G. Ribbing, “Solar optical properties of thin films of Cu, Ag, Au, Cr, Fe, Co, Ni and Al,” Sol. Energy 32(2), 211–222 (1984).
[Crossref]

1983 (1)

1982 (1)

H. Kostlin and G. Frank, “Optimization of transparent heat mirrors based on a thin silver film between antireflection films,” Thin Solid Films 89(3), 287–293 (1982).
[Crossref]

1981 (2)

C. G. Granqvist, “Radiative heating and cooling with spectrally selective surfaces,” Appl. Opt. 20(15), 2606–2615 (1981).
[Crossref]

C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Sol. Energy Mater. 6(1), 1–41 (1981).
[Crossref]

1974 (1)

J. C. Fan, F. J. Bachner, G. H. Foley, and P. M. Zavracky, “Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation,” Appl. Phys. Lett. 25(12), 693–695 (1974).
[Crossref]

Almodovar, P.

C. Diaz-Guerra, P. Almodovar, M. Camacho-Lopez, S. Camacho-Lopez, and J. Piqueras, “Formation of (-Bi2O3 and (-Bi2O3 during laser irradiation of Bi films studied in-situ bay spatially resolved Raman spectroscopy,” J. Alloys Compd. 723, 520–526 (2017).
[Crossref]

Aouadi, S. M.

B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll, and S. M. Aouadi, “Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering,” Thin Solid Films 520(19), 6118–6123 (2012).
[Crossref]

Bachner, F. J.

J. C. Fan, F. J. Bachner, G. H. Foley, and P. M. Zavracky, “Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation,” Appl. Phys. Lett. 25(12), 693–695 (1974).
[Crossref]

Barille, R.

M. Rasheed and R. Barille, “Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics,” J. Alloys Compd. 728, 1186–1198 (2017).
[Crossref]

Barroy, P.

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

Berning, P. H.

Bizarro, M.

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

Bonanos, N.

P. Lunca-Popa, S. Sonderby, S. Kerdsongpanya, J. Lu, N. Bonanos, and P. Eklund, “Highly oriented (-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering,” J. Appl. Phys. 113(4), 046101 (2013).
[Crossref]

Boreman, G. D.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Brotz, J.

J. Morasch, S. Li, J. Brotz, W. Jaegermann, and A. Klein, “Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties,” Phys. Status Solidi A 211(1), 93–100 (2014).
[Crossref]

Burinskas, S.

A. Iljinas, S. Burinskas, and J. Dudonis, “Synthesis of bismuth oxide thin films deposited by reactive magnetron sputtering,” Acta Phys. Pol., A 120(1), 60–62 (2011).
[Crossref]

Cai, X.

Z. Wang, X. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80(5), 438–443 (2006).
[Crossref]

Camacho-Lopez, M.

C. Diaz-Guerra, P. Almodovar, M. Camacho-Lopez, S. Camacho-Lopez, and J. Piqueras, “Formation of (-Bi2O3 and (-Bi2O3 during laser irradiation of Bi films studied in-situ bay spatially resolved Raman spectroscopy,” J. Alloys Compd. 723, 520–526 (2017).
[Crossref]

A. Venegas-Castro, A. Reyes-Contreras, M. Camacho-Lopez, O. Olea-Mejia, S. Camacho-Lopez, and A. Esparza-Garcia, “Study of the integrated fluence threshold condition for the formation of (-Bi2O3 on Bi thin films by using ns laser pulses,” Opt. Laser Technol. 81, 50–54 (2016).
[Crossref]

Camacho-Lopez, S.

C. Diaz-Guerra, P. Almodovar, M. Camacho-Lopez, S. Camacho-Lopez, and J. Piqueras, “Formation of (-Bi2O3 and (-Bi2O3 during laser irradiation of Bi films studied in-situ bay spatially resolved Raman spectroscopy,” J. Alloys Compd. 723, 520–526 (2017).
[Crossref]

A. Venegas-Castro, A. Reyes-Contreras, M. Camacho-Lopez, O. Olea-Mejia, S. Camacho-Lopez, and A. Esparza-Garcia, “Study of the integrated fluence threshold condition for the formation of (-Bi2O3 on Bi thin films by using ns laser pulses,” Opt. Laser Technol. 81, 50–54 (2016).
[Crossref]

Camps, E.

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

Caraman, M.

L. Leontie, M. Caraman, A. Visinoiu, and G. I. Rusu, “On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition,” Thin Solid Films 473(2), 230–235 (2005).
[Crossref]

Caussat, B.

N. Reuge, J. Dexpert-Ghys, and B. Caussat, “Fluidized-bed MOCVD of Bi2O3 thin films from bismuth triphenyl under atmospheric pressure,” Chem. Vap. Deposition 16(4-6), 123–126 (2010).
[Crossref]

Charvet, S.

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

Chen, J.

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

Chen, Q.

Z. Wang, X. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80(5), 438–443 (2006).
[Crossref]

Chen, S.-H.

Chu, J.

Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
[Crossref]

Chu, J. H.

Y. D. Shen, Y. W. Li, W. M. Li, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Growth of Bi2O3 ultrathin films by atomic layer deposition,” J. Phys. Chem. C 116(5), 3449–3456 (2012).
[Crossref]

Cummins, H. Z.

S. J. Williamson and H. Z. Cummins, Light and Color in Nature and Art (Wiley, 1983).

D’Archangel, J.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Depablos-Rivera, O.

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
[Crossref]

Dexpert-Ghys, J.

N. Reuge, J. Dexpert-Ghys, and B. Caussat, “Fluidized-bed MOCVD of Bi2O3 thin films from bismuth triphenyl under atmospheric pressure,” Chem. Vap. Deposition 16(4-6), 123–126 (2010).
[Crossref]

Diaz-Guerra, C.

C. Diaz-Guerra, P. Almodovar, M. Camacho-Lopez, S. Camacho-Lopez, and J. Piqueras, “Formation of (-Bi2O3 and (-Bi2O3 during laser irradiation of Bi films studied in-situ bay spatially resolved Raman spectroscopy,” J. Alloys Compd. 723, 520–526 (2017).
[Crossref]

Duan, Z.

Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
[Crossref]

Dudonis, J.

A. Iljinas, S. Burinskas, and J. Dudonis, “Synthesis of bismuth oxide thin films deposited by reactive magnetron sputtering,” Acta Phys. Pol., A 120(1), 60–62 (2011).
[Crossref]

Eklund, P.

P. Lunca-Popa, S. Sonderby, S. Kerdsongpanya, J. Lu, N. Bonanos, and P. Eklund, “Highly oriented (-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering,” J. Appl. Phys. 113(4), 046101 (2013).
[Crossref]

Esparza-Garcia, A.

A. Venegas-Castro, A. Reyes-Contreras, M. Camacho-Lopez, O. Olea-Mejia, S. Camacho-Lopez, and A. Esparza-Garcia, “Study of the integrated fluence threshold condition for the formation of (-Bi2O3 on Bi thin films by using ns laser pulses,” Opt. Laser Technol. 81, 50–54 (2016).
[Crossref]

Fan, H. T.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of (-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D: Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, “Optical properties of (-Bi2O3 thin films grown by reactive sputtering,” Appl. Phys. Lett. 87(23), 231916 (2005).
[Crossref]

Fan, J. C.

J. C. Fan, F. J. Bachner, G. H. Foley, and P. M. Zavracky, “Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation,” Appl. Phys. Lett. 25(12), 693–695 (1974).
[Crossref]

Foley, G. H.

J. C. Fan, F. J. Bachner, G. H. Foley, and P. M. Zavracky, “Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation,” Appl. Phys. Lett. 25(12), 693–695 (1974).
[Crossref]

Fonseca-Garcia, A.

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

Frank, G.

H. Kostlin and G. Frank, “Optimization of transparent heat mirrors based on a thin silver film between antireflection films,” Thin Solid Films 89(3), 287–293 (1982).
[Crossref]

Gaarenstroom, S. W.

A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 ( https://srdata.nist.gov/xps/ ), National Institute of Standards and Measures, USA (2012).

George, J.

J. George, B. Pradeep, and K. S. Joseph, “Preparation of heat mirrors using bismuth oxide films,” Phys. Status Solidi A 100(2), 513–519 (1987).
[Crossref]

Ghodsi, F. E.

A. Ziabari and F. E. Ghodsi, “Optoelectronic studies of sol-gel derived nanostructured CdO-ZnO composite films,” J. Alloys Compd. 509(35), 8748–8755 (2011).
[Crossref]

Gomez, C. L.

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
[Crossref]

Granqvist, C. G.

G. B. Smith, G. A. Niklasson, J. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experimental and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571–581 (1986).
[Crossref]

C. G. Granqvist, “Radiative heating and cooling with spectrally selective surfaces,” Appl. Opt. 20(15), 2606–2615 (1981).
[Crossref]

Gujar, T. P.

T. P. Gujar, V. R. Shinde, C. D. Lokhande, R. S. Mane, and S.-H. Han, “Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect,” Appl. Surf. Sci. 250(1-4), 161–167 (2005).
[Crossref]

Han, S.-H.

T. P. Gujar, V. R. Shinde, C. D. Lokhande, R. S. Mane, and S.-H. Han, “Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect,” Appl. Surf. Sci. 250(1-4), 161–167 (2005).
[Crossref]

Hu, Z.

Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
[Crossref]

Hu, Z. G.

Y. D. Shen, Y. W. Li, W. M. Li, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Growth of Bi2O3 ultrathin films by atomic layer deposition,” J. Phys. Chem. C 116(5), 3449–3456 (2012).
[Crossref]

Iljinas, A.

A. Iljinas, S. Burinskas, and J. Dudonis, “Synthesis of bismuth oxide thin films deposited by reactive magnetron sputtering,” Acta Phys. Pol., A 120(1), 60–62 (2011).
[Crossref]

Jaegermann, W.

J. Morasch, S. Li, J. Brotz, W. Jaegermann, and A. Klein, “Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties,” Phys. Status Solidi A 211(1), 93–100 (2014).
[Crossref]

Jaing, C.-C.

Jiang, C.

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

Jiang, J.

J. Jiang, D. G. Lim, K. Ramadoss, and S. Ramanathan, “Ionic conduction and unipolar resistance switching in (-phase Bi2O3 thin films,” Solid-State Electron. 146, 13–20 (2018).
[Crossref]

Jiang, K.

Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
[Crossref]

Joseph, K. S.

J. George, B. Pradeep, and K. S. Joseph, “Preparation of heat mirrors using bismuth oxide films,” Phys. Status Solidi A 100(2), 513–519 (1987).
[Crossref]

Karlsson, B.

E. Valkonen, B. Karlsson, and C.-G. Ribbing, “Solar optical properties of thin films of Cu, Ag, Au, Cr, Fe, Co, Ni and Al,” Sol. Energy 32(2), 211–222 (1984).
[Crossref]

Kerdsongpanya, S.

P. Lunca-Popa, S. Sonderby, S. Kerdsongpanya, J. Lu, N. Bonanos, and P. Eklund, “Highly oriented (-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering,” J. Appl. Phys. 113(4), 046101 (2013).
[Crossref]

Kim, D. Y.

S. Kim, H. Yoon, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, “Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method,” Opt. Mater. 35(12), 2418–2424 (2013).
[Crossref]

Kim, S.

S. Kim, H. Yoon, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, “Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method,” Opt. Mater. 35(12), 2418–2424 (2013).
[Crossref]

Kim, S.-O.

S. Kim, H. Yoon, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, “Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method,” Opt. Mater. 35(12), 2418–2424 (2013).
[Crossref]

Klein, A.

J. Morasch, S. Li, J. Brotz, W. Jaegermann, and A. Klein, “Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties,” Phys. Status Solidi A 211(1), 93–100 (2014).
[Crossref]

Kohli, P.

B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll, and S. M. Aouadi, “Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering,” Thin Solid Films 520(19), 6118–6123 (2012).
[Crossref]

Kostlin, H.

H. Kostlin and G. Frank, “Optimization of transparent heat mirrors based on a thin silver film between antireflection films,” Thin Solid Films 89(3), 287–293 (1982).
[Crossref]

Kraut-Vass, A.

A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 ( https://srdata.nist.gov/xps/ ), National Institute of Standards and Measures, USA (2012).

Lampert, C. M.

C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Sol. Energy Mater. 6(1), 1–41 (1981).
[Crossref]

Lee, C.-C.

Leem, J.-Y.

S. Kim, H. Yoon, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, “Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method,” Opt. Mater. 35(12), 2418–2424 (2013).
[Crossref]

Lejeune, M.

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

Leontie, L.

L. Leontie and G. I. Rusu, “On the electronic transport properties of bismuth oxide thin films,” J. Non-Cryst. Solids 352(9-20), 1475–1478 (2006).
[Crossref]

L. Leontie, M. Caraman, A. Visinoiu, and G. I. Rusu, “On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition,” Thin Solid Films 473(2), 230–235 (2005).
[Crossref]

Li, G. H.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of (-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D: Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, “Optical properties of (-Bi2O3 thin films grown by reactive sputtering,” Appl. Phys. Lett. 87(23), 231916 (2005).
[Crossref]

Li, L.

Z. Wang, X. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80(5), 438–443 (2006).
[Crossref]

Li, S.

J. Morasch, S. Li, J. Brotz, W. Jaegermann, and A. Klein, “Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties,” Phys. Status Solidi A 211(1), 93–100 (2014).
[Crossref]

Li, W. M.

Y. D. Shen, Y. W. Li, W. M. Li, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Growth of Bi2O3 ultrathin films by atomic layer deposition,” J. Phys. Chem. C 116(5), 3449–3456 (2012).
[Crossref]

Li, Y.

Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
[Crossref]

Li, Y. W.

Y. D. Shen, Y. W. Li, W. M. Li, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Growth of Bi2O3 ultrathin films by atomic layer deposition,” J. Phys. Chem. C 116(5), 3449–3456 (2012).
[Crossref]

Lian, X.

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

Lim, D. G.

J. Jiang, D. G. Lim, K. Ramadoss, and S. Ramanathan, “Ionic conduction and unipolar resistance switching in (-phase Bi2O3 thin films,” Solid-State Electron. 146, 13–20 (2018).
[Crossref]

Liu, S.

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

Lokhande, C. D.

T. P. Gujar, V. R. Shinde, C. D. Lokhande, R. S. Mane, and S.-H. Han, “Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect,” Appl. Surf. Sci. 250(1-4), 161–167 (2005).
[Crossref]

Lu, J.

P. Lunca-Popa, S. Sonderby, S. Kerdsongpanya, J. Lu, N. Bonanos, and P. Eklund, “Highly oriented (-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering,” J. Appl. Phys. 113(4), 046101 (2013).
[Crossref]

Lunca-Popa, P.

P. Lunca-Popa, S. Sonderby, S. Kerdsongpanya, J. Lu, N. Bonanos, and P. Eklund, “Highly oriented (-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering,” J. Appl. Phys. 113(4), 046101 (2013).
[Crossref]

Madan, A.

R. E. Schropp and A. Madan, “Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering,” J. Appl. Phys. 66(5), 2027–2031 (1989).
[Crossref]

Mane, R. S.

T. P. Gujar, V. R. Shinde, C. D. Lokhande, R. S. Mane, and S.-H. Han, “Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect,” Appl. Surf. Sci. 250(1-4), 161–167 (2005).
[Crossref]

McCarroll, M. E.

B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll, and S. M. Aouadi, “Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering,” Thin Solid Films 520(19), 6118–6123 (2012).
[Crossref]

Medina, J. C.

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
[Crossref]

Meng, L.

L. Meng, W. Xu, Q. Zhang, T. Yang, and S. Shi, “Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering,” Appl. Surf. Sci. 472, 165–171 (2019).
[Crossref]

Mirabal-Rojas, R.

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

Monroy, B. M.

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

Morasch, J.

J. Morasch, S. Li, J. Brotz, W. Jaegermann, and A. Klein, “Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties,” Phys. Status Solidi A 211(1), 93–100 (2014).
[Crossref]

Muhl, S.

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
[Crossref]

Naumkin, A. V.

A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 ( https://srdata.nist.gov/xps/ ), National Institute of Standards and Measures, USA (2012).

Niklasson, G. A.

G. B. Smith, G. A. Niklasson, J. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experimental and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571–581 (1986).
[Crossref]

O’Keefe, T.

Olea-Mejia, O.

A. Venegas-Castro, A. Reyes-Contreras, M. Camacho-Lopez, O. Olea-Mejia, S. Camacho-Lopez, and A. Esparza-Garcia, “Study of the integrated fluence threshold condition for the formation of (-Bi2O3 on Bi thin films by using ns laser pulses,” Opt. Laser Technol. 81, 50–54 (2016).
[Crossref]

Pan, S. S.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of (-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D: Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, “Optical properties of (-Bi2O3 thin films grown by reactive sputtering,” Appl. Phys. Lett. 87(23), 231916 (2005).
[Crossref]

Patil, R. B.

R. B. Patil, R. K. Puri, and V. Puri, “Oxidation temperature dependent optical properties of bismuth oxide thin films: Effect of vapour chopping and air exposure,” Appl. Surf. Sci. 253(21), 8682–8688 (2007).
[Crossref]

Perez-Alvarez, J.

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

Piqueras, J.

C. Diaz-Guerra, P. Almodovar, M. Camacho-Lopez, S. Camacho-Lopez, and J. Piqueras, “Formation of (-Bi2O3 and (-Bi2O3 during laser irradiation of Bi films studied in-situ bay spatially resolved Raman spectroscopy,” J. Alloys Compd. 723, 520–526 (2017).
[Crossref]

Powell, C. J.

A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 ( https://srdata.nist.gov/xps/ ), National Institute of Standards and Measures, USA (2012).

Pradeep, B.

J. George, B. Pradeep, and K. S. Joseph, “Preparation of heat mirrors using bismuth oxide films,” Phys. Status Solidi A 100(2), 513–519 (1987).
[Crossref]

Puri, R. K.

R. B. Patil, R. K. Puri, and V. Puri, “Oxidation temperature dependent optical properties of bismuth oxide thin films: Effect of vapour chopping and air exposure,” Appl. Surf. Sci. 253(21), 8682–8688 (2007).
[Crossref]

Puri, V.

R. B. Patil, R. K. Puri, and V. Puri, “Oxidation temperature dependent optical properties of bismuth oxide thin films: Effect of vapour chopping and air exposure,” Appl. Surf. Sci. 253(21), 8682–8688 (2007).
[Crossref]

Ramadoss, K.

J. Jiang, D. G. Lim, K. Ramadoss, and S. Ramanathan, “Ionic conduction and unipolar resistance switching in (-phase Bi2O3 thin films,” Solid-State Electron. 146, 13–20 (2018).
[Crossref]

Ramanathan, S.

J. Jiang, D. G. Lim, K. Ramadoss, and S. Ramanathan, “Ionic conduction and unipolar resistance switching in (-phase Bi2O3 thin films,” Solid-State Electron. 146, 13–20 (2018).
[Crossref]

Raschke, M. B.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Rasheed, M.

M. Rasheed and R. Barille, “Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics,” J. Alloys Compd. 728, 1186–1198 (2017).
[Crossref]

Reuge, N.

N. Reuge, J. Dexpert-Ghys, and B. Caussat, “Fluidized-bed MOCVD of Bi2O3 thin films from bismuth triphenyl under atmospheric pressure,” Chem. Vap. Deposition 16(4-6), 123–126 (2010).
[Crossref]

Reyes-Contreras, A.

A. Venegas-Castro, A. Reyes-Contreras, M. Camacho-Lopez, O. Olea-Mejia, S. Camacho-Lopez, and A. Esparza-Garcia, “Study of the integrated fluence threshold condition for the formation of (-Bi2O3 on Bi thin films by using ns laser pulses,” Opt. Laser Technol. 81, 50–54 (2016).
[Crossref]

Reyes-Cuellar, J.

B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll, and S. M. Aouadi, “Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering,” Thin Solid Films 520(19), 6118–6123 (2012).
[Crossref]

Ribbing, C.-G.

E. Valkonen, B. Karlsson, and C.-G. Ribbing, “Solar optical properties of thin films of Cu, Ag, Au, Cr, Fe, Co, Ni and Al,” Sol. Energy 32(2), 211–222 (1984).
[Crossref]

Rodil, S. E.

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
[Crossref]

Rusu, G. I.

L. Leontie and G. I. Rusu, “On the electronic transport properties of bismuth oxide thin films,” J. Non-Cryst. Solids 352(9-20), 1475–1478 (2006).
[Crossref]

L. Leontie, M. Caraman, A. Visinoiu, and G. I. Rusu, “On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition,” Thin Solid Films 473(2), 230–235 (2005).
[Crossref]

Sayigh, A. A.

A. A. Sayigh, Solar Energy Engineering (Academic Press, 1977).

Schropp, R. E.

R. E. Schropp and A. Madan, “Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering,” J. Appl. Phys. 66(5), 2027–2031 (1989).
[Crossref]

Shen, Y.

Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
[Crossref]

Shen, Y. D.

Y. D. Shen, Y. W. Li, W. M. Li, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Growth of Bi2O3 ultrathin films by atomic layer deposition,” J. Phys. Chem. C 116(5), 3449–3456 (2012).
[Crossref]

Shi, S.

L. Meng, W. Xu, Q. Zhang, T. Yang, and S. Shi, “Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering,” Appl. Surf. Sci. 472, 165–171 (2019).
[Crossref]

Shinde, V. R.

T. P. Gujar, V. R. Shinde, C. D. Lokhande, R. S. Mane, and S.-H. Han, “Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect,” Appl. Surf. Sci. 250(1-4), 161–167 (2005).
[Crossref]

Silva-Bermudez, P.

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
[Crossref]

Sirota, B.

B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll, and S. M. Aouadi, “Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering,” Thin Solid Films 520(19), 6118–6123 (2012).
[Crossref]

Smith, G. B.

G. B. Smith, G. A. Niklasson, J. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experimental and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571–581 (1986).
[Crossref]

Sonderby, S.

P. Lunca-Popa, S. Sonderby, S. Kerdsongpanya, J. Lu, N. Bonanos, and P. Eklund, “Highly oriented (-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering,” J. Appl. Phys. 113(4), 046101 (2013).
[Crossref]

Sundheimer, M. L.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Svensson, J.

G. B. Smith, G. A. Niklasson, J. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experimental and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571–581 (1986).
[Crossref]

Teng, X. M.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of (-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D: Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, “Optical properties of (-Bi2O3 thin films grown by reactive sputtering,” Appl. Phys. Lett. 87(23), 231916 (2005).
[Crossref]

Tian, J.

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

Tucker, E.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Valkonen, E.

E. Valkonen, B. Karlsson, and C.-G. Ribbing, “Solar optical properties of thin films of Cu, Ag, Au, Cr, Fe, Co, Ni and Al,” Sol. Energy 32(2), 211–222 (1984).
[Crossref]

Venegas-Castro, A.

A. Venegas-Castro, A. Reyes-Contreras, M. Camacho-Lopez, O. Olea-Mejia, S. Camacho-Lopez, and A. Esparza-Garcia, “Study of the integrated fluence threshold condition for the formation of (-Bi2O3 on Bi thin films by using ns laser pulses,” Opt. Laser Technol. 81, 50–54 (2016).
[Crossref]

Visinoiu, A.

L. Leontie, M. Caraman, A. Visinoiu, and G. I. Rusu, “On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition,” Thin Solid Films 473(2), 230–235 (2005).
[Crossref]

Wang, G.

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

Wang, L.

B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll, and S. M. Aouadi, “Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering,” Thin Solid Films 520(19), 6118–6123 (2012).
[Crossref]

Wang, R.

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

Wang, Z.

Z. Wang, X. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80(5), 438–443 (2006).
[Crossref]

Williamson, S. J.

S. J. Williamson and H. Z. Cummins, Light and Color in Nature and Art (Wiley, 1983).

Xu, W.

L. Meng, W. Xu, Q. Zhang, T. Yang, and S. Shi, “Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering,” Appl. Surf. Sci. 472, 165–171 (2019).
[Crossref]

Yang, H. U.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Yang, T.

L. Meng, W. Xu, Q. Zhang, T. Yang, and S. Shi, “Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering,” Appl. Surf. Sci. 472, 165–171 (2019).
[Crossref]

Yang, X.

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

Ye, C.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of (-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D: Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, “Optical properties of (-Bi2O3 thin films grown by reactive sputtering,” Appl. Phys. Lett. 87(23), 231916 (2005).
[Crossref]

Yoldas, B. E.

Yoon, H.

S. Kim, H. Yoon, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, “Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method,” Opt. Mater. 35(12), 2418–2424 (2013).
[Crossref]

Zavracky, P. M.

J. C. Fan, F. J. Bachner, G. H. Foley, and P. M. Zavracky, “Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation,” Appl. Phys. Lett. 25(12), 693–695 (1974).
[Crossref]

Zeinert, A.

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
[Crossref]

Zhang, J.

Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
[Crossref]

Zhang, J. Z.

Y. D. Shen, Y. W. Li, W. M. Li, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Growth of Bi2O3 ultrathin films by atomic layer deposition,” J. Phys. Chem. C 116(5), 3449–3456 (2012).
[Crossref]

Zhang, L. D.

H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, “Optical properties of (-Bi2O3 thin films grown by reactive sputtering,” Appl. Phys. Lett. 87(23), 231916 (2005).
[Crossref]

Zhang, Q.

L. Meng, W. Xu, Q. Zhang, T. Yang, and S. Shi, “Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering,” Appl. Surf. Sci. 472, 165–171 (2019).
[Crossref]

Zhao, X. Z.

B. L. Zhu and X. Z. Zhao, “Study on structure and optical properties of Bi2O3 thin films prepared by reactive pulsed laser deposition,” Opt. Mater. 29(2-3), 192–198 (2006).
[Crossref]

Zhu, B. L.

B. L. Zhu and X. Z. Zhao, “Study on structure and optical properties of Bi2O3 thin films prepared by reactive pulsed laser deposition,” Opt. Mater. 29(2-3), 192–198 (2006).
[Crossref]

Ziabari, A.

A. Ziabari and F. E. Ghodsi, “Optoelectronic studies of sol-gel derived nanostructured CdO-ZnO composite films,” J. Alloys Compd. 509(35), 8748–8755 (2011).
[Crossref]

Acta Phys. Pol., A (1)

A. Iljinas, S. Burinskas, and J. Dudonis, “Synthesis of bismuth oxide thin films deposited by reactive magnetron sputtering,” Acta Phys. Pol., A 120(1), 60–62 (2011).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, “Optical properties of (-Bi2O3 thin films grown by reactive sputtering,” Appl. Phys. Lett. 87(23), 231916 (2005).
[Crossref]

J. C. Fan, F. J. Bachner, G. H. Foley, and P. M. Zavracky, “Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation,” Appl. Phys. Lett. 25(12), 693–695 (1974).
[Crossref]

Appl. Surf. Sci. (4)

L. Meng, W. Xu, Q. Zhang, T. Yang, and S. Shi, “Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering,” Appl. Surf. Sci. 472, 165–171 (2019).
[Crossref]

R. B. Patil, R. K. Puri, and V. Puri, “Oxidation temperature dependent optical properties of bismuth oxide thin films: Effect of vapour chopping and air exposure,” Appl. Surf. Sci. 253(21), 8682–8688 (2007).
[Crossref]

X. Yang, X. Lian, S. Liu, C. Jiang, J. Tian, G. Wang, J. Chen, and R. Wang, “Visible light photoelectrochemical properties of (-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness,” Appl. Surf. Sci. 282, 538–543 (2013).
[Crossref]

T. P. Gujar, V. R. Shinde, C. D. Lokhande, R. S. Mane, and S.-H. Han, “Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect,” Appl. Surf. Sci. 250(1-4), 161–167 (2005).
[Crossref]

Catal. Today (1)

J. C. Medina, M. Bizarro, C. L. Gomez, O. Depablos-Rivera, R. Mirabal-Rojas, B. M. Monroy, A. Fonseca-Garcia, J. Perez-Alvarez, and S. E. Rodil, “Sputtered bismuth oxide thin films as a potential photocatalytic material,” Catal. Today 266, 144–152 (2016).
[Crossref]

Chem. Vap. Deposition (1)

N. Reuge, J. Dexpert-Ghys, and B. Caussat, “Fluidized-bed MOCVD of Bi2O3 thin films from bismuth triphenyl under atmospheric pressure,” Chem. Vap. Deposition 16(4-6), 123–126 (2010).
[Crossref]

Eur. Phys. J.: Appl. Phys. (1)

Y. Shen, Y. Li, K. Jiang, J. Zhang, Z. Duan, Z. Hu, and J. Chu, “Fabrication and temperature-dependent band gap shrinkage of (-phase Bi2O3 thin films grown by atomic layer deposition method,” Eur. Phys. J.: Appl. Phys. 62(2), 20303 (2013).
[Crossref]

J. Alloys Compd. (3)

C. Diaz-Guerra, P. Almodovar, M. Camacho-Lopez, S. Camacho-Lopez, and J. Piqueras, “Formation of (-Bi2O3 and (-Bi2O3 during laser irradiation of Bi films studied in-situ bay spatially resolved Raman spectroscopy,” J. Alloys Compd. 723, 520–526 (2017).
[Crossref]

A. Ziabari and F. E. Ghodsi, “Optoelectronic studies of sol-gel derived nanostructured CdO-ZnO composite films,” J. Alloys Compd. 509(35), 8748–8755 (2011).
[Crossref]

M. Rasheed and R. Barille, “Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics,” J. Alloys Compd. 728, 1186–1198 (2017).
[Crossref]

J. Appl. Phys. (3)

R. E. Schropp and A. Madan, “Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering,” J. Appl. Phys. 66(5), 2027–2031 (1989).
[Crossref]

P. Lunca-Popa, S. Sonderby, S. Kerdsongpanya, J. Lu, N. Bonanos, and P. Eklund, “Highly oriented (-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering,” J. Appl. Phys. 113(4), 046101 (2013).
[Crossref]

G. B. Smith, G. A. Niklasson, J. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experimental and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571–581 (1986).
[Crossref]

J. Non-Cryst. Solids (1)

L. Leontie and G. I. Rusu, “On the electronic transport properties of bismuth oxide thin films,” J. Non-Cryst. Solids 352(9-20), 1475–1478 (2006).
[Crossref]

J. Phys. Chem. C (1)

Y. D. Shen, Y. W. Li, W. M. Li, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Growth of Bi2O3 ultrathin films by atomic layer deposition,” J. Phys. Chem. C 116(5), 3449–3456 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (2)

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of (-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D: Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, and R. Wang, “Enhanced photocatalytic performance: a (-Bi2O3 thin film by nanoporus surface,” J. Phys. D: Appl. Phys. 46(3), 035103 (2013).
[Crossref]

Opt. Laser Technol. (1)

A. Venegas-Castro, A. Reyes-Contreras, M. Camacho-Lopez, O. Olea-Mejia, S. Camacho-Lopez, and A. Esparza-Garcia, “Study of the integrated fluence threshold condition for the formation of (-Bi2O3 on Bi thin films by using ns laser pulses,” Opt. Laser Technol. 81, 50–54 (2016).
[Crossref]

Opt. Mater. (2)

S. Kim, H. Yoon, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, “Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method,” Opt. Mater. 35(12), 2418–2424 (2013).
[Crossref]

B. L. Zhu and X. Z. Zhao, “Study on structure and optical properties of Bi2O3 thin films prepared by reactive pulsed laser deposition,” Opt. Mater. 29(2-3), 192–198 (2006).
[Crossref]

Phys. Rev. B (1)

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Phys. Status Solidi A (2)

J. George, B. Pradeep, and K. S. Joseph, “Preparation of heat mirrors using bismuth oxide films,” Phys. Status Solidi A 100(2), 513–519 (1987).
[Crossref]

J. Morasch, S. Li, J. Brotz, W. Jaegermann, and A. Klein, “Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties,” Phys. Status Solidi A 211(1), 93–100 (2014).
[Crossref]

Sol. Energy (1)

E. Valkonen, B. Karlsson, and C.-G. Ribbing, “Solar optical properties of thin films of Cu, Ag, Au, Cr, Fe, Co, Ni and Al,” Sol. Energy 32(2), 211–222 (1984).
[Crossref]

Sol. Energy Mater. (1)

C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Sol. Energy Mater. 6(1), 1–41 (1981).
[Crossref]

Solid State Ionics (1)

C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, and S. E. Rodil, “Stabilization of the delta-phase in Bi2O3 thin films,” Solid State Ionics 255, 147–152 (2014).
[Crossref]

Solid-State Electron. (1)

J. Jiang, D. G. Lim, K. Ramadoss, and S. Ramanathan, “Ionic conduction and unipolar resistance switching in (-phase Bi2O3 thin films,” Solid-State Electron. 146, 13–20 (2018).
[Crossref]

Thin Solid Films (4)

C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, and S. E. Rodil, “Optoelectronic properties of bismuth oxide films presenting different crystallographic phases,” Thin Solid Films 578, 103–112 (2015).
[Crossref]

L. Leontie, M. Caraman, A. Visinoiu, and G. I. Rusu, “On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition,” Thin Solid Films 473(2), 230–235 (2005).
[Crossref]

H. Kostlin and G. Frank, “Optimization of transparent heat mirrors based on a thin silver film between antireflection films,” Thin Solid Films 89(3), 287–293 (1982).
[Crossref]

B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll, and S. M. Aouadi, “Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering,” Thin Solid Films 520(19), 6118–6123 (2012).
[Crossref]

Vacuum (1)

Z. Wang, X. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80(5), 438–443 (2006).
[Crossref]

Other (3)

A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 ( https://srdata.nist.gov/xps/ ), National Institute of Standards and Measures, USA (2012).

A. A. Sayigh, Solar Energy Engineering (Academic Press, 1977).

S. J. Williamson and H. Z. Cummins, Light and Color in Nature and Art (Wiley, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Multilayer design of the transparent heat mirror. The Bi2O3 layer is deposited by DC sputtering, whereas the silver and magnesium fluoride layers are deposited by thermal evaporation. The back illumination of the substrate is also shown.
Fig. 2.
Fig. 2. XRD patterns of the bismuth oxide films: (a) deposited on unheated silicon substrates at the indicated Ar flow rates and sputtering powers, and (b) deposited on a silicon substrate heated to 300 °C at an Ar flow rate of 10 sccm and a DC power of 40 W. The inset in (b) shows an optical-microscope image (1 × 1 in.) of the film deposited on a heated fused silica substrate (300 °C) at 10 sccm of Ar and 40-W DC power.
Fig. 3.
Fig. 3. Two-dimensional AFM images of the bismuth oxide thin films deposited on fused silica substrates: (a) ${P_{DC}}$ = 40 W, Ar = 10 sccm; (b) ${P_{DC}}$ = 40 W, Ar = 15 sccm; (c) ${P_{DC}}$ = 60 W, Ar = 10 sccm; and (d) ${P_{DC}}$ = 60 W, Ar = 15 sccm.
Fig. 4.
Fig. 4. X-ray photoelectron spectra of the bismuth oxide film deposited on a molybdenum substrate with a DC power of 40 W under an Ar flow rate of 10 sccm: (a) wide survey scan showing the constituents of the film; (b) and (c) detailed high-resolution core-level spectra in the Bi 4f and O 1s regions, respectively.
Fig. 5.
Fig. 5. Normal-incidence optical spectra of the bismuth oxide thin films deposited on fused silica substrates: (a) transmittance and (b) reflectance.
Fig. 6.
Fig. 6. Dispersion curves of the refractive index of bismuth oxide thin films deposited on fused silica substrates.
Fig. 7.
Fig. 7. Tauc plots for the determination of the bandgaps of the films deposited on fused silica substrates. The numbers given in the inset represent the maximum of the vertical scale for each type of film.
Fig. 8.
Fig. 8. Transmittance spectra of transparent heat mirrors deposited on fused silica substrates using a 20-nm silver layer deposited on top of bismuth oxide films of thicknesses 28 and 38 nm.
Fig. 9.
Fig. 9. Normal-incidence transmittance and reflectance spectra of transparent heat mirrors based on the structure MgF2/Ag/Bi2O3/fused silica substrate, where the thicknesses of Bi2O3 and MgF2 were 28 and 25 nm, respectively. The thickness of the silver layer was varied as indicated in the figure.
Fig. 10.
Fig. 10. Variation of the reflectance of the THM deposited on a fused silica substrate with a 15-nm silver layer as a function of the angle of incidence.
Fig. 11.
Fig. 11. XPS depth profile spectra showing the variation of the relative atomic concentration of the various elements as a function of etching time for the three-layer structure whose optical spectra are shown in Fig. 9 with a silver layer thickness of 15 nm.
Fig. 12.
Fig. 12. Performance curves of the transparent heat mirrors (whose spectra are given in Fig. 9) showing the variation of the integrated visible transmittance and infrared reflectance as functions of the thickness of the silver layer.
Fig. 13.
Fig. 13. Surface temperature of an uncoated fused silica substrate as well as a fused silica substrate coated with a THM having a 15-nm silver layer. Heating is achieved by radiation from a tungsten halogen lamp.

Tables (1)

Tables Icon

Table 1. Properties of the bismuth oxide thin films

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = A o + A 2 λ 2 + A 4 λ 4
α = ( 1 d ) ln ( ( 1 R ) 2 T )
α E = C ( E E g ) 1 / 2
T v i s = ϕ ( λ ) S ( λ ) T ( λ ) d λ ϕ ( λ ) S ( λ ) d λ { λ : 400 700 nm }
R I R = R ( λ ) d λ d λ { λ : 700 2000 nm }